• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Number of Connected Cayley Graphs over Dicyclic Group

    2021-08-23 06:26:30WangYongweiLiuWeijunFengLihua
    數(shù)學理論與應用 2021年2期

    Wang Yongwei Liu Weijun Feng Lihua

    (School of Mathematics and Statistics,HNP-LAMA,Central South University,Changsha 410083,China)

    Abstract Let p be an odd prime.In this paper,we obtain the number of(connected)Cayley graphs on the dicyclic groups T4p=〈a,b|ap=b4=1,b?1ab=a?1〉up to isomorphism by using the Pólya enumeration theorem.

    Key words Cayley graph Dicyclic group Isomorphic class Pólya enumeration theorem

    1 Introduction

    In this paper,we are interested in a special class of regular graphs–Cayley graphs.

    Given a finite groupGand a subsetS?G{1}withS=S?1(suchSis called symmetric),the Cayley graphX(G,S)has vertex setG?two verticesa,binGare called adjacent ifa?1b∈S.IfSgeneratesG,thenX(G,S)is connected.

    For a finite groupG,letΓ=X(G,S)for some symmetric subsetS?G.Letσbe an automorphism ofG.Thenσnaturally acts on the vertex setV=G.ForT=σ(S),it is easily shown thatσinduces an isomorphism fromX(G,S)toX(G,T).Such an isomorphism is called a Cayley isomorphism.However,in a general setting,it is also possible that two Cayley graphsX(G,S)andX(G,T)are isomorphic but there are no Cayley isomorphisms mappingStoT.The purpose of this paper is to investigate the conditions under whichX(G,S)~=X(G,T)if and only ifσ(S)=Tfor someσ∈Aut(G).

    A Cayley graphX(G,S)is called a CI-graph ofG,if,wheneverX(G,S)~=X(G,T),there is an elementσ∈Aut(G)such thatT=σ(S)(here CI stands for Cayley Isomorphism).A finite groupGis called a CI-group if all the Cayley graphs ofGare CI-graphs.

    The investigation of CI-graphs or CI-groups was initiated fromádám[1]in 1976,who proposed the following conjecture:

    ConjectureAll circulant graphs are CI-graphs of the corresponding cyclic groups.

    This conjecture was turned out to be false as suggested by Elspas and Turner[8].However,it leads to a new research direction on the characterization of CI-graphs or CI-groups[3,5,6,7,10,11,15,18,19].

    To determine and enumerate the isomorphic classes of graphs is a foundamental but difficult issue in graph theory[9],this is also the case even we restrict ourselves to the Cayley graphs of a given group(see,for example,[2]),but the latter is closely related to the CI-graphs or CI-groups.From the definition,ifX(G,S)is a CI-graph,then to determine whetherX(G,S)is isomorphic toX(G,T),we need only to see if there exists an automorphismσ∈Aut(G)such thatσ(S)=T.From this point,Mishna[17]applied the Pólya enumeration theorem to count the isomorphic classes of Cayley graphs(Cayley digraphs)on some CI-groups.Also,the isomorphic classes of some families of Cayley graphs which are edge-transitive but not arc-transitive were determined in[16,21,22].For more results on this topic,we refer the reader to the review paper[14]and the references therein.

    The Dicyclic group is given by

    T4nis a non-abelian group of order 4n,and is also called a binary dihedral group in some other references.In[12],the authors obtained the number of(connected)Cayley graphs on dihedral groupsD2p=〈a,b|ap=1,b2=1,b?1ab=a?1〉(pis an odd prime)up to isomorphism.As mentioned in[4],unlikeD2n,T4nis not a semidirect product of〈a〉and〈b〉for generaln.In[15],Li et al.showed thatT4pis a CI-group any odd primep.This essential result hints us the possibility to enumerate the isomorphic classes of Cayley graphs ofT4p.Borrowing ideas from the works in[17,12],in this paper,we obtain the number of(connected)Cayley graphs onT4pup to isomorphism.

    2 Preliminaries

    In this section,we will introduce some notations,and also present several conclusions which will be used later.

    We use Znandto denote the additive cyclic group of ordern,and the multiplicative group of units of the ring of integers modulon,respectively.For a finite groupG,we use Aut(G)to denote the group of automorphisms ofG.Φ(n)denotes the number of integersi(1≤i≤n)coprime ton.

    Definition 2.1LetXbe a set andGa finite group with identitye.An action ofGonXis a map Ψ:G×X→Xdefined by Ψ(g,x)=gxsuch that

    (1)ex=x,for allx∈X;

    (2)(g1g2)x=g1(g2x),for allx∈Xand allg1,g2∈G.

    One says thatGacts onX.WhenGis a permutation group,one can obtain a natural action ofGonXby defininggx=g(x).

    Definition 2.2Assume that the groupGacts on a setX.Ifx∈X,then the orbit ofxis the subsetGx={gx|g∈G}ofX.The stabilizer ofxis the subgroup ofGdefined byGx={g∈G|gx=x}.

    SupposeGis a permutation group acting on a setXwithnelements.Then every permutationginGhas a unique disjoint cycle decomposition.We define the cycle type ofg∈Gas type(g)={b1(g),b2(g),...,bn(g)},wherebi(g)is the number of cycles of lengthi.For example,the permutation (1532)(46)(87)(9)is of type{1,2,0,1,0,0,0,0,0}.Note thatb1(g)+2b2(g)+···+nbn(g)=n.

    The cycle indexZ(G,X)is the polynomial withnvariablesx1,x2,...,xndefined as

    For two finite setsDandR,letRDdenote the set of all functions fromDtoR.Suppose thatGis a permutation group acting onD.Then we obtain a group action(G,RD)naturally by setting

    for allg∈G,f∈RDandx∈D.Under the group action(G,RD),two maps inRDare said to beG-equivalent if they belong to the same orbit.The Pólya Enumeration Theorem provides the number of orbits of the group action(G,RD).

    Lemma 2.1(Pólya Enumeration Theorem,see[9])LetDandRbe two finite sets with|D|=nand|R|=m.LetGbe a permutation group acting onD.Denote byFthe set of all orbits of the group action(G,RD).Then

    whereZG(x1,x2,...,xn)is the cycle index of(G,D)defined in(2.1).

    Our focus is on the dicyclic group.In general,the presentation for dicyclic groupT4n(see,for example,[4])is given by

    For any odd numbern≥3,settingx2=aandt=b,then we have

    This group has order 4n,and

    Lemma 2.2For the dicyclic groupT4n=〈a,b|an=b4=1,b?1ab=a?1〉,wheren≥3 is odd,we have

    (1)akb=ba?k;akb2=b2ak;akb3=b3a?k;

    (2)(akb)?1=akb3;(akb2)?1=a?kb2.

    ProofBy the relationsan=b4=1 andb?1ab=a?1,the results follow immediately.

    Lemma 2.3([15])For an odd numbern,letT4n=〈a,b|an=b4=1,b?1ab=a?1〉be the dicyclic group and Z(T4n)be its center.Then for each automorphismσ∈Aut(T4n),we haveσ(b)=aβb1+rfor someβ∈Zn,wherebr∈Z(T4n).

    By Lemma 2.3,the automorphism group of the dicyclic groupT4ncan be described.

    ProofThe automorphism of cyclic group〈a〉isσ(a)=ai,where gcd(i,n)=1.Since Z(T4n)={1,b2},by Lemma 2.3,for each automorphismσofT4n,we haveσ(b)=aβborσ(b)=aβb3,whereβ∈Zn.Define

    and

    It is easy to verify thatσα,β,τγ,δ∈Aut(T4n).By the preceding paragraph,we have Aut(T4n)=

    For an odd primep,Li et al[15]showed that the dicyclic group is a CI-group.This crucial result is very helpful in our study.From this observation,we have

    Lemma 2.4LetX(T4p,S)andX(T4p,T)be two Cayley graphs onT4p.ThenX(T4p,S)~=X(T4p,T)if and only if there exists someσ∈Aut(T4p)such thatσ(S)=T.

    3 Enumerating Cayley Graphs on T4p

    Now we turn our attention to the Cayley graphX(T4p,S),wherepis an odd prime.SinceS=S?1,we may assume thatD=A∪B,whereA=A1∪A2∪{b2},and

    Then Aut(T4p)acts onDnaturally by setting

    and

    for eachσα,β,τγ,δ∈Aut(T4p).

    Sinceτγ,δ(ajb)=ajγ+δb3,thus we need only find those automorphisms inthat fix every element ofA.

    Letσα,β(akb)=akbfor eachk∈Zp.Takek=0,we haveσα,β(a0b)=aβb=a0b,which implies thatα=0.Take somej=j0∈Zp{0},then

    which gives thatj0α=j0,thusSoσ1,0is the identity element of Aut(T4p).This implies that Aut(T4p)acts onDfaithfully.Also observe thatσα,β(A)=A,σα,β(B)=Bandτγ,δ(A)=A,τγ,δ(B)=Bfor eachσα,β,τγ,δ∈Aut(T4p).LetR={0,1}.Then Aut(T4p)is a permutation group acting onDandRD.

    ForS?D,letfSdenote the characteristic function ofS,that is,fS(a)=1 ifa∈S,andfS(a)=0 ifa∈DS.Clearly,fS∈RDandRDconsists of all characteristic functions onD.By Lemma 2.4,we know that two Cayley graphsX(T4p,S)andX(T4p,T)onT4pare isomorphic if and only if there exists someσ∈Aut(T4p)such thatσ(S)=T,which is the case if and only iffS,fT∈RDare Aut(T4p)-equivalent.Thus the number of Cayley graphs onT4pup to isomorphism is equal to the number of orbits of the group action(Aut(T4p),RD).Therefore,by Lemma 2.1,in order to enumerate Cayley graphs onT4p,we first need to compute the cycle index of the permutation group Aut(T4p)acting onD.

    Also,sincepis an odd prime,we know thatis a cyclic group of orderp?1.Thus we can assume thatfor some integerz∈Zp{0}.Then for anythere exists someiα∈Zp?1such thatα=ziα.Furthermore,ifαranges over all elements oftheniαranges over all elements of Zp?1.

    The following lemma plays a crucial role to the calculation of cycle index.

    Lemma 3.1LetD=A∪Bandσα,β,τγ,δ∈Aut(T4p)be defined as above.And letUnder the action of Aut(T4p)onD,the cycle type ofσα,β,τγ,δis given by type(σα,β)={b1(σα,β),b2(σα,β),...,b2p(σα,β)}and type(τγ,δ)={b1(τγ,δ),b2(τγ,δ),...,b2p(τγ,δ)},where

    ProofSince

    and

    we must have

    and

    Forσα,β,τγ,δ∈Aut(T4p),we consider the following two cases.

    Case 1:α=1(γ=1)?

    Observe thatforwe see the permutationσ1,βsplitsAintopcycles of length 1.Also note thatfor 0≤j≤p?1.Ifβ=0,thenfor eachj,and soσ1,0splitsBintopcycles of length 1.Ifβ∈Zp{0},the order ofβ∈Zpiso(β)=p.Then,for anyis in the cycle

    Thus the permutationσ1,βsplitsBinto exactly one cycle of lengthp.Therefore,we obtain the cycle type ofσ1,β.

    Similarly,we can obtain that the cycle type ofτ1,δis the same as the cycle type ofσ1,β.

    Thus we obtain the cycle type ofσ1,βandτ1,δ,as shown in(3.6).

    Case 2:

    Observe that

    Firstly,we claim thatσα,βhas the same cycle type asσα,0for eachβ∈Zp.

    Since

    and

    and

    for eachl∈Zr.Thus(φ(ˉak1b),φ(ˉak2b),···φ(ˉakrb))is a cycle ofσα,β.Therefore,σα,βandσα,0also have the same cycle type inBbecauseφis a bijection.So the claim holds.

    Hence,we just need to consider the cycle type ofσα,0inD=A∪B.

    Firstly,sinceσα,0(b2)=b2,the permutationσα,0splits{b2}into one cycle of length 1.

    For any fixedˉai∈A1,assume thatN(α)is the minimal positive integer such that

    Then we have

    or

    Then we have obtained the cycle type ofσα,β,as shown in(3.7).

    Similarly,we can obtain the cycle type ofτγ,δ,as shown in(3.8).

    The proof is complete.

    Lemma 3.2LetD=A∪B.The cycle index of Aut(T4p)acting onDis given by

    ProofBy Lemma 3.1,the cycle index of Aut(T4p)acting onDis given by

    This completes the proof.

    According to Lemmas 2.1 and 3.2,we can obtain the number of Cayley graphs onT4pup to isomorphism immediately.

    Theorem 3.1Letpbe an odd prime.The number of Cayley graphs onT4pup to isomorphism is equal to

    In[17],Mishna also enumerated the circulant graphs of orderpup to isomorphism.

    Lemma 3.3([17])Letpbe an odd prime.The number of circulant graphs of orderpup to isomorphism is equal to

    where Φ is Euler’s totient function.

    From Theorem 3.1 and Lemma 3.3,we can also give the number of connected Cayley graphs onT4pup to isomorphism.

    Theorem 3.2Letpbe an odd prime.The number of connected Cayley graphs onT4pup to isomorphism is equal to

    where NTand NCare presented in(3.10)and(3.11),respectively.

    ProofIt is well known that a Cayley graphX(G,S)is connected if and only if〈S〉=G.Thus,forS?T4p{0},the Cayley graphX(T4p,S)is disconnected if and only ifS?A=A1∪A2∪{b2}=〈a〉∪〈a〉b2{0}orS={ajb,ajb3}orS={b2,ajb,ajb3}forj∈Zpbecausepis a prime.

    IfS1?A1=〈a〉,then by Lemma 3.3,there are NCisomorphic classesS1inA1.Similarly,Ifthen there are NCisomorphic classesS2inA2.And ifS1?=?andS2?=?,thenS1∪S2is the isomorphic class inA1∪A2,thus there are(NC?1)2such isomorphic classes inA1∪A2.Therefore?,S1,S2andS1∪S2are isomorphic classes inA1∪A2,where??=S1?A1and??=S2?A2.Thus there areisomorphic classes inA1∪A2.Moreover,we have{b2},S1∪{b2},S2∪{b2}andS1∪S2∪{b2}are isomorphic classes inA1∪A2{b2},wherethen there areisomorphic classes inA1∪A2∪{b2}.Summing up the above,we have 2N2Cisomorphic classes inA.

    Also note that{b2,b,b3}),then there are 2 isomorphic classes such that the Cayley digraphX(T4p,S)is disconnected,whereS?B.

    Hence,from Theorem 3.1 and the above,we have that the number of connected Cayley graphs onT4pup to isomorphism is equal to

    This completes the proof.

    Example 3.1Takep=3 and consider the dicyclic groupT12={a,b|a3=1,b4=1,b?1ab=a?1}.LetD=T12{e}.Then it is easy to see that there are 32 representative elements of Aut(T12)-equivalent classes of subsets ofD.

    Moreover,Cayley graphX(T12,S)is disconnected,ifSis one of

    Cayley graphX(T12,S)is connected,ifSis one of

    Thus there are exactly 22 connected Cayley graphs onT12up to isomorphism.By Lemma 3.3 and Theorems 3.1,and 3.2,we have

    At the end of this paper,we list the number of connected Cayley graphs onT4p(pis a prime)up to isomorphism for 3≤p≤19 by applying Theorem 3.2(see Tab.1).

    Table 1 The number of Cayley graphs on T4p(3≤p≤19)

    国产成人freesex在线| 插阴视频在线观看视频| 亚洲电影在线观看av| 黄色一级大片看看| 人人妻人人澡人人爽人人夜夜 | 精华霜和精华液先用哪个| 啦啦啦韩国在线观看视频| 夜夜爽夜夜爽视频| 内射极品少妇av片p| 白带黄色成豆腐渣| av专区在线播放| 国产一区二区在线av高清观看| 久久人人爽人人爽人人片va| 欧美性猛交╳xxx乱大交人| 欧美性猛交╳xxx乱大交人| 搡老妇女老女人老熟妇| 国产精品久久视频播放| 亚洲四区av| 久99久视频精品免费| 亚洲欧美精品综合久久99| 国产午夜精品论理片| 男女啪啪激烈高潮av片| 91久久精品国产一区二区三区| 亚洲国产色片| 国产伦精品一区二区三区四那| 国产免费一级a男人的天堂| 日韩大片免费观看网站 | 国产综合懂色| 国产极品精品免费视频能看的| 七月丁香在线播放| 亚洲国产色片| 日韩成人伦理影院| av国产免费在线观看| 嫩草影院新地址| 成人二区视频| .国产精品久久| 亚洲美女视频黄频| 大香蕉97超碰在线| 国产精品电影一区二区三区| 日韩精品青青久久久久久| 国产一区二区亚洲精品在线观看| 青春草国产在线视频| 99久久人妻综合| 欧美成人精品欧美一级黄| 免费观看a级毛片全部| 国产私拍福利视频在线观看| 国产精品三级大全| 一级二级三级毛片免费看| 最近中文字幕高清免费大全6| 精品久久久久久久末码| 精品一区二区三区视频在线| 青春草国产在线视频| 成人亚洲精品av一区二区| 亚洲在线自拍视频| 国产激情偷乱视频一区二区| 国产又色又爽无遮挡免| av福利片在线观看| 男人舔奶头视频| 免费av毛片视频| av在线天堂中文字幕| 日韩亚洲欧美综合| 精品国内亚洲2022精品成人| 亚洲乱码一区二区免费版| 日本免费a在线| 干丝袜人妻中文字幕| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久电影网 | 日韩,欧美,国产一区二区三区 | 国产又黄又爽又无遮挡在线| 人妻夜夜爽99麻豆av| 国产成人福利小说| 久久草成人影院| 大香蕉久久网| 国产精品国产三级国产av玫瑰| 久久久久九九精品影院| 国产伦精品一区二区三区四那| 日韩一本色道免费dvd| 国国产精品蜜臀av免费| 久久精品夜色国产| 熟妇人妻久久中文字幕3abv| 久久久久久伊人网av| 亚洲va在线va天堂va国产| 国产又黄又爽又无遮挡在线| 日韩av在线免费看完整版不卡| 一级毛片电影观看 | 国产午夜福利久久久久久| 中文精品一卡2卡3卡4更新| 国产真实乱freesex| 亚洲人成网站在线观看播放| 村上凉子中文字幕在线| 欧美成人a在线观看| 级片在线观看| 亚洲精品自拍成人| 亚洲av电影在线观看一区二区三区 | 国产麻豆成人av免费视频| 九九爱精品视频在线观看| 看黄色毛片网站| 国产免费福利视频在线观看| 精华霜和精华液先用哪个| 亚洲自偷自拍三级| 精品久久久久久久末码| 欧美3d第一页| 国产精品不卡视频一区二区| 免费看光身美女| 欧美日韩一区二区视频在线观看视频在线 | 成人亚洲欧美一区二区av| 永久网站在线| 97热精品久久久久久| 日日摸夜夜添夜夜爱| 久久久久网色| 好男人在线观看高清免费视频| 最近中文字幕高清免费大全6| 成人无遮挡网站| 最后的刺客免费高清国语| 麻豆av噜噜一区二区三区| 直男gayav资源| 国产成人一区二区在线| 欧美不卡视频在线免费观看| 一级黄色大片毛片| 99视频精品全部免费 在线| 纵有疾风起免费观看全集完整版 | 欧美变态另类bdsm刘玥| 少妇熟女aⅴ在线视频| 国语自产精品视频在线第100页| 精品熟女少妇av免费看| 小说图片视频综合网站| 国产午夜福利久久久久久| 欧美三级亚洲精品| 亚洲精品乱码久久久久久按摩| 亚洲精品,欧美精品| 日本午夜av视频| 国产欧美另类精品又又久久亚洲欧美| 欧美一区二区亚洲| 久久久久九九精品影院| 国产精品国产三级国产专区5o | 国内精品美女久久久久久| 久久热精品热| 国产午夜精品久久久久久一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲精品日韩av片在线观看| 色噜噜av男人的天堂激情| 亚洲熟妇中文字幕五十中出| 日本免费a在线| 国产老妇伦熟女老妇高清| 嘟嘟电影网在线观看| 少妇的逼水好多| 成年版毛片免费区| 一区二区三区高清视频在线| 精品人妻视频免费看| 亚洲av成人av| 精品免费久久久久久久清纯| 日韩高清综合在线| 在线免费十八禁| 熟女人妻精品中文字幕| 久久久久久久国产电影| 日韩在线高清观看一区二区三区| 精品熟女少妇av免费看| 欧美又色又爽又黄视频| 国产私拍福利视频在线观看| 变态另类丝袜制服| 99九九线精品视频在线观看视频| av视频在线观看入口| 一二三四中文在线观看免费高清| 美女cb高潮喷水在线观看| 狂野欧美白嫩少妇大欣赏| 国产在视频线在精品| 国产免费又黄又爽又色| 高清毛片免费看| 亚洲三级黄色毛片| 久久久久久久亚洲中文字幕| 国产精品麻豆人妻色哟哟久久 | 狂野欧美白嫩少妇大欣赏| 三级国产精品片| 99热全是精品| 国产亚洲av片在线观看秒播厂 | 欧美性感艳星| 深爱激情五月婷婷| 男插女下体视频免费在线播放| 简卡轻食公司| 成人二区视频| 国产在线男女| 一个人看视频在线观看www免费| 国产精品国产高清国产av| 久久精品91蜜桃| 日韩欧美 国产精品| 亚洲欧美成人综合另类久久久 | 亚洲国产精品国产精品| 中文字幕av在线有码专区| 久久鲁丝午夜福利片| 欧美日韩一区二区视频在线观看视频在线 | 国产黄片美女视频| 日本黄大片高清| 亚洲精品自拍成人| 人人妻人人澡欧美一区二区| 热99在线观看视频| 亚洲内射少妇av| 91久久精品国产一区二区成人| 97热精品久久久久久| 最近的中文字幕免费完整| 一级av片app| 高清在线视频一区二区三区 | 色网站视频免费| 亚洲中文字幕日韩| 国产精品福利在线免费观看| 日本色播在线视频| av免费观看日本| 久久久成人免费电影| 久久久欧美国产精品| 亚洲国产日韩欧美精品在线观看| 人妻制服诱惑在线中文字幕| 精品少妇黑人巨大在线播放 | 3wmmmm亚洲av在线观看| 美女国产视频在线观看| 国产精品一及| 久久精品国产自在天天线| 五月伊人婷婷丁香| 成人三级黄色视频| 国内揄拍国产精品人妻在线| 国产高清视频在线观看网站| 狂野欧美激情性xxxx在线观看| 卡戴珊不雅视频在线播放| 精品一区二区三区视频在线| 尤物成人国产欧美一区二区三区| 亚洲人成网站在线观看播放| 精品不卡国产一区二区三区| 全区人妻精品视频| 亚洲真实伦在线观看| 午夜a级毛片| 国产精品爽爽va在线观看网站| 一边摸一边抽搐一进一小说| 婷婷色av中文字幕| 国产探花在线观看一区二区| 欧美最新免费一区二区三区| 亚洲精品乱码久久久久久按摩| 中文精品一卡2卡3卡4更新| 日韩高清综合在线| 国产精品久久电影中文字幕| 91狼人影院| 午夜福利在线在线| 亚洲av电影在线观看一区二区三区 | 一级黄色大片毛片| 欧美又色又爽又黄视频| www.色视频.com| 亚洲av熟女| 国产亚洲一区二区精品| 99久久精品一区二区三区| 免费观看在线日韩| 我的女老师完整版在线观看| 国模一区二区三区四区视频| 精品久久久久久久久久久久久| 亚洲欧美日韩东京热| 只有这里有精品99| 乱人视频在线观看| 国产人妻一区二区三区在| 啦啦啦韩国在线观看视频| 国产精品一区二区在线观看99 | 成人一区二区视频在线观看| 99久久九九国产精品国产免费| 婷婷色麻豆天堂久久 | 乱码一卡2卡4卡精品| 一级黄色大片毛片| 国产午夜精品久久久久久一区二区三区| 一级毛片电影观看 | 国产欧美日韩精品一区二区| 欧美+日韩+精品| 国产女主播在线喷水免费视频网站 | 联通29元200g的流量卡| 国产白丝娇喘喷水9色精品| 国产免费一级a男人的天堂| 26uuu在线亚洲综合色| 国产av不卡久久| 午夜老司机福利剧场| 99热全是精品| 99热精品在线国产| 国内精品一区二区在线观看| 亚洲精品乱码久久久久久按摩| 久久人人爽人人爽人人片va| 99久久精品国产国产毛片| 婷婷色av中文字幕| 波多野结衣巨乳人妻| 精品熟女少妇av免费看| 久久婷婷人人爽人人干人人爱| 免费看美女性在线毛片视频| 久久人人爽人人片av| 欧美变态另类bdsm刘玥| 国产精品1区2区在线观看.| 日产精品乱码卡一卡2卡三| 亚洲欧洲日产国产| 国产黄色视频一区二区在线观看 | av免费观看日本| 一级二级三级毛片免费看| 国产精品美女特级片免费视频播放器| 青春草视频在线免费观看| 精品一区二区三区人妻视频| 亚洲欧美成人综合另类久久久 | 国产又色又爽无遮挡免| 大话2 男鬼变身卡| 国产男人的电影天堂91| 丰满少妇做爰视频| 女的被弄到高潮叫床怎么办| 亚洲成av人片在线播放无| 午夜福利网站1000一区二区三区| 日韩欧美三级三区| 日韩高清综合在线| 嘟嘟电影网在线观看| 亚洲av电影不卡..在线观看| 尾随美女入室| 国产三级在线视频| 国产黄色小视频在线观看| 国产精品嫩草影院av在线观看| 亚洲精品一区蜜桃| 三级经典国产精品| 国产不卡一卡二| 久久久色成人| 午夜免费男女啪啪视频观看| 免费看a级黄色片| 69av精品久久久久久| 简卡轻食公司| 精品无人区乱码1区二区| 亚洲av中文字字幕乱码综合| 91久久精品电影网| av免费在线看不卡| 国产精品嫩草影院av在线观看| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| or卡值多少钱| 啦啦啦啦在线视频资源| 欧美日韩国产亚洲二区| 国产一区二区三区av在线| 毛片一级片免费看久久久久| 亚洲久久久久久中文字幕| 国产熟女欧美一区二区| 免费av毛片视频| 亚洲欧美清纯卡通| 国产高清三级在线| 欧美精品一区二区大全| 噜噜噜噜噜久久久久久91| 老司机福利观看| 看十八女毛片水多多多| 午夜a级毛片| 欧美激情在线99| 亚洲人成网站在线播| 精品酒店卫生间| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品国产av成人精品| 国产免费又黄又爽又色| 久久久午夜欧美精品| 国产精品久久久久久av不卡| 久久久精品大字幕| 日本与韩国留学比较| 久久国内精品自在自线图片| 中文字幕亚洲精品专区| 在线a可以看的网站| 久久人人爽人人爽人人片va| 99热全是精品| 不卡视频在线观看欧美| 国产午夜精品久久久久久一区二区三区| 一级二级三级毛片免费看| 人妻系列 视频| 国产精品不卡视频一区二区| 亚洲伊人久久精品综合 | 国产精品久久久久久精品电影小说 | 简卡轻食公司| 国产午夜精品一二区理论片| 黄片无遮挡物在线观看| 欧美激情在线99| 国产淫语在线视频| 欧美又色又爽又黄视频| 91久久精品国产一区二区成人| 亚洲人成网站在线播| 老司机影院毛片| 亚洲内射少妇av| 欧美成人午夜免费资源| 男人舔奶头视频| 日本av手机在线免费观看| 乱码一卡2卡4卡精品| 永久网站在线| 91久久精品国产一区二区三区| 成年免费大片在线观看| 精品国产露脸久久av麻豆 | 天天一区二区日本电影三级| 亚洲成人精品中文字幕电影| 一夜夜www| 久久久久久久国产电影| 黄色日韩在线| 亚洲精品乱久久久久久| 精品一区二区三区视频在线| 久久久欧美国产精品| 婷婷色综合大香蕉| 色播亚洲综合网| av黄色大香蕉| 国产高潮美女av| 欧美性猛交╳xxx乱大交人| 免费看av在线观看网站| 看免费成人av毛片| 日韩制服骚丝袜av| 日本欧美国产在线视频| 亚洲三级黄色毛片| 波多野结衣高清无吗| 校园人妻丝袜中文字幕| 亚洲av不卡在线观看| av福利片在线观看| 精品午夜福利在线看| 亚洲人与动物交配视频| 麻豆成人av视频| 国产精品av视频在线免费观看| 最近手机中文字幕大全| 精品国内亚洲2022精品成人| 亚洲精品自拍成人| 欧美激情在线99| 真实男女啪啪啪动态图| 一区二区三区高清视频在线| 中国国产av一级| 中文在线观看免费www的网站| 亚洲精品乱码久久久久久按摩| 男人的好看免费观看在线视频| 国产精品人妻久久久久久| 久久久久精品久久久久真实原创| 亚洲欧美日韩高清专用| 日本熟妇午夜| 国产一区二区亚洲精品在线观看| 成年免费大片在线观看| 欧美日韩一区二区视频在线观看视频在线 | 偷拍熟女少妇极品色| 久久久a久久爽久久v久久| 亚洲乱码一区二区免费版| 99久国产av精品国产电影| 不卡视频在线观看欧美| 麻豆国产97在线/欧美| 婷婷色av中文字幕| 22中文网久久字幕| 国产精品久久久久久av不卡| 赤兔流量卡办理| 黄片wwwwww| 国产麻豆成人av免费视频| 亚洲中文字幕日韩| 视频中文字幕在线观看| av在线老鸭窝| 亚洲欧美成人综合另类久久久 | 22中文网久久字幕| 天天躁日日操中文字幕| 国产伦理片在线播放av一区| 菩萨蛮人人尽说江南好唐韦庄 | 中文字幕人妻熟人妻熟丝袜美| 日韩一本色道免费dvd| 能在线免费看毛片的网站| 色5月婷婷丁香| 午夜激情欧美在线| 啦啦啦啦在线视频资源| 国产熟女欧美一区二区| 亚洲最大成人av| 啦啦啦观看免费观看视频高清| 精品久久久久久久久亚洲| 欧美3d第一页| av在线观看视频网站免费| 热99re8久久精品国产| 欧美日韩综合久久久久久| 国产亚洲5aaaaa淫片| 成人无遮挡网站| 国产伦理片在线播放av一区| 有码 亚洲区| 精品久久久久久久久久久久久| 国产真实伦视频高清在线观看| 中文乱码字字幕精品一区二区三区 | 简卡轻食公司| 成人亚洲欧美一区二区av| 免费一级毛片在线播放高清视频| 久久99精品国语久久久| 国产精华一区二区三区| 不卡视频在线观看欧美| 青春草亚洲视频在线观看| 乱码一卡2卡4卡精品| 欧美日韩在线观看h| 久久久国产成人免费| 色综合色国产| 国国产精品蜜臀av免费| 成人美女网站在线观看视频| 亚洲伊人久久精品综合 | 又黄又爽又刺激的免费视频.| 久久99精品国语久久久| 好男人在线观看高清免费视频| 久久鲁丝午夜福利片| 久久精品影院6| 欧美高清性xxxxhd video| 国产乱人视频| 好男人视频免费观看在线| 成年版毛片免费区| 免费大片18禁| 亚洲精华国产精华液的使用体验| 国产一区二区亚洲精品在线观看| 99热这里只有是精品50| 26uuu在线亚洲综合色| 国产麻豆成人av免费视频| 熟女电影av网| 狠狠狠狠99中文字幕| 欧美变态另类bdsm刘玥| 国产精品国产三级国产av玫瑰| 中文字幕免费在线视频6| 日韩一本色道免费dvd| 日韩欧美精品免费久久| 尾随美女入室| 国产av不卡久久| 国产大屁股一区二区在线视频| 亚洲自拍偷在线| 成人av在线播放网站| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 亚洲成av人片在线播放无| 亚洲欧洲日产国产| 国产探花在线观看一区二区| 亚洲精品色激情综合| av线在线观看网站| 久久婷婷人人爽人人干人人爱| 特大巨黑吊av在线直播| 久久国产乱子免费精品| 韩国高清视频一区二区三区| 亚洲精品乱码久久久久久按摩| 简卡轻食公司| 成人毛片a级毛片在线播放| 插阴视频在线观看视频| 看免费成人av毛片| 欧美一区二区亚洲| 99久久精品一区二区三区| 亚洲av福利一区| 级片在线观看| 久久精品久久久久久噜噜老黄 | 1000部很黄的大片| 99在线视频只有这里精品首页| 精品国产露脸久久av麻豆 | 久久久成人免费电影| 亚洲国产成人一精品久久久| 村上凉子中文字幕在线| 人妻系列 视频| 日韩人妻高清精品专区| 国产美女午夜福利| 日韩欧美 国产精品| 人妻少妇偷人精品九色| av在线蜜桃| 老司机影院成人| 我的老师免费观看完整版| 乱系列少妇在线播放| 成人毛片a级毛片在线播放| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 中文亚洲av片在线观看爽| 欧美zozozo另类| 网址你懂的国产日韩在线| 国产成人a∨麻豆精品| 成人高潮视频无遮挡免费网站| 舔av片在线| 看黄色毛片网站| 国产精品三级大全| 国产日韩欧美在线精品| 国产私拍福利视频在线观看| 中文在线观看免费www的网站| 亚洲自偷自拍三级| 国产成人a区在线观看| 亚洲av福利一区| 一级爰片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 七月丁香在线播放| 99久久成人亚洲精品观看| 黄片wwwwww| 国产精品久久电影中文字幕| 在线观看一区二区三区| 欧美成人午夜免费资源| 成人国产麻豆网| 久久久久久久国产电影| 久久精品久久久久久噜噜老黄 | 亚洲精品日韩在线中文字幕| 最近2019中文字幕mv第一页| 国产精品一区二区性色av| 大香蕉97超碰在线| 1000部很黄的大片| 亚洲成人久久爱视频| 国产三级中文精品| 国产亚洲一区二区精品| 少妇人妻一区二区三区视频| 亚洲av不卡在线观看| 亚洲怡红院男人天堂| 久久久a久久爽久久v久久| 亚洲av福利一区| 大又大粗又爽又黄少妇毛片口| 中文精品一卡2卡3卡4更新| 可以在线观看毛片的网站| 97在线视频观看| 国产成人一区二区在线| 青青草视频在线视频观看| 亚洲国产精品合色在线| 色播亚洲综合网| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 久久久午夜欧美精品| 18禁动态无遮挡网站| 七月丁香在线播放| 国产伦精品一区二区三区四那| 欧美人与善性xxx| 久久99热这里只频精品6学生 | 国产一区亚洲一区在线观看| 看黄色毛片网站| 99久久无色码亚洲精品果冻| 我的老师免费观看完整版| 非洲黑人性xxxx精品又粗又长| eeuss影院久久| 级片在线观看| 色综合站精品国产| 三级经典国产精品| 乱系列少妇在线播放| www日本黄色视频网| 天堂影院成人在线观看|