• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    I mpact of switching frequencies on the TID response of SiC power MOSFETs

    2021-08-26 06:47:30ShengYangXiaowenLiangJiangweiCuiQiwenZhengJingSunMohanLiuDangZhangHaonanFengXuefengYuChuanfengXiangYudongLiandQiGuo
    Journal of Semiconductors 2021年8期

    Sheng Yang, Xiaowen Liang, Jiangwei Cui Qiwen Zheng Jing Sun Mohan LiuDang Zhang Haonan Feng, Xuefeng Yu, Chuanfeng Xiang Yudong Li and Qi Guo

    1Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry,Chinese Academy of Sciences, Urumqi 830011, China

    2Xinjiang Key Laboratory of Electronic Information Material and Device, Urumqi 830011, China

    3University of Chinese Academy of Sciences, Beijing 100049, China

    Abstract: Different switching frequencies are required when SiC metal–oxide–semiconductor field-effect transistors (MOSFETs)are switching in a space environment.In this study, the total ionizing dose (TID) responses of SiC power MOSFETs are investigated under different switching frequencies from 1 kHz to 10 MHz.A significant shift was observed in the threshold voltage as the frequency increased, which resulted in premature failure of the drain–source breakdown voltage and drain–source leakage current.The degradation is attributed to the high activation and low recovery rates of traps at high frequencies.The results of this study suggest that a targeted TID irradiation test evaluation method can be developed according to the actual switching frequency of SiC power MOSFETs.

    Key words: SiC power MOSFET; switching frequency; oxide trap; total ionizing dose; transistor; semiconductor theory

    1.Introduction

    Silicon carbide (SiC) metal–oxide–semiconductor fieldeffect transistors (MOSFETs) have the advantages of high frequency, high efficiency, and high current density compared with Si devices.These advantages have attracted attention in the pursuit of lightweight structures, miniaturization,and low power consumption in the aerospace electronics industry; therefore, SiC power MOSFETs have very broad applications in the aerospace field[1,2].However, owing to the sensitivity of MOS devices to space radiation and the high requirements for the reliability of electronic devices in the space environment, it is necessary to fully test and evaluate the application of SiC power MOSFETs in space electronic systems[3].

    In the space radiation environment, the total ionizing dose (TID) induced by gamma rays is one of the most important factors that cause the failure of electronic devices.Recently, the radiation response of SiC power MOSFETs to gamma ray irradiation has been studied by several authors[4–8]since SiC high-voltage power MOSFETs have become commercially available.Thus far, the radiation response has been studied in terms of irradiation conditions,such as the temperature[4–6]and application of gate bias[7–9].It has been shown that the radiation-induced holes move toward the SiC/SiO2interface owing to the applied electric field, and they are trapped by defects in the oxide near the interface[10,11].However, in practical applications, SiC power MOSFETs are more often in the dynamic switching state at different frequencies.In the space environment, SiC power MOSFETs can be used in space solar inverters[12,13], electric thrusters, etc.[14]; the operating frequencies of these devices vary from kHz to MHz, as shown in Fig.1[15].Few studies have been conducted on the radiation effects under the dynamic frequencies of SiC power MOSFETs.Kobayashi[16]reported the gamma-ray irradiation response of the motor-driver circuit with SiC MOSFETs, but this was based on a specific frequency.The influence of a variation in the switching frequency on the radiation damage characteristics of devices has not been fully explored.Therefore, it is of great significance to study the influence and mechanism of the switching frequency of SiC power devices on the radiation damage characteristics.

    In this study, the relationship of the performance of SiC power MOSFETs and switching frequencies varying from 1 kHz to 10 MHz is first explored in the harsh TID environment.On the basis of the above work, the mechanism by which the operating frequency influences the radiation response characteristics of the device is further discussed, and we propose that it is feasible to improve the radiation resistance ability of SiC power MOSFETs by appropriately changing the switching conditions.

    2.Experimental details

    The experimental devices used were commercial 44 A 1200 V N channel SiC MOSFETs (CGE1M120060) fabricated at the Beijing Cengol Semiconductor Co., Ltd..on 4H-SiC epitaxial layers.In fact, our experimental devices include SiC MOSFETs of Cree (C2M0080120D) and Rohm(SCT2450KE).Since the experimental results are basically similar, we only presentthe experimental results of this device (CGE1M120060) below.The samples were divided into five groups.The gate signal amplitude was 15 V, the high potential was 15 V, the low potential was 0 V, and the duty cycle was 50%.The switching frequencies of the five groups were set at 1 kHz, 10 kHz,100 kHz, 1 MHz, and 10 MHz.The control group was divided into two groups: the first group was biased at 0 V gate bias,and the second group was exposed at a positive voltage of 15 V.

    Fig.1.Potential application examples using SiC devices at various voltage and frequency levels[15].

    In the experiment, according to the test conditions given in the device manual, BC3193 was used to measure the breakdown voltage BVDSSand drain–source leakage currentIDSSof the devices at room temperature (25 °C).A Keithley 4200CSC semiconductor device analyser was used to test the threshold voltageVthbefore and after irradiation.These samples were irradiated at the Xinjiang Institute of Physics and Chemistry, Chinese Academy of Sciences by using a60Co-γsource up to 300 krad(Si) at a dose rate of 200 rad (Si)/s.

    3.Results and discussion

    Fig.2 shows the changes in the threshold voltageVthin the total dose radiation environment of SiC power MOSFETs under the operating states of ON, OFF, and different frequencies.As shown in Fig.2(a), The degradation inVthwas minimized at the off operating state with a gate bias of 0 V, while it was maximized when the gate bias was 15 V.The degradation varied at different frequencies between these two offsets.Note that the drift ofVthincreased with the increase in the operating frequency at the same dose point (see the discussion and analysis below and Fig.2(b)).

    Fig.3 shows the relationship between the drain–source leakage currentIDSS(Fig.3(a)) and the drain–source breakdown voltage BVDSS(Fig.3(b)) of the SiC power MOSFET with various total doses under the ON, OFF, and switching conditions of different frequencies.As shown in Fig.3, the trend of the two parameters with the change in the dose point of the irradiation was not the same exactly; the drain–source leakage currentIDSSwith the total ionizing dose gradually increases and the breakdown voltage significantly decreases when the total ionizing dose reaches a certain value.However, they all showed that the damage degradation strongly depended on switching frequency.For example, as shown in Fig.3(b), under the same circumstances, SiC power MOSFETs switching on 10 MHz irradiation to 150 krad (Si) completely lost their blocking function, and 1 kHz samples in the 250 krad(Si) region lost the ability to block high voltage.

    Fig.2.(Color online) SiC power MOSFET.(a) Variation in threshold voltage with the total ionizing dose at ON, OFF, and different frequencies.(b) Relation between the change in threshold voltage and applied switching frequency under the same total ionizing dose.

    The degradation of the properties and parameters of SiC power MOSFETs in the total dose radiation environment is mainly attributed to the oxide charge and interface states generated and accumulated by ionizing radiation near the SiC/SiO2interface[10].The amount of oxide charge and interfacial state are directly related to the bias state of the gate oxide layer[17]: a large number of electron–hole pairs are created in the oxide by the ionizing radiation, and under the zero-bias condition, the pairs quickly recombine.Therefore,the probability of the hole being captured by the interface trap to form a trap charge is not high.However, under a positive gate bias, because the electron mobility is considerably higher than the hole mobility in SiO2, most electrons will quickly drift to the gate, and the hole will drift to the SiC/SiO2interface, which greatly increases the probability of the interface trap capturing these holes.Thus, in general, the radiation damage of the MOS transistors is minimized at a gate bias of 0 V, while the damage is maximized under the condition of a positive bias.

    Under a switching frequency bias, although the bias voltage changes constantly, its range is between 0 and 15 V.Therefore, this mechanism also explains the parameters and performance degradation of SiC power MOSFETs at different frequencies.If we continue to infer according to this model, it is reasonable to conclude that the radiation degradation should be approximately the same regardless of the operating frequency, because under the 50% duty cycle condition,the total time of the 0 V bias and the total time of the 15 V bi-as during irradiation do not vary with frequency.Our test results show that the radiation damage, including the parameters and function of the SiC power MOSFETs, depends on the operating frequency to a certain extent.The static ionising radiation damage model of the SiC power MOSFETs cannot explain the actual radiation damage in the dynamic switching state.

    Fig.3.(Color online)SiC power MOSFETs at ON, OFF, and different frequencies.(a) Variation in drain–source leakage current with the total ionizing dose.(b) Change in breakdown voltage with the total ionizing dose.

    We can try to understand the above phenomenon with the oxide hole trap model of the US Army Research Laboratory (ARL)[18].As shown in Fig.4, there is a weak Si–Si bond at the SiC/SiO2interface; therefore, there is an oxygen vacancy near the interface.Once these weak bonds are broken (owing to the ionizing radiation), an active trap, known as the E centre, is formed.It can either capture holes that are positively charged, or it can be thermally excited, ionized, or tunnelled through electron recombination, making it electrically neutral.This process is usually repeatable[19,20].For the switching frequency bias in this experiment, when the signal had a high potential, under the action of a positive gate electric field, a large number of net holes were present at the SiC/SiO2interface, and it was easy for the E centre generated by the irradiation to capture these net holes and form a trap charge.This led to a drift or the degradation of the threshold voltage and other parameters.When the signal was at a low potential (0 V), some of the captured holes gradually broke away from the trap and recombined with the ionised electrons and tunnelling electrons, resulting in the recovery of the threshold voltage to some extent.However, owing to the low mobility of the hole and the absence of a driving electric field, the recovery of damage was rather slow.The degree of recovery strongly depended on the signal frequency.At relatively low frequencies, there was a sufficient time for damage recovery at low levels; therefore, the overall radiation damage was small, and as the frequency increased, the duration of the low level became shorter, so that the probability of the hole escaping from the trap and electron recombination became lower.Thus, with an increase in the frequency, the radiation damage of the device was aggravated.

    Fig.4.A model hole trapping [(a) to (b)]and detrapping [(c) to (a)]processes are indicated, along with the intermediate compensation/reverse-annealing phenomenon [(b) to (c) and (c) to (b)][18].

    Fig.5.(Color online) Comparison of threshold voltage of SiC Power MOSFETs with the total ionizing dose under 15 and 0 V segment gate bias, constant 0 V gate bias, and constant 15 V gate bias.

    To further verify our inference, we designed another irradiation experiment with an alternating gate bias at 15 and 0 V with different total doses under the same experimental conditions; the experimental results are shown in Fig.5.No obvious recovery of the threshold voltage was found at the first low potential, because the positive charge accumulation process was stronger than the recovery process.At the second and third low potentials, a significant recovery of the threshold voltage was observed.At the dose point of 300 krad (Si), the negative drift of the threshold voltage was approximately –1.5 V, and this value is lower than the degradation seen in Fig.2 under the minimum value of 1 kHz.These experimental results have confirmed the accuracy of our theoretical analysis to a certain extent.

    4.Conclusion

    In summary, the results of this study show that TID radiation damage of the SiC power MOSFETs is related to the magnitude and direction of the electric field applied during irradiation, and it also strongly depends on the operating frequency.Under the same conditions, the TID radiation damage of SiC power MOSFETs will be aggravated as the frequency of the device increases.Further, a low frequency can be consciously selected or reduced to improve the radiation resistance ability of SiC power MOSFETs under permissible application conditions.The results suggest that we can develop a targeted TID test evaluation method according to the actual switching frequency of SiC power MOSFETs.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China under Grant No.11975305 and the West Light Foundation of The Chinese Academy of Sciences,Grant No.2017-XBQNXZ-B-008.

    搡老乐熟女国产| 国产亚洲欧美在线一区二区| 女人高潮潮喷娇喘18禁视频| 无遮挡黄片免费观看| 婷婷精品国产亚洲av在线 | 五月开心婷婷网| 日韩三级视频一区二区三区| 成年人免费黄色播放视频| 黄片小视频在线播放| av在线播放免费不卡| 色在线成人网| 亚洲第一av免费看| 亚洲片人在线观看| 欧美黄色片欧美黄色片| 日本精品一区二区三区蜜桃| 久久久久久久午夜电影 | 视频区欧美日本亚洲| 满18在线观看网站| cao死你这个sao货| 麻豆国产av国片精品| 国产亚洲欧美98| 亚洲欧洲精品一区二区精品久久久| 亚洲精品久久午夜乱码| 亚洲一区二区三区不卡视频| 欧美激情久久久久久爽电影 | 十分钟在线观看高清视频www| 成人18禁在线播放| 亚洲精品久久午夜乱码| 在线国产一区二区在线| 国产精品久久久久成人av| 少妇 在线观看| 免费看a级黄色片| 91麻豆精品激情在线观看国产 | 国产精品自产拍在线观看55亚洲 | 曰老女人黄片| 午夜两性在线视频| 极品少妇高潮喷水抽搐| av在线播放免费不卡| 深夜精品福利| 成人亚洲精品一区在线观看| 人成视频在线观看免费观看| 日韩有码中文字幕| 狂野欧美激情性xxxx| 人人澡人人妻人| 亚洲av成人一区二区三| av免费在线观看网站| 中文亚洲av片在线观看爽 | 1024视频免费在线观看| 欧美色视频一区免费| 人人妻人人澡人人看| 91麻豆av在线| 黄片播放在线免费| 91九色精品人成在线观看| 777久久人妻少妇嫩草av网站| 国产精品一区二区精品视频观看| 亚洲专区国产一区二区| 久久久久久免费高清国产稀缺| 亚洲全国av大片| 国产不卡一卡二| 91精品三级在线观看| 国产精品自产拍在线观看55亚洲 | 岛国在线观看网站| 在线观看www视频免费| 日韩欧美国产一区二区入口| 久久久精品免费免费高清| videosex国产| 十八禁人妻一区二区| 国产精品永久免费网站| 女人精品久久久久毛片| 欧美日韩亚洲国产一区二区在线观看 | 美女高潮到喷水免费观看| 国产av精品麻豆| 这个男人来自地球电影免费观看| 99热网站在线观看| 在线播放国产精品三级| 丁香六月欧美| 亚洲午夜精品一区,二区,三区| 飞空精品影院首页| 国产真人三级小视频在线观看| 中文字幕人妻丝袜一区二区| 99国产精品一区二区蜜桃av | 老熟妇仑乱视频hdxx| avwww免费| 交换朋友夫妻互换小说| 最近最新中文字幕大全电影3 | 啪啪无遮挡十八禁网站| 久久影院123| 亚洲中文字幕日韩| 视频区欧美日本亚洲| 国产精品秋霞免费鲁丝片| 丝袜美足系列| av在线播放免费不卡| 中亚洲国语对白在线视频| 正在播放国产对白刺激| 亚洲全国av大片| 亚洲av电影在线进入| 两人在一起打扑克的视频| 欧美乱码精品一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲一区二区三区欧美精品| 91精品国产国语对白视频| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线观看99| 免费不卡黄色视频| 少妇 在线观看| 亚洲av美国av| 久久香蕉激情| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 亚洲五月天丁香| av天堂久久9| 亚洲精品国产区一区二| 亚洲人成77777在线视频| 十分钟在线观看高清视频www| 在线十欧美十亚洲十日本专区| 欧美+亚洲+日韩+国产| 18禁国产床啪视频网站| 老司机影院毛片| 一级片免费观看大全| 国产区一区二久久| 老司机午夜十八禁免费视频| √禁漫天堂资源中文www| 夜夜躁狠狠躁天天躁| 精品久久久精品久久久| 国产亚洲精品久久久久久毛片 | 99久久国产精品久久久| 成人18禁高潮啪啪吃奶动态图| 香蕉久久夜色| 久久久久久人人人人人| 亚洲片人在线观看| 久久中文字幕人妻熟女| 成人手机av| 亚洲第一欧美日韩一区二区三区| 脱女人内裤的视频| 黄网站色视频无遮挡免费观看| 国产真人三级小视频在线观看| 黑丝袜美女国产一区| 久99久视频精品免费| 国产在视频线精品| 亚洲av美国av| 99久久综合精品五月天人人| 免费在线观看影片大全网站| 久久99一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 美女国产高潮福利片在线看| 嫩草影视91久久| tube8黄色片| 天堂动漫精品| 欧美乱妇无乱码| 精品高清国产在线一区| 一进一出好大好爽视频| 国产区一区二久久| 国产精品一区二区精品视频观看| 久久久国产精品麻豆| 狂野欧美激情性xxxx| 在线观看免费视频日本深夜| 久久中文字幕人妻熟女| 夜夜躁狠狠躁天天躁| 国产男靠女视频免费网站| 夜夜爽天天搞| 99久久99久久久精品蜜桃| 一a级毛片在线观看| 超色免费av| 日日夜夜操网爽| 国产精品久久久av美女十八| 日韩大码丰满熟妇| 无限看片的www在线观看| av视频免费观看在线观看| 亚洲黑人精品在线| 国产精品秋霞免费鲁丝片| 国产精品永久免费网站| 99国产精品99久久久久| av视频免费观看在线观看| 精品熟女少妇八av免费久了| www日本在线高清视频| 亚洲成人国产一区在线观看| 老司机午夜福利在线观看视频| 麻豆乱淫一区二区| 少妇裸体淫交视频免费看高清 | 国产aⅴ精品一区二区三区波| 黑人巨大精品欧美一区二区蜜桃| 男人的好看免费观看在线视频 | 亚洲少妇的诱惑av| 精品久久久久久久毛片微露脸| 99精品久久久久人妻精品| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 丁香欧美五月| 久久精品国产a三级三级三级| 久久精品国产亚洲av高清一级| 久久久久久久久免费视频了| 午夜免费成人在线视频| 亚洲色图 男人天堂 中文字幕| 欧美日韩国产mv在线观看视频| 久久久精品免费免费高清| 欧美日韩福利视频一区二区| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 人人澡人人妻人| 亚洲美女黄片视频| 精品熟女少妇八av免费久了| 国产精品98久久久久久宅男小说| 成人免费观看视频高清| 成人18禁高潮啪啪吃奶动态图| 亚洲少妇的诱惑av| 在线观看日韩欧美| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人免费av在线播放| 99re6热这里在线精品视频| 香蕉国产在线看| 中出人妻视频一区二区| 免费日韩欧美在线观看| 精品亚洲成a人片在线观看| 99精国产麻豆久久婷婷| 国产亚洲欧美98| 亚洲专区字幕在线| 亚洲国产毛片av蜜桃av| 亚洲av第一区精品v没综合| 成人三级做爰电影| www日本在线高清视频| 久久狼人影院| 亚洲黑人精品在线| av一本久久久久| 超碰97精品在线观看| 国产午夜精品久久久久久| 人人妻人人澡人人看| 欧美乱码精品一区二区三区| 十八禁网站免费在线| 女人被狂操c到高潮| 热re99久久精品国产66热6| 狠狠婷婷综合久久久久久88av| 黄色a级毛片大全视频| 波多野结衣av一区二区av| 在线观看免费日韩欧美大片| av免费在线观看网站| 黑丝袜美女国产一区| 久久国产精品人妻蜜桃| 80岁老熟妇乱子伦牲交| 人妻久久中文字幕网| 亚洲全国av大片| 又大又爽又粗| 777久久人妻少妇嫩草av网站| 人人妻人人澡人人爽人人夜夜| 亚洲精品国产色婷婷电影| 涩涩av久久男人的天堂| 精品国产一区二区久久| 动漫黄色视频在线观看| 亚洲一区二区三区欧美精品| 99精品在免费线老司机午夜| 亚洲国产毛片av蜜桃av| 99国产精品一区二区蜜桃av | 亚洲国产看品久久| 一夜夜www| 大片电影免费在线观看免费| 水蜜桃什么品种好| 俄罗斯特黄特色一大片| 国产1区2区3区精品| 午夜免费观看网址| 国产激情久久老熟女| 人人妻,人人澡人人爽秒播| 桃红色精品国产亚洲av| 老司机亚洲免费影院| 亚洲精品国产精品久久久不卡| 法律面前人人平等表现在哪些方面| 十八禁高潮呻吟视频| 久久精品亚洲av国产电影网| 一级a爱视频在线免费观看| 精品国产乱码久久久久久男人| 欧美最黄视频在线播放免费 | 欧美乱妇无乱码| 午夜日韩欧美国产| 无遮挡黄片免费观看| 真人做人爱边吃奶动态| 欧美成人免费av一区二区三区 | 超色免费av| 人人妻人人澡人人看| 亚洲av成人一区二区三| 精品一品国产午夜福利视频| 波多野结衣一区麻豆| 成年人午夜在线观看视频| 岛国毛片在线播放| xxx96com| 亚洲国产精品sss在线观看 | 久久久国产成人精品二区 | 免费在线观看完整版高清| 亚洲人成伊人成综合网2020| 久久久久久免费高清国产稀缺| 日韩视频一区二区在线观看| 欧美精品av麻豆av| 日本欧美视频一区| 色婷婷av一区二区三区视频| 精品国产亚洲在线| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 久久国产乱子伦精品免费另类| 国产精品偷伦视频观看了| 国产精品乱码一区二三区的特点 | 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 国产片内射在线| 最新美女视频免费是黄的| aaaaa片日本免费| 国产精品久久视频播放| 国产欧美亚洲国产| 一区二区日韩欧美中文字幕| 国产又爽黄色视频| 自线自在国产av| 亚洲精品在线美女| 久久久久国产精品人妻aⅴ院 | 精品久久久精品久久久| 9热在线视频观看99| 久久香蕉精品热| 飞空精品影院首页| 男女之事视频高清在线观看| 99久久99久久久精品蜜桃| 精品国产美女av久久久久小说| 欧美黄色淫秽网站| 亚洲 国产 在线| 在线观看免费日韩欧美大片| 岛国在线观看网站| 99精国产麻豆久久婷婷| 一区二区三区国产精品乱码| 成人免费观看视频高清| 亚洲 欧美一区二区三区| 国产主播在线观看一区二区| 欧美成人免费av一区二区三区 | 久久香蕉激情| 超碰97精品在线观看| 母亲3免费完整高清在线观看| 香蕉久久夜色| 亚洲 国产 在线| 久久久国产欧美日韩av| 日韩免费av在线播放| 精品亚洲成a人片在线观看| 丝瓜视频免费看黄片| 一级a爱视频在线免费观看| 亚洲专区字幕在线| 国产亚洲精品一区二区www | 精品久久久久久,| 757午夜福利合集在线观看| 久久久久久久国产电影| 久久九九热精品免费| 97人妻天天添夜夜摸| 午夜日韩欧美国产| 一本一本久久a久久精品综合妖精| 精品欧美一区二区三区在线| 天天躁狠狠躁夜夜躁狠狠躁| 女人精品久久久久毛片| 自线自在国产av| 免费观看a级毛片全部| 色婷婷久久久亚洲欧美| 大陆偷拍与自拍| 久久人妻av系列| 丁香欧美五月| 成人三级做爰电影| 国产xxxxx性猛交| 女人精品久久久久毛片| 国产亚洲精品第一综合不卡| 两人在一起打扑克的视频| 女性被躁到高潮视频| 岛国在线观看网站| 少妇的丰满在线观看| 看片在线看免费视频| 久久久久久久国产电影| 国产av一区二区精品久久| 中国美女看黄片| 久久草成人影院| 少妇 在线观看| 精品国产美女av久久久久小说| 成人黄色视频免费在线看| 日日爽夜夜爽网站| 国产精品影院久久| 日韩欧美免费精品| 精品午夜福利视频在线观看一区| 一边摸一边抽搐一进一出视频| avwww免费| 桃红色精品国产亚洲av| 9色porny在线观看| 日本黄色视频三级网站网址 | 在线av久久热| 女性被躁到高潮视频| 日韩欧美一区视频在线观看| 亚洲五月天丁香| 熟女少妇亚洲综合色aaa.| 精品福利观看| 国产91精品成人一区二区三区| 亚洲av第一区精品v没综合| 久久久久国产一级毛片高清牌| 久久精品亚洲熟妇少妇任你| 国产精品久久久av美女十八| 欧美日韩亚洲综合一区二区三区_| 黄色片一级片一级黄色片| 91九色精品人成在线观看| 国产野战对白在线观看| 亚洲性夜色夜夜综合| av片东京热男人的天堂| 天天躁日日躁夜夜躁夜夜| 亚洲成人免费av在线播放| 91精品三级在线观看| 亚洲精品乱久久久久久| 一级a爱视频在线免费观看| 亚洲精品美女久久av网站| av片东京热男人的天堂| a级毛片黄视频| 国产av一区二区精品久久| 一区二区三区精品91| 最新美女视频免费是黄的| 国产成人欧美| 午夜亚洲福利在线播放| 国产精品欧美亚洲77777| 精品少妇一区二区三区视频日本电影| 一进一出好大好爽视频| 69精品国产乱码久久久| 欧美人与性动交α欧美软件| 80岁老熟妇乱子伦牲交| 别揉我奶头~嗯~啊~动态视频| 高清欧美精品videossex| 他把我摸到了高潮在线观看| 后天国语完整版免费观看| 国产精品 欧美亚洲| 亚洲中文字幕日韩| 热99久久久久精品小说推荐| 99riav亚洲国产免费| 91大片在线观看| 一进一出抽搐gif免费好疼 | 日韩欧美一区二区三区在线观看 | 免费在线观看日本一区| avwww免费| 国产区一区二久久| 自线自在国产av| 成年人黄色毛片网站| 精品福利观看| 亚洲九九香蕉| 丁香六月欧美| 黄片小视频在线播放| 精品午夜福利视频在线观看一区| 亚洲av成人不卡在线观看播放网| 嫁个100分男人电影在线观看| 国产免费男女视频| 19禁男女啪啪无遮挡网站| www.精华液| 国产在线一区二区三区精| 国产精华一区二区三区| 热99国产精品久久久久久7| 亚洲中文av在线| av天堂久久9| av在线播放免费不卡| 色婷婷av一区二区三区视频| 伊人久久大香线蕉亚洲五| 免费观看a级毛片全部| 国产亚洲av高清不卡| 满18在线观看网站| 韩国av一区二区三区四区| 日韩三级视频一区二区三区| 最新在线观看一区二区三区| 校园春色视频在线观看| 欧美日韩黄片免| 叶爱在线成人免费视频播放| 国产人伦9x9x在线观看| 99国产极品粉嫩在线观看| 欧美精品人与动牲交sv欧美| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 国内久久婷婷六月综合欲色啪| tube8黄色片| 免费在线观看黄色视频的| 999精品在线视频| 中国美女看黄片| 欧美日韩av久久| 午夜亚洲福利在线播放| 亚洲国产精品合色在线| 如日韩欧美国产精品一区二区三区| 三上悠亚av全集在线观看| 性少妇av在线| 黄片大片在线免费观看| 国产成人欧美| 中文字幕色久视频| 国产不卡av网站在线观看| 久久青草综合色| 日韩欧美免费精品| 亚洲熟女毛片儿| 国产欧美日韩综合在线一区二区| 免费黄频网站在线观看国产| 搡老乐熟女国产| 视频区欧美日本亚洲| 国产精品久久久久成人av| 一级,二级,三级黄色视频| 不卡一级毛片| e午夜精品久久久久久久| 80岁老熟妇乱子伦牲交| 国产激情欧美一区二区| 国产伦人伦偷精品视频| 激情视频va一区二区三区| 国产成人av教育| 久久国产精品男人的天堂亚洲| 国产高清国产精品国产三级| 国产亚洲欧美在线一区二区| 久久久久国产精品人妻aⅴ院 | 亚洲中文字幕日韩| 99久久精品国产亚洲精品| 成年动漫av网址| 脱女人内裤的视频| 国产伦人伦偷精品视频| 妹子高潮喷水视频| 国产成人免费观看mmmm| 日韩欧美一区二区三区在线观看 | 日韩欧美三级三区| 亚洲一区二区三区不卡视频| 亚洲国产欧美一区二区综合| 女人被躁到高潮嗷嗷叫费观| 少妇的丰满在线观看| 在线免费观看的www视频| 国产成人精品久久二区二区免费| av超薄肉色丝袜交足视频| 悠悠久久av| 国产成人欧美在线观看 | 亚洲av成人一区二区三| 中国美女看黄片| 老熟女久久久| 国产精品 欧美亚洲| 女人久久www免费人成看片| 欧美精品啪啪一区二区三区| 成年人黄色毛片网站| 亚洲国产精品sss在线观看 | 精品久久久精品久久久| 欧美日韩成人在线一区二区| 亚洲伊人色综图| 午夜成年电影在线免费观看| 大香蕉久久网| 手机成人av网站| 国产欧美日韩综合在线一区二区| 一区二区日韩欧美中文字幕| 日日摸夜夜添夜夜添小说| 丝袜美腿诱惑在线| 一本综合久久免费| 国产欧美日韩一区二区三| 极品教师在线免费播放| 久久久久久久久免费视频了| 国产一区二区三区综合在线观看| 亚洲精品av麻豆狂野| 黄片小视频在线播放| xxx96com| 99精品欧美一区二区三区四区| 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看| 日韩免费高清中文字幕av| 久久九九热精品免费| 一级a爱片免费观看的视频| 一级毛片女人18水好多| 久久精品国产亚洲av高清一级| 悠悠久久av| 国产精品久久电影中文字幕 | av片东京热男人的天堂| 欧美午夜高清在线| 欧美乱码精品一区二区三区| 桃红色精品国产亚洲av| 国产精品久久久av美女十八| 啦啦啦在线免费观看视频4| 男女下面插进去视频免费观看| 欧美日韩亚洲高清精品| 日本一区二区免费在线视频| 嫩草影视91久久| 久久精品人人爽人人爽视色| 国产麻豆69| 亚洲少妇的诱惑av| 精品久久蜜臀av无| 成年动漫av网址| 黄片播放在线免费| 99在线人妻在线中文字幕 | 国产精品久久久人人做人人爽| 看黄色毛片网站| 欧美亚洲 丝袜 人妻 在线| 精品亚洲成国产av| 黄色a级毛片大全视频| 日本a在线网址| 午夜视频精品福利| 国产成人啪精品午夜网站| 久久久国产精品麻豆| 亚洲五月色婷婷综合| 女人精品久久久久毛片| 欧美日本中文国产一区发布| 九色亚洲精品在线播放| 极品人妻少妇av视频| 久久中文看片网| 岛国在线观看网站| 久久这里只有精品19| 欧美黑人欧美精品刺激| 9热在线视频观看99| 99热网站在线观看| 老汉色av国产亚洲站长工具| 欧美日韩av久久| 两人在一起打扑克的视频| www.999成人在线观看| 国产精品一区二区精品视频观看| 精品一区二区三区四区五区乱码| 亚洲男人天堂网一区| 国产免费男女视频| 视频区图区小说| 午夜福利,免费看| 成年版毛片免费区| 亚洲欧美激情综合另类| 十八禁网站免费在线| 一级a爱视频在线免费观看| 亚洲精品乱久久久久久| 国产三级黄色录像| 成人特级黄色片久久久久久久| 高清av免费在线| 亚洲九九香蕉| 国产欧美日韩一区二区三区在线| av天堂久久9| 欧美在线一区亚洲| 91成人精品电影| 看片在线看免费视频|