• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of thermal fluctuations on the Kerr–Newman–NUT–AdS black hole

    2021-08-18 02:52:22SharifandQanitahAmaTulMughani
    Communications in Theoretical Physics 2021年8期

    M Sharifand Qanitah Ama-Tul-Mughani

    Department of Mathematics,University of the Punjab,Quaid-e-Azam Campus,Lahore-54590,Pakistan

    Abstract This paper is devoted to studying the impact of thermal fluctuations on thermodynamics of rotating as well as charged anti-de Sitter black holes with the Newman–Unti–Tamburino(NUT)parameter.To this end,we derive the analytic expression of thermodynamic variables,namely the Hawking temperature,volume,angular velocity,and entropy within the limits of extended phase space.These variables meet the first law of thermodynamics as well as the Smarr relation in the presence of new NUT charge.To analyze the effects of quantum fluctuations,we derive the exact expression of corrected entropy,which yields modification in other thermodynamical equations of state.The local stability and phase transition of the considered black hole are also examined through specific heat.It is found that the NUT parameter increases the stability of small black holes,while the logarithmic corrections induce instability in the system.

    Keywords:black hole,thermal fluctuations,thermodynamics,NUT parameter

    1.Introduction

    Black hole(BH)thermodynamics,with finite temperature and entropy,not only discusses its classical aspect but also provides an elementary insight into quantum gravity.In thermodynamic systems,intrinsic entropy is assumed to play an essential role in the study of their physical features and is correlated to horizon area.It is intended that BHs must have maximum entropy to avoid the infringement of the second law of thermodynamics.This scenario will reduce the entropy of the Universe;consequently,the equilibrium phase between thermal radiations and BH physics cannot be obtained.The connection between the BH area with the maximum entropy has provoked the holographic principle[1],which only remains valid for large-scale structures and gets violated near the Planck scale due to the quantum corrections in the area–entropy relation.These correction terms do not perturb BHs that have a larger horizon radius but have certain implications on small BHs whose sizes reduce due to Hawking radiation[2].As a pioneer,Das et al[3],developed the algorithm of corrected entropy and applied it to Schwarzschild,Reissner–Nordstrom(RN)and Ba?ados–Teitelboim–Zanelli(BTZ)BHs.

    The effect of thermal fluctuations on numerous BHs has been studied in the literature[4].Pourhassan et al[5]discussed the impact of logarithmic corrections on several quantities such as entropy and volume in the background of a modified Hayward BH.Using a similar approach in higherdimensional charged BHs,Pourhassan et al[6]studied the influence of corrected entropy on thermodynamics quantities.They also investigated the validity of the first law of thermodynamics.Haldar and Biswas[7]graphically analyzed the behavior of enthalpy,Helmholtz and Gibbs free energies for Lovelock anti-de Sitter(AdS)BHs and concluded that the thermodynamic quantities follow a decreasing trend against logarithmic corrections.The same authors[8]explored thermodynamic characteristics of regular BHs by incorporating thermal fluctuation effects near the equilibrium phase.Nadeem-ul-Islam et al[9]discussed the effects of quantum corrections on BTZ BHs and found that small BHs show unstable behavior due to logarithmic corrections.Ganai et al[10]discussed thermodynamic potentials of a charged rotating BTZ BH in the presence of small statistical perturbations.Upadhyay[11]discussed the effects of thermal fluctuations on the stability of charged rotating AdS BHs and showed that thermodynamic potentials satisfy the first law of BH thermodynamics.He found that for small BHs,the specific heat takes negative values,which suggests that small BHs are thermodynamically in an unstable phase.However,the specific heat is found to be always positive for larger BHs,which means that these BHs are in a stable phase.

    The Newman–Unti-Tamburino(NUT)metric[12]is one of the most interesting solutions of general relativity.This metric carries a particular type of gravitational charge named the NUT charge,which is analogous to the magnetic monopole in many respects.In theoretical physics,substantial work has been carried out to study the essential characteristics of the NUT parameter.Sharif and Wajiha[13]studied Hawking radiation as tunneling of charged fermions through event horizons of a pair of charged accelerating and rotating BHs with the NUT parameter.The same authors[14]evaluated thermodynamic quantities such as the Hawking temperature,entropy,and heat capacity in a charged rotating and accelerating BH with the NUT parameter.Jan and Gohar[15]found the exact expression of the Hawking temperature using the quantum tunneling approach in a rotating and accelerating NUT BH.Johnson[16]considered a cosmological constant as dynamical pressure and derived gravitational thermodynamics for the Taub–NUT geometry in AdS spacetime.

    Liu and Lu[17]discussed the thermodynamics of a charged rotating AdS BH in conformal gravity.They derived all the thermodynamical quantities,including mass,angular momentum,electric/magnetic charges,and their thermodynamical conjugates.They verified that the first law of thermodynamics,as well as the Smarr relation,holds.In[18]the author derived the area product,entropy product,area sum,and entropy sum of the event horizon and Cauchy horizons for the Kerr–Newman–Taub–NUT BH in fourdimensional Lorentzian geometry.He observed that these thermodynamic products are not universal(mass-independence).He also examined the entropy sum and area sum.It is shown that they all depend on the mass,charge,and NUT parameter of the background spacetime.He concluded that the Kerr–Newman-Taub–NUT BH does not satisfy the first law of BH thermodynamics and Smarr–Gibbs–Duhem relations.Hennigar et al[19]discussed the thermodynamics of the Lorentzian Taub–NUT solution and formulated the first law of BH thermodynamics with a new NUT charge.Bordo et al[20]derived the thermodynamics of Taub–NUT spacetimes in the presence of magnetic as well as electric charge and showed that the NUT parameter can be varied independently without dependence on the event horizon.

    This paper aims to study the impact of statistical perturbations on a charged rotating NUT–AdS BH.The paper is arranged as follows.The following section provides the fundamentals of spacetime and calculates the thermodynamic variables in extended phase space(EPS).In section 2,we provide the exact expression of corrected entropy,internal energy,modified mass,and Gibbs and Helmholtz free energies and graphically analyze their behavior.Moreover,we examine the stability of the BH through specific heat,and the final comments are summarized in the last section.

    2.Kerr–Newman–NUT–AdS BH

    In theoretical physics,the crucial discovery of BHs assists in the exploration of hidden characteristics of the Universe.The first-ever non-trivial spherically symmetric BH solution of the Einstein field equations is known as the Schwarzschild BH,which is extended to other BH geometries such as RN,Kerr,and Kerr–Newman by including the effects of electric charge and rotation parameters.Later,many BH solutions were developed by incorporating various sources,such as acceleration,magnetic charge,the NUT parameter as well as a cosmological constant in the usual mass of a BH.BHs with these extensions are categorized as a class of type-D spacetimes(proposed by Plebanski and Demianski[21]),which is represented by seven arbitrary parameters.The charged rotating NUT–AdS BH,in Boyer-Lindquist coordinates[22],is defined by

    with

    Here,a is the rotation parameter,w is proportional to twisting behavior of the sources,and q is defined aswhere qmand qedenote the magnetic and electric charges,respectively.Also,m is the BH mass,defines the radius with Λ as the cosmological constant,l is the NUT parameter,and k can be specified as

    The line element(1)can be re-written as

    where

    The electromagnetic potential for the considered BH solution is given as

    Generally,the NUT parameter represents the twisting property of the spacetime or gravitomagnetic monopole parameter of the central mass.However,its exact physical interpretation could not be ascertained until a static Schwarzschild mass immersed in the stationary source-free electromagnetic universe is not considered.In this scenario,the NUT parameter is associated with the twist of the electromagnetic universe by excluding the other possibility.In the absence of an electromagnetic field,it relates to the twist of vacuum space.Thus,the NUT parameter is generated by the twist of the surrounding space coupled with the mass of the source.In the Kerr–Newman–NUT–AdS BH,if the NUT parameter dominates the rotation parameter,i.e.al,a ring singularity appears and the respective solution corresponds to Kerrlike.These cases of curvature singularity have no dependence on the cosmological constant.

    Now,we analyze the effects of the NUT parameter on the quantum level.We provide thermal properties of the Kerr–Newman-NUT–AdS BH within the context of the EPS,which correlates pressure with the cosmological constant and the conjugate factor with the BH volume[23].In this scenario,the area of the event horizon is given by

    where r+denotes the event horizon of the BH,which is evaluated through χ(r+)=0.Using the horizon area,the entropy is defined as

    For the considered BH,the Hawking temperature is calculated as[15]and is evaluated as

    where the mass is given by

    The angular velocity is evaluated as

    The radial function χ becomes zero at horizon r=r+,which yields

    where ΠHis the angular velocity.From equations(10)and(11),we obtain

    where the new charge factor(N)(related to the NUT parameter),thermodynamical volume(V)and the electric potential(Φ)read

    For l=0,the derived results reduce to a charged rotating AdS BH[24].From equation(16),it can be seen that the NUT parameter is an independently varied function and can be introduced separately in the first law.The first law of thermodynamics,within the context of the EPS,is expressed as

    where the corresponding potential functions are given by

    3.Thermal fluctuations

    This section is devoted to examining the impact of thermal fluctuations on the thermodynamics of a charged rotating NUT–AdS BH.We firstly compute corrected entropy near the equilibrium position,which implies modification in other thermodynamic potentials.For this purpose,we consider the function

    where σ(E)corresponds to the quantum density of the system,and E represents the average energy with[3].Using inverse transformation,we have

    where S0=lnZ+βE is the corrected entropy,and b>0.Using the steepest descent approach near η,the above equation reduces to

    where S=S0(η)withandat η=b.Using equations(19)and(20),we obtain

    which can be written as

    Eventually,this leads to

    Without loss of generality,we can substitute a general correction parameter α in place of the factorto increase the participation of correction terms in the entropy.Around the equilibrium phase,the corrected entropy takes the form

    Notice that the above expression contains a logarithmic term which shows the small contribution of quantum corrections.It is known that statistical perturbations become efficient on the Planck scale,whereas the BHs are macroscopic stellar objects;therefore,the logarithmic corrections have little influence on the equilibrium entropy.From equations(10)and(11),the corrected entropy turns out to be

    To study the effects of state parameters,we plot entropy(corrected and uncorrected)for different choices of NUT and rotation parameters.For graphical analysis,we have considered two cases,i.e.a>l(figure 1)and al)obtains the negative value of entropy against larger choices of correction parameter and shows decreasing behavior for a specific range of horizon radius.We observe that BH entropy increases for larger modes of NUT and rotation parameters,which correspondingly increases the area of the BH.For a larger horizon radius,the behavior of corrected entropy coincides with the uncorrected one,which implies that the thermodynamics of a large BH is not affected by thermal fluctuations.From equation(16),the corrected mass can be computed as

    Figures 3 and 4 represent the graphical behavior of corrected mass for different values of NUT and rotation parameters,respectively.We observe that for a>l,the mass of the BH remains positive while,in the case of al depicts a more proficient and realistic scenario in contrast to another possibility as the mass can never be a negative quantity.Figure 3 shows that BH mass decreases until the critical horizon;thereafter,it is an increasing function.We find that the correction parameter decreases and increases the corrected BH mass before and after the horizon radius,respectively.From figure 4,one can observe a continuous increase in the physical mass,and the critical horizon radius decreases for larger values of the rotation parameter.It is found that for larger values of l and a,the BH becomes more massive.

    Figure 1.Corrected entropy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).Here,α=0.9,0.5,and 0 are represented by blue,green,and red curves,respectively.

    Figure 2.Corrected entropy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    Figure 3.Corrected mass versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 4.Corrected mass versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    The internal energy,as the total energy of the BH,is directly proportional to the temperature.Using the definition,U=M0?PV?ψN,the internal energy is evaluated as

    Figure 5 provides evidence that higher modes of the NUT parameter increase the internal energy,indicating that BHs have a high temperature.Due to the fluctuation effect,the internal energy decreases and increases before and after the horizon radius,respectively.Figure 6 shows that the internal energy becomes negative for a small BH,which shows that the BH is releasing heat to its surroundings.However,for large BHs,it depicts increasing as well as positive behavior.It is observed that the system attains negative values corresponding to larger modes of rotation.

    Figure 5.Internal energy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 6.Internal energy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    The Helmholtz free energy(F=M0?TkS0?ψN)is the direct measure of work that can be extracted from a system.If the system achieves its reversible equilibrium state,the Helmholtz free energy becomes constant.The first-order corrected Helmholtz free energy is given by

    Figure 7 shows that the small BH has higher Helmholtz free energy,whereas for the large BH,the free energy gains negative values and observes the same trend as that of the equilibrium state.The negative behavior of F shows that entropy and NUT charge dominate the physical mass of the BH.It is noted that smaller values of l yield higher values of the Helmholtz free energy.Figure 8 shows that smaller values of the rotation than the NUT parameter(l>a)lead to negative values of the Helmholtz free energy,which becomes positive by considering larger values of the rotation and correction parameters.It is important to note that leading order correction terms play a critical part in the thermodynamics of small BHs,whereas the large BHs remain unaffected.The BH mass,within the context of the EPS,is named enthalpy,and Gibbs free energy is utilized to quantify the reversible work that might be carried out by a thermodynamic system.The Gibbs energy(G=M0?TkS0?ΦQ?ψN)is derived to be

    Figure 7.Helmholtz energy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 8.Helmholtz energy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    Figures 9 and 10 indicate that the Gibbs free energy remains positive for small and medium BHs,while it becomes negative for larger values of the horizon radius.It is known that positive values of the Gibbs energy correspond to nonspontaneous reactions that require an external source of energy,whereas its negative values correspond to spontaneous reactions which can be driven without any external source.BHs with negative Gibbs energy are thermodynamically stable as they release their energy into the surroundings to acquire the low-energy state.It is seen that small and medium BHs are thermodynamically unstable as G>0.It is also noted that correction terms increase the Gibbs free energy for small BHs but,for large BHs,its negative range increases corresponding to larger values of acceleration and rotation parameters.This indicates that larger values of state parameters yield the stable model.Figure 10 implies that the negative profile of the Gibbs energy decreases against the higher choices of rotation parameter,which shows that the smaller modes lead to the stable model.

    Figure 9.Gibbs energy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 10.Gibbs energy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    Figure 11.Specific heat versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 12.Specific heat versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    To study the stability and phase transition,the specific heat is computed within the context of thermal fluctuations.The transition points are simply the divergence points of specific heat,whereas its positive range ensures the thermodynamically stable phase.The specific heatcan be calculated as

    The BH with larger choices of the NUT parameter yields larger heat capacity values(figure 11).From figure 12,one can observe that the specific heat diverges at critical radii r+=1.3 and r+=0.18 for a=0.1 and a=0.9,respectively,which shows that the BH experiences the first-order phase transition.Notably,the position,as well as the number of the transition,points rely on the considered choices of BH parameters.For the small BH,the uncorrected specific heat is negative,which indicates that the rotating BH is unstable even without consideration of any thermal fluctuation effects.However,for larger modes of rotation parameters,the corrected specific heat becomes more negative for small BHs without affecting the large BH’s thermodynamics.Thus,we can conclude that small BHs are thermodynamically unstable due to statistical perturbations,while this does not affect the stability of large-sized BHs.

    4.Conclusions

    In this paper,we have analyzed the influence of statistical fluctuations on the thermodynamics of the Kerr–Newman–NUT–AdS BH.For this purpose,the exact expression of the Hawking temperature,angular velocity,and entropy are computed.We have found that these variables meet the first law of thermodynamics as well as the Smarr relation in the presence of a new NUT charge in contrast to the Kerr–Newman–Taub–NUT BH[18].To investigate the influence of fluctuations,we have computed corrected entropy,which modifies other thermodynamic quantities.We have plotted these thermodynamic potentials and compared their corrected and uncorrected forms for different choices of rotation and NUT parameters.Finally,we have studied the phase transition points as well as the stability of the BH through specific heat.

    It is observed that the entropy of the BH increases against larger values of rotation and NUT parameters,which leads to the increase in the BH area.The leading order correction terms perturb the entropy of small BHs while,for BHs with a larger horizon radius,the corrected entropy observes the same behavior as that of equilibrium entropy,which implies that logarithmic corrections do not affect the thermodynamics of large BHs.For the two possibilities,i.e.a>l and l>a,the former represents the realistic scenario as it provides a positive range of the mass for small as well as large BHs.The profile of internal energy shows that the temperature of small BHs decreases for a>l,which indicates that the BH emits thermal radiation to its surroundings.However,the internal energy of the large BH increases due to quantum fluctuation effects.For smaller values of horizon radius,the Helmholtz free energy becomes positive against a>l,while it shows a negative as well as a decreasing trend for large BHs.It is noted that smaller values of l yield higher values of the Helmholtz free energy.

    The Gibbs energy is negative(positive)for l>a(a>l)indicating a stable(unstable)phase of small BHs.For BHs with a larger horizon radius,the Gibbs energy is negative for both considered cases,which leads to stable BH geometries.The profile of specific heat is studied versus the horizon radius to analyze the local stability of the BH.We observe that for large BHs,the specific heat attains positive values,which indicate that large BHs are located in a thermally stable regime[11].Moreover,the larger values of l lead the system towards stability.We observe that the BH experiences firstorder phase transition due to divergence of the specific heat at r+=1.3 against smaller values of the rotation parameter.It is concluded that thermal fluctuations(NUT parameter)induce more instability(stability)in small BHs.It is noteworthy that all the results reduce to rotating as well as charged AdS BHs[24]in the absence of the NUT parameter and,for q=a=0,it leads to the NUT–AdS BH solution[19].

    Acknowledgments

    QM would like to thank the Higher Education Commission,Islamabad,Pakistan for its financial support through the Indigenous Ph.D.Fellowship,Phase-II,Batch-III.

    成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| 国产成+人综合+亚洲专区| aaaaa片日本免费| 国产一区二区三区综合在线观看| 国产精品综合久久久久久久免费 | 亚洲精品av麻豆狂野| 99久久精品国产亚洲精品| 亚洲av第一区精品v没综合| 少妇被粗大的猛进出69影院| 欧美日韩黄片免| 日韩免费高清中文字幕av| 免费久久久久久久精品成人欧美视频| 大香蕉久久成人网| 国产午夜精品久久久久久| 亚洲伊人色综图| 黄色成人免费大全| 黄色怎么调成土黄色| 久9热在线精品视频| 大型av网站在线播放| 女性生殖器流出的白浆| 亚洲成人免费av在线播放| 欧美日韩av久久| 久久久久久久久免费视频了| 精品久久蜜臀av无| 亚洲第一欧美日韩一区二区三区| 亚洲av欧美aⅴ国产| 亚洲成人国产一区在线观看| 欧美 日韩 精品 国产| av不卡在线播放| 中文字幕最新亚洲高清| 无人区码免费观看不卡| 欧美在线一区亚洲| 日韩三级视频一区二区三区| tube8黄色片| 在线观看66精品国产| 看免费av毛片| 成人三级做爰电影| 香蕉国产在线看| 性色av乱码一区二区三区2| 黑丝袜美女国产一区| 国产欧美日韩一区二区三| 女人被躁到高潮嗷嗷叫费观| 美女国产高潮福利片在线看| 亚洲情色 制服丝袜| 国产精品美女特级片免费视频播放器 | 操美女的视频在线观看| 黄片大片在线免费观看| 狠狠婷婷综合久久久久久88av| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品sss在线观看 | 免费久久久久久久精品成人欧美视频| 久99久视频精品免费| 色精品久久人妻99蜜桃| 国产精品免费一区二区三区在线 | 极品少妇高潮喷水抽搐| 精品国产亚洲在线| 国产成人免费无遮挡视频| 黄色丝袜av网址大全| 午夜老司机福利片| 国产精品久久视频播放| 亚洲性夜色夜夜综合| 99热只有精品国产| 国产真人三级小视频在线观看| 亚洲精品国产区一区二| 又黄又爽又免费观看的视频| 久久国产亚洲av麻豆专区| √禁漫天堂资源中文www| 国产麻豆69| 嫁个100分男人电影在线观看| 国产有黄有色有爽视频| 十八禁网站免费在线| 精品国产一区二区三区四区第35| 亚洲精品在线美女| 曰老女人黄片| 韩国av一区二区三区四区| 一级毛片精品| 女人精品久久久久毛片| 麻豆av在线久日| 99热只有精品国产| 欧美在线黄色| 国产男靠女视频免费网站| 18禁观看日本| 久热爱精品视频在线9| 一本大道久久a久久精品| 黄色怎么调成土黄色| 日韩欧美在线二视频 | www日本在线高清视频| 黄色毛片三级朝国网站| av天堂久久9| 欧美成人免费av一区二区三区 | 9色porny在线观看| 国产亚洲欧美精品永久| 很黄的视频免费| tocl精华| 日韩人妻精品一区2区三区| 99国产精品一区二区蜜桃av | 亚洲第一欧美日韩一区二区三区| 99久久精品国产亚洲精品| 日本wwww免费看| 18禁裸乳无遮挡免费网站照片 | 午夜日韩欧美国产| 91大片在线观看| 成年女人毛片免费观看观看9 | 日韩人妻精品一区2区三区| 国产精品九九99| 1024香蕉在线观看| 国产真人三级小视频在线观看| 成人av一区二区三区在线看| 建设人人有责人人尽责人人享有的| 手机成人av网站| 国产精品久久久久成人av| 精品国内亚洲2022精品成人 | 一本大道久久a久久精品| 亚洲情色 制服丝袜| www.熟女人妻精品国产| 欧美国产精品一级二级三级| 夫妻午夜视频| 亚洲精品国产一区二区精华液| 欧美另类亚洲清纯唯美| 国产精品一区二区免费欧美| 色综合婷婷激情| 中文字幕最新亚洲高清| 国产精品久久电影中文字幕 | 中文字幕高清在线视频| 啦啦啦视频在线资源免费观看| 免费观看精品视频网站| 老熟妇乱子伦视频在线观看| 水蜜桃什么品种好| 欧美日韩精品网址| 欧美成人午夜精品| 亚洲成人免费电影在线观看| 三上悠亚av全集在线观看| 免费看a级黄色片| 欧美在线黄色| 美国免费a级毛片| 欧美久久黑人一区二区| 久久香蕉激情| 后天国语完整版免费观看| 美女 人体艺术 gogo| 精品欧美一区二区三区在线| 美女 人体艺术 gogo| 如日韩欧美国产精品一区二区三区| 亚洲五月婷婷丁香| 青草久久国产| 欧美日韩视频精品一区| 欧美成狂野欧美在线观看| 这个男人来自地球电影免费观看| 色精品久久人妻99蜜桃| 午夜福利在线观看吧| 视频在线观看一区二区三区| 中国美女看黄片| 视频在线观看一区二区三区| 又大又爽又粗| 18禁裸乳无遮挡免费网站照片 | 日韩欧美一区二区三区在线观看 | 少妇裸体淫交视频免费看高清 | 亚洲熟女精品中文字幕| 精品国产一区二区久久| 青草久久国产| 香蕉国产在线看| 国产熟女午夜一区二区三区| 久9热在线精品视频| 久久香蕉激情| 亚洲欧美激情综合另类| 最新在线观看一区二区三区| 久久久国产一区二区| 男女高潮啪啪啪动态图| 久久影院123| 久久青草综合色| 色综合婷婷激情| 高潮久久久久久久久久久不卡| 国产在线精品亚洲第一网站| 最近最新中文字幕大全电影3 | 久久精品91无色码中文字幕| 又大又爽又粗| 亚洲色图 男人天堂 中文字幕| 如日韩欧美国产精品一区二区三区| 69精品国产乱码久久久| 国产成人一区二区三区免费视频网站| 夜夜夜夜夜久久久久| 国产麻豆69| 欧美另类亚洲清纯唯美| 国产日韩一区二区三区精品不卡| 精品国产乱子伦一区二区三区| 一本大道久久a久久精品| 757午夜福利合集在线观看| 欧美日韩瑟瑟在线播放| 欧美精品亚洲一区二区| 一二三四在线观看免费中文在| 午夜两性在线视频| 欧美日韩黄片免| 亚洲av成人不卡在线观看播放网| 午夜免费成人在线视频| 免费观看a级毛片全部| 久久中文字幕一级| 国产精品成人在线| 亚洲成国产人片在线观看| 久久精品国产99精品国产亚洲性色 | 丝袜人妻中文字幕| 国产熟女午夜一区二区三区| 久久午夜亚洲精品久久| 久久久国产成人免费| 欧美成人免费av一区二区三区 | 热99国产精品久久久久久7| 亚洲一区二区三区不卡视频| 在线十欧美十亚洲十日本专区| 亚洲欧美一区二区三区久久| av电影中文网址| 一二三四在线观看免费中文在| 国产高清视频在线播放一区| 好男人电影高清在线观看| 黑人巨大精品欧美一区二区蜜桃| 免费看a级黄色片| 久久精品aⅴ一区二区三区四区| 日韩欧美三级三区| 色94色欧美一区二区| 午夜福利在线观看吧| 首页视频小说图片口味搜索| 久久国产精品人妻蜜桃| 亚洲精品av麻豆狂野| 高清欧美精品videossex| 亚洲欧美精品综合一区二区三区| 999精品在线视频| 国产日韩欧美亚洲二区| 在线观看一区二区三区激情| 91麻豆精品激情在线观看国产 | 国产不卡av网站在线观看| 亚洲久久久国产精品| 少妇裸体淫交视频免费看高清 | 丰满迷人的少妇在线观看| 日日夜夜操网爽| 热99国产精品久久久久久7| 中文字幕制服av| 男人舔女人的私密视频| 亚洲精品一二三| 99精国产麻豆久久婷婷| 男人操女人黄网站| 久久久久精品国产欧美久久久| 精品国产乱子伦一区二区三区| 好看av亚洲va欧美ⅴa在| 国产精品99久久99久久久不卡| 久久久久久久国产电影| 精品一区二区三卡| 亚洲精品粉嫩美女一区| 久久久久久久久久久久大奶| 无人区码免费观看不卡| 成人18禁高潮啪啪吃奶动态图| 国产成人精品久久二区二区免费| 免费在线观看视频国产中文字幕亚洲| 女同久久另类99精品国产91| 亚洲欧美激情在线| 免费看a级黄色片| 精品乱码久久久久久99久播| 国产男女超爽视频在线观看| 夜夜爽天天搞| 人人妻人人澡人人看| svipshipincom国产片| 午夜日韩欧美国产| 麻豆成人av在线观看| 人人妻,人人澡人人爽秒播| av视频免费观看在线观看| 国产成人精品在线电影| 亚洲一区二区三区欧美精品| 精品一区二区三区四区五区乱码| 国产成人啪精品午夜网站| 国产1区2区3区精品| 九色亚洲精品在线播放| 自线自在国产av| 亚洲视频免费观看视频| 精品国产一区二区三区久久久樱花| a在线观看视频网站| 亚洲精品乱久久久久久| 看免费av毛片| 国产精品98久久久久久宅男小说| 亚洲av成人不卡在线观看播放网| 亚洲男人天堂网一区| 黑丝袜美女国产一区| tocl精华| 免费久久久久久久精品成人欧美视频| 亚洲午夜理论影院| 男人舔女人的私密视频| 国产又爽黄色视频| 精品国产一区二区三区久久久樱花| 在线观看日韩欧美| 91老司机精品| 一边摸一边抽搐一进一出视频| 老司机靠b影院| 80岁老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 欧美乱妇无乱码| 亚洲国产中文字幕在线视频| 99国产精品99久久久久| 中文亚洲av片在线观看爽 | 欧美亚洲 丝袜 人妻 在线| 狂野欧美激情性xxxx| 看片在线看免费视频| 黄网站色视频无遮挡免费观看| 天天影视国产精品| 精品久久久久久,| 国产免费现黄频在线看| 亚洲人成电影观看| 中文字幕最新亚洲高清| 又紧又爽又黄一区二区| 久久天堂一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 99香蕉大伊视频| 黄色a级毛片大全视频| 国产精品1区2区在线观看. | 亚洲熟妇熟女久久| 国产成人影院久久av| 国产成人啪精品午夜网站| av不卡在线播放| 亚洲伊人色综图| 另类亚洲欧美激情| 这个男人来自地球电影免费观看| 黑人猛操日本美女一级片| 国产精品国产高清国产av | 午夜福利在线免费观看网站| 成人手机av| 成人18禁在线播放| 老司机亚洲免费影院| 村上凉子中文字幕在线| 欧美日韩乱码在线| 欧美成人免费av一区二区三区 | 超碰97精品在线观看| 午夜福利乱码中文字幕| 中文字幕人妻丝袜制服| www.精华液| 国产精品免费视频内射| 国产又色又爽无遮挡免费看| 国产精品av久久久久免费| 国产国语露脸激情在线看| 亚洲精品久久午夜乱码| 亚洲精品成人av观看孕妇| 一区二区日韩欧美中文字幕| 男女免费视频国产| 精品久久蜜臀av无| 国产在视频线精品| 久久精品国产a三级三级三级| 天堂√8在线中文| 香蕉国产在线看| 国产在线精品亚洲第一网站| 女同久久另类99精品国产91| 久久亚洲精品不卡| 日韩大码丰满熟妇| 久久人妻av系列| 国产成+人综合+亚洲专区| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久久久99蜜臀| 亚洲一卡2卡3卡4卡5卡精品中文| 国内久久婷婷六月综合欲色啪| 美国免费a级毛片| 国产在线一区二区三区精| 国产精品二区激情视频| 国产精品成人在线| 久久热在线av| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区三| av网站免费在线观看视频| 午夜久久久在线观看| 国产精品99久久99久久久不卡| 国产蜜桃级精品一区二区三区 | 热re99久久国产66热| 亚洲伊人色综图| 久久中文字幕一级| 免费不卡黄色视频| 免费一级毛片在线播放高清视频 | 午夜福利在线观看吧| 亚洲国产中文字幕在线视频| 亚洲一区中文字幕在线| 久久狼人影院| 电影成人av| 久久ye,这里只有精品| 国产亚洲精品久久久久久毛片 | 色综合欧美亚洲国产小说| 久久久久国产精品人妻aⅴ院 | 久久久精品国产亚洲av高清涩受| 亚洲国产欧美网| 精品久久久久久,| 久久天躁狠狠躁夜夜2o2o| 91大片在线观看| 99久久人妻综合| 90打野战视频偷拍视频| 夜夜夜夜夜久久久久| 亚洲一区中文字幕在线| 欧美老熟妇乱子伦牲交| 十八禁人妻一区二区| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区视频在线观看免费 | 国产国语露脸激情在线看| 国产1区2区3区精品| 黑人巨大精品欧美一区二区蜜桃| 免费高清在线观看日韩| 国产精品亚洲av一区麻豆| 老司机深夜福利视频在线观看| 99re在线观看精品视频| 国产精品 国内视频| 制服人妻中文乱码| 飞空精品影院首页| 久久久久久久午夜电影 | 99热国产这里只有精品6| 亚洲中文日韩欧美视频| 精品人妻1区二区| а√天堂www在线а√下载 | 午夜福利视频在线观看免费| 免费女性裸体啪啪无遮挡网站| 亚洲第一欧美日韩一区二区三区| 亚洲午夜精品一区,二区,三区| 在线永久观看黄色视频| 男人的好看免费观看在线视频 | 亚洲久久久国产精品| 99久久国产精品久久久| 欧美激情久久久久久爽电影 | 欧美性长视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 中亚洲国语对白在线视频| 欧美最黄视频在线播放免费 | 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| 欧美日韩成人在线一区二区| 91精品国产国语对白视频| 国产又爽黄色视频| tocl精华| 丝袜美足系列| 欧美黑人精品巨大| 免费在线观看黄色视频的| 老司机亚洲免费影院| 精品人妻熟女毛片av久久网站| 日本wwww免费看| a级毛片黄视频| 日韩欧美一区视频在线观看| 国产欧美日韩一区二区精品| 色综合婷婷激情| 国产精品香港三级国产av潘金莲| 国产色视频综合| 一本大道久久a久久精品| 欧美老熟妇乱子伦牲交| av片东京热男人的天堂| 色婷婷久久久亚洲欧美| 国产91精品成人一区二区三区| 日韩有码中文字幕| 欧美精品啪啪一区二区三区| 亚洲第一青青草原| 精品国产一区二区久久| 国产精品国产高清国产av | 久久草成人影院| 日韩中文字幕欧美一区二区| 亚洲人成电影免费在线| 精品久久蜜臀av无| 身体一侧抽搐| 51午夜福利影视在线观看| 亚洲精品av麻豆狂野| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区二区三区欧美精品| 精品国产乱子伦一区二区三区| 久久国产乱子伦精品免费另类| 最新的欧美精品一区二区| 一级毛片高清免费大全| 国产高清激情床上av| 99热国产这里只有精品6| 美女国产高潮福利片在线看| 欧美日本中文国产一区发布| 亚洲综合色网址| 黄网站色视频无遮挡免费观看| 大陆偷拍与自拍| 欧美精品av麻豆av| 老熟妇仑乱视频hdxx| 亚洲一码二码三码区别大吗| 91老司机精品| 国产精品影院久久| 精品福利永久在线观看| 欧美精品av麻豆av| 99国产极品粉嫩在线观看| 最近最新免费中文字幕在线| 美女福利国产在线| 国产av一区二区精品久久| 精品国产一区二区久久| 变态另类成人亚洲欧美熟女 | 黑人猛操日本美女一级片| av线在线观看网站| 国产av又大| 老熟妇乱子伦视频在线观看| 国产欧美日韩精品亚洲av| 精品无人区乱码1区二区| 激情视频va一区二区三区| 高清黄色对白视频在线免费看| 精品国产乱子伦一区二区三区| 日韩成人在线观看一区二区三区| 久久精品亚洲av国产电影网| 欧美日韩亚洲国产一区二区在线观看 | 美女福利国产在线| 另类亚洲欧美激情| 女人精品久久久久毛片| 建设人人有责人人尽责人人享有的| 亚洲九九香蕉| 久久久久久久久免费视频了| 欧美精品高潮呻吟av久久| 亚洲熟女精品中文字幕| 岛国在线观看网站| 日韩熟女老妇一区二区性免费视频| 欧美国产精品一级二级三级| 乱人伦中国视频| 久久性视频一级片| 色婷婷久久久亚洲欧美| 国产精品九九99| 国产高清videossex| 免费黄频网站在线观看国产| 后天国语完整版免费观看| 老司机在亚洲福利影院| 午夜福利免费观看在线| 最新美女视频免费是黄的| 一级a爱片免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 97人妻天天添夜夜摸| 叶爱在线成人免费视频播放| 黄色怎么调成土黄色| 亚洲第一青青草原| √禁漫天堂资源中文www| 午夜免费成人在线视频| 波多野结衣一区麻豆| 麻豆成人av在线观看| 在线看a的网站| 亚洲欧美一区二区三区久久| 亚洲熟妇熟女久久| 91大片在线观看| 国产不卡一卡二| 18禁裸乳无遮挡动漫免费视频| 久久久久久人人人人人| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡| 狠狠婷婷综合久久久久久88av| 成人精品一区二区免费| 一二三四社区在线视频社区8| 国产高清国产精品国产三级| 亚洲第一av免费看| 极品人妻少妇av视频| 亚洲专区中文字幕在线| 国产精华一区二区三区| 水蜜桃什么品种好| 最近最新中文字幕大全免费视频| 女人爽到高潮嗷嗷叫在线视频| 国产免费现黄频在线看| 99精品在免费线老司机午夜| 99久久综合精品五月天人人| 日韩欧美国产一区二区入口| 午夜精品久久久久久毛片777| 黄网站色视频无遮挡免费观看| 久久久久久久久久久久大奶| 久久精品亚洲熟妇少妇任你| 99精国产麻豆久久婷婷| 王馨瑶露胸无遮挡在线观看| 成人免费观看视频高清| 窝窝影院91人妻| 欧美日本中文国产一区发布| 亚洲欧美日韩高清在线视频| 亚洲,欧美精品.| av一本久久久久| 99re在线观看精品视频| 欧美黄色淫秽网站| 国产精品影院久久| 视频区图区小说| 国产欧美日韩一区二区三区在线| 久久九九热精品免费| 麻豆成人av在线观看| 亚洲av欧美aⅴ国产| 欧美国产精品va在线观看不卡| 99精国产麻豆久久婷婷| 看黄色毛片网站| 欧美日韩中文字幕国产精品一区二区三区 | 欧美丝袜亚洲另类 | 欧美日韩乱码在线| 天天躁日日躁夜夜躁夜夜| 国产免费现黄频在线看| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 午夜免费鲁丝| 亚洲,欧美精品.| 久久热在线av| 老汉色av国产亚洲站长工具| 一区二区三区国产精品乱码| 国产一区二区三区在线臀色熟女 | 人人妻人人添人人爽欧美一区卜| 亚洲第一青青草原| 久久热在线av| 深夜精品福利| 怎么达到女性高潮| 在线天堂中文资源库| 日日夜夜操网爽| 亚洲精品国产精品久久久不卡| 窝窝影院91人妻| 成人免费观看视频高清| 99国产精品99久久久久| 午夜福利免费观看在线| 在线观看舔阴道视频| 天堂中文最新版在线下载| av不卡在线播放| 高清黄色对白视频在线免费看| 老熟妇乱子伦视频在线观看| 亚洲av欧美aⅴ国产| 国产乱人伦免费视频| 中国美女看黄片| 一区二区三区激情视频| 制服诱惑二区| 18禁观看日本| 精品久久久久久电影网| 纯流量卡能插随身wifi吗| 国产成人av教育| 91成人精品电影| 色综合欧美亚洲国产小说| 人妻 亚洲 视频| 最新美女视频免费是黄的| 捣出白浆h1v1| 亚洲国产欧美网| 亚洲av第一区精品v没综合|