• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of thermal fluctuations on the Kerr–Newman–NUT–AdS black hole

    2021-08-18 02:52:22SharifandQanitahAmaTulMughani
    Communications in Theoretical Physics 2021年8期

    M Sharifand Qanitah Ama-Tul-Mughani

    Department of Mathematics,University of the Punjab,Quaid-e-Azam Campus,Lahore-54590,Pakistan

    Abstract This paper is devoted to studying the impact of thermal fluctuations on thermodynamics of rotating as well as charged anti-de Sitter black holes with the Newman–Unti–Tamburino(NUT)parameter.To this end,we derive the analytic expression of thermodynamic variables,namely the Hawking temperature,volume,angular velocity,and entropy within the limits of extended phase space.These variables meet the first law of thermodynamics as well as the Smarr relation in the presence of new NUT charge.To analyze the effects of quantum fluctuations,we derive the exact expression of corrected entropy,which yields modification in other thermodynamical equations of state.The local stability and phase transition of the considered black hole are also examined through specific heat.It is found that the NUT parameter increases the stability of small black holes,while the logarithmic corrections induce instability in the system.

    Keywords:black hole,thermal fluctuations,thermodynamics,NUT parameter

    1.Introduction

    Black hole(BH)thermodynamics,with finite temperature and entropy,not only discusses its classical aspect but also provides an elementary insight into quantum gravity.In thermodynamic systems,intrinsic entropy is assumed to play an essential role in the study of their physical features and is correlated to horizon area.It is intended that BHs must have maximum entropy to avoid the infringement of the second law of thermodynamics.This scenario will reduce the entropy of the Universe;consequently,the equilibrium phase between thermal radiations and BH physics cannot be obtained.The connection between the BH area with the maximum entropy has provoked the holographic principle[1],which only remains valid for large-scale structures and gets violated near the Planck scale due to the quantum corrections in the area–entropy relation.These correction terms do not perturb BHs that have a larger horizon radius but have certain implications on small BHs whose sizes reduce due to Hawking radiation[2].As a pioneer,Das et al[3],developed the algorithm of corrected entropy and applied it to Schwarzschild,Reissner–Nordstrom(RN)and Ba?ados–Teitelboim–Zanelli(BTZ)BHs.

    The effect of thermal fluctuations on numerous BHs has been studied in the literature[4].Pourhassan et al[5]discussed the impact of logarithmic corrections on several quantities such as entropy and volume in the background of a modified Hayward BH.Using a similar approach in higherdimensional charged BHs,Pourhassan et al[6]studied the influence of corrected entropy on thermodynamics quantities.They also investigated the validity of the first law of thermodynamics.Haldar and Biswas[7]graphically analyzed the behavior of enthalpy,Helmholtz and Gibbs free energies for Lovelock anti-de Sitter(AdS)BHs and concluded that the thermodynamic quantities follow a decreasing trend against logarithmic corrections.The same authors[8]explored thermodynamic characteristics of regular BHs by incorporating thermal fluctuation effects near the equilibrium phase.Nadeem-ul-Islam et al[9]discussed the effects of quantum corrections on BTZ BHs and found that small BHs show unstable behavior due to logarithmic corrections.Ganai et al[10]discussed thermodynamic potentials of a charged rotating BTZ BH in the presence of small statistical perturbations.Upadhyay[11]discussed the effects of thermal fluctuations on the stability of charged rotating AdS BHs and showed that thermodynamic potentials satisfy the first law of BH thermodynamics.He found that for small BHs,the specific heat takes negative values,which suggests that small BHs are thermodynamically in an unstable phase.However,the specific heat is found to be always positive for larger BHs,which means that these BHs are in a stable phase.

    The Newman–Unti-Tamburino(NUT)metric[12]is one of the most interesting solutions of general relativity.This metric carries a particular type of gravitational charge named the NUT charge,which is analogous to the magnetic monopole in many respects.In theoretical physics,substantial work has been carried out to study the essential characteristics of the NUT parameter.Sharif and Wajiha[13]studied Hawking radiation as tunneling of charged fermions through event horizons of a pair of charged accelerating and rotating BHs with the NUT parameter.The same authors[14]evaluated thermodynamic quantities such as the Hawking temperature,entropy,and heat capacity in a charged rotating and accelerating BH with the NUT parameter.Jan and Gohar[15]found the exact expression of the Hawking temperature using the quantum tunneling approach in a rotating and accelerating NUT BH.Johnson[16]considered a cosmological constant as dynamical pressure and derived gravitational thermodynamics for the Taub–NUT geometry in AdS spacetime.

    Liu and Lu[17]discussed the thermodynamics of a charged rotating AdS BH in conformal gravity.They derived all the thermodynamical quantities,including mass,angular momentum,electric/magnetic charges,and their thermodynamical conjugates.They verified that the first law of thermodynamics,as well as the Smarr relation,holds.In[18]the author derived the area product,entropy product,area sum,and entropy sum of the event horizon and Cauchy horizons for the Kerr–Newman–Taub–NUT BH in fourdimensional Lorentzian geometry.He observed that these thermodynamic products are not universal(mass-independence).He also examined the entropy sum and area sum.It is shown that they all depend on the mass,charge,and NUT parameter of the background spacetime.He concluded that the Kerr–Newman-Taub–NUT BH does not satisfy the first law of BH thermodynamics and Smarr–Gibbs–Duhem relations.Hennigar et al[19]discussed the thermodynamics of the Lorentzian Taub–NUT solution and formulated the first law of BH thermodynamics with a new NUT charge.Bordo et al[20]derived the thermodynamics of Taub–NUT spacetimes in the presence of magnetic as well as electric charge and showed that the NUT parameter can be varied independently without dependence on the event horizon.

    This paper aims to study the impact of statistical perturbations on a charged rotating NUT–AdS BH.The paper is arranged as follows.The following section provides the fundamentals of spacetime and calculates the thermodynamic variables in extended phase space(EPS).In section 2,we provide the exact expression of corrected entropy,internal energy,modified mass,and Gibbs and Helmholtz free energies and graphically analyze their behavior.Moreover,we examine the stability of the BH through specific heat,and the final comments are summarized in the last section.

    2.Kerr–Newman–NUT–AdS BH

    In theoretical physics,the crucial discovery of BHs assists in the exploration of hidden characteristics of the Universe.The first-ever non-trivial spherically symmetric BH solution of the Einstein field equations is known as the Schwarzschild BH,which is extended to other BH geometries such as RN,Kerr,and Kerr–Newman by including the effects of electric charge and rotation parameters.Later,many BH solutions were developed by incorporating various sources,such as acceleration,magnetic charge,the NUT parameter as well as a cosmological constant in the usual mass of a BH.BHs with these extensions are categorized as a class of type-D spacetimes(proposed by Plebanski and Demianski[21]),which is represented by seven arbitrary parameters.The charged rotating NUT–AdS BH,in Boyer-Lindquist coordinates[22],is defined by

    with

    Here,a is the rotation parameter,w is proportional to twisting behavior of the sources,and q is defined aswhere qmand qedenote the magnetic and electric charges,respectively.Also,m is the BH mass,defines the radius with Λ as the cosmological constant,l is the NUT parameter,and k can be specified as

    The line element(1)can be re-written as

    where

    The electromagnetic potential for the considered BH solution is given as

    Generally,the NUT parameter represents the twisting property of the spacetime or gravitomagnetic monopole parameter of the central mass.However,its exact physical interpretation could not be ascertained until a static Schwarzschild mass immersed in the stationary source-free electromagnetic universe is not considered.In this scenario,the NUT parameter is associated with the twist of the electromagnetic universe by excluding the other possibility.In the absence of an electromagnetic field,it relates to the twist of vacuum space.Thus,the NUT parameter is generated by the twist of the surrounding space coupled with the mass of the source.In the Kerr–Newman–NUT–AdS BH,if the NUT parameter dominates the rotation parameter,i.e.al,a ring singularity appears and the respective solution corresponds to Kerrlike.These cases of curvature singularity have no dependence on the cosmological constant.

    Now,we analyze the effects of the NUT parameter on the quantum level.We provide thermal properties of the Kerr–Newman-NUT–AdS BH within the context of the EPS,which correlates pressure with the cosmological constant and the conjugate factor with the BH volume[23].In this scenario,the area of the event horizon is given by

    where r+denotes the event horizon of the BH,which is evaluated through χ(r+)=0.Using the horizon area,the entropy is defined as

    For the considered BH,the Hawking temperature is calculated as[15]and is evaluated as

    where the mass is given by

    The angular velocity is evaluated as

    The radial function χ becomes zero at horizon r=r+,which yields

    where ΠHis the angular velocity.From equations(10)and(11),we obtain

    where the new charge factor(N)(related to the NUT parameter),thermodynamical volume(V)and the electric potential(Φ)read

    For l=0,the derived results reduce to a charged rotating AdS BH[24].From equation(16),it can be seen that the NUT parameter is an independently varied function and can be introduced separately in the first law.The first law of thermodynamics,within the context of the EPS,is expressed as

    where the corresponding potential functions are given by

    3.Thermal fluctuations

    This section is devoted to examining the impact of thermal fluctuations on the thermodynamics of a charged rotating NUT–AdS BH.We firstly compute corrected entropy near the equilibrium position,which implies modification in other thermodynamic potentials.For this purpose,we consider the function

    where σ(E)corresponds to the quantum density of the system,and E represents the average energy with[3].Using inverse transformation,we have

    where S0=lnZ+βE is the corrected entropy,and b>0.Using the steepest descent approach near η,the above equation reduces to

    where S=S0(η)withandat η=b.Using equations(19)and(20),we obtain

    which can be written as

    Eventually,this leads to

    Without loss of generality,we can substitute a general correction parameter α in place of the factorto increase the participation of correction terms in the entropy.Around the equilibrium phase,the corrected entropy takes the form

    Notice that the above expression contains a logarithmic term which shows the small contribution of quantum corrections.It is known that statistical perturbations become efficient on the Planck scale,whereas the BHs are macroscopic stellar objects;therefore,the logarithmic corrections have little influence on the equilibrium entropy.From equations(10)and(11),the corrected entropy turns out to be

    To study the effects of state parameters,we plot entropy(corrected and uncorrected)for different choices of NUT and rotation parameters.For graphical analysis,we have considered two cases,i.e.a>l(figure 1)and al)obtains the negative value of entropy against larger choices of correction parameter and shows decreasing behavior for a specific range of horizon radius.We observe that BH entropy increases for larger modes of NUT and rotation parameters,which correspondingly increases the area of the BH.For a larger horizon radius,the behavior of corrected entropy coincides with the uncorrected one,which implies that the thermodynamics of a large BH is not affected by thermal fluctuations.From equation(16),the corrected mass can be computed as

    Figures 3 and 4 represent the graphical behavior of corrected mass for different values of NUT and rotation parameters,respectively.We observe that for a>l,the mass of the BH remains positive while,in the case of al depicts a more proficient and realistic scenario in contrast to another possibility as the mass can never be a negative quantity.Figure 3 shows that BH mass decreases until the critical horizon;thereafter,it is an increasing function.We find that the correction parameter decreases and increases the corrected BH mass before and after the horizon radius,respectively.From figure 4,one can observe a continuous increase in the physical mass,and the critical horizon radius decreases for larger values of the rotation parameter.It is found that for larger values of l and a,the BH becomes more massive.

    Figure 1.Corrected entropy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).Here,α=0.9,0.5,and 0 are represented by blue,green,and red curves,respectively.

    Figure 2.Corrected entropy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    Figure 3.Corrected mass versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 4.Corrected mass versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    The internal energy,as the total energy of the BH,is directly proportional to the temperature.Using the definition,U=M0?PV?ψN,the internal energy is evaluated as

    Figure 5 provides evidence that higher modes of the NUT parameter increase the internal energy,indicating that BHs have a high temperature.Due to the fluctuation effect,the internal energy decreases and increases before and after the horizon radius,respectively.Figure 6 shows that the internal energy becomes negative for a small BH,which shows that the BH is releasing heat to its surroundings.However,for large BHs,it depicts increasing as well as positive behavior.It is observed that the system attains negative values corresponding to larger modes of rotation.

    Figure 5.Internal energy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 6.Internal energy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    The Helmholtz free energy(F=M0?TkS0?ψN)is the direct measure of work that can be extracted from a system.If the system achieves its reversible equilibrium state,the Helmholtz free energy becomes constant.The first-order corrected Helmholtz free energy is given by

    Figure 7 shows that the small BH has higher Helmholtz free energy,whereas for the large BH,the free energy gains negative values and observes the same trend as that of the equilibrium state.The negative behavior of F shows that entropy and NUT charge dominate the physical mass of the BH.It is noted that smaller values of l yield higher values of the Helmholtz free energy.Figure 8 shows that smaller values of the rotation than the NUT parameter(l>a)lead to negative values of the Helmholtz free energy,which becomes positive by considering larger values of the rotation and correction parameters.It is important to note that leading order correction terms play a critical part in the thermodynamics of small BHs,whereas the large BHs remain unaffected.The BH mass,within the context of the EPS,is named enthalpy,and Gibbs free energy is utilized to quantify the reversible work that might be carried out by a thermodynamic system.The Gibbs energy(G=M0?TkS0?ΦQ?ψN)is derived to be

    Figure 7.Helmholtz energy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 8.Helmholtz energy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    Figures 9 and 10 indicate that the Gibbs free energy remains positive for small and medium BHs,while it becomes negative for larger values of the horizon radius.It is known that positive values of the Gibbs energy correspond to nonspontaneous reactions that require an external source of energy,whereas its negative values correspond to spontaneous reactions which can be driven without any external source.BHs with negative Gibbs energy are thermodynamically stable as they release their energy into the surroundings to acquire the low-energy state.It is seen that small and medium BHs are thermodynamically unstable as G>0.It is also noted that correction terms increase the Gibbs free energy for small BHs but,for large BHs,its negative range increases corresponding to larger values of acceleration and rotation parameters.This indicates that larger values of state parameters yield the stable model.Figure 10 implies that the negative profile of the Gibbs energy decreases against the higher choices of rotation parameter,which shows that the smaller modes lead to the stable model.

    Figure 9.Gibbs energy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 10.Gibbs energy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    Figure 11.Specific heat versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 12.Specific heat versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    To study the stability and phase transition,the specific heat is computed within the context of thermal fluctuations.The transition points are simply the divergence points of specific heat,whereas its positive range ensures the thermodynamically stable phase.The specific heatcan be calculated as

    The BH with larger choices of the NUT parameter yields larger heat capacity values(figure 11).From figure 12,one can observe that the specific heat diverges at critical radii r+=1.3 and r+=0.18 for a=0.1 and a=0.9,respectively,which shows that the BH experiences the first-order phase transition.Notably,the position,as well as the number of the transition,points rely on the considered choices of BH parameters.For the small BH,the uncorrected specific heat is negative,which indicates that the rotating BH is unstable even without consideration of any thermal fluctuation effects.However,for larger modes of rotation parameters,the corrected specific heat becomes more negative for small BHs without affecting the large BH’s thermodynamics.Thus,we can conclude that small BHs are thermodynamically unstable due to statistical perturbations,while this does not affect the stability of large-sized BHs.

    4.Conclusions

    In this paper,we have analyzed the influence of statistical fluctuations on the thermodynamics of the Kerr–Newman–NUT–AdS BH.For this purpose,the exact expression of the Hawking temperature,angular velocity,and entropy are computed.We have found that these variables meet the first law of thermodynamics as well as the Smarr relation in the presence of a new NUT charge in contrast to the Kerr–Newman–Taub–NUT BH[18].To investigate the influence of fluctuations,we have computed corrected entropy,which modifies other thermodynamic quantities.We have plotted these thermodynamic potentials and compared their corrected and uncorrected forms for different choices of rotation and NUT parameters.Finally,we have studied the phase transition points as well as the stability of the BH through specific heat.

    It is observed that the entropy of the BH increases against larger values of rotation and NUT parameters,which leads to the increase in the BH area.The leading order correction terms perturb the entropy of small BHs while,for BHs with a larger horizon radius,the corrected entropy observes the same behavior as that of equilibrium entropy,which implies that logarithmic corrections do not affect the thermodynamics of large BHs.For the two possibilities,i.e.a>l and l>a,the former represents the realistic scenario as it provides a positive range of the mass for small as well as large BHs.The profile of internal energy shows that the temperature of small BHs decreases for a>l,which indicates that the BH emits thermal radiation to its surroundings.However,the internal energy of the large BH increases due to quantum fluctuation effects.For smaller values of horizon radius,the Helmholtz free energy becomes positive against a>l,while it shows a negative as well as a decreasing trend for large BHs.It is noted that smaller values of l yield higher values of the Helmholtz free energy.

    The Gibbs energy is negative(positive)for l>a(a>l)indicating a stable(unstable)phase of small BHs.For BHs with a larger horizon radius,the Gibbs energy is negative for both considered cases,which leads to stable BH geometries.The profile of specific heat is studied versus the horizon radius to analyze the local stability of the BH.We observe that for large BHs,the specific heat attains positive values,which indicate that large BHs are located in a thermally stable regime[11].Moreover,the larger values of l lead the system towards stability.We observe that the BH experiences firstorder phase transition due to divergence of the specific heat at r+=1.3 against smaller values of the rotation parameter.It is concluded that thermal fluctuations(NUT parameter)induce more instability(stability)in small BHs.It is noteworthy that all the results reduce to rotating as well as charged AdS BHs[24]in the absence of the NUT parameter and,for q=a=0,it leads to the NUT–AdS BH solution[19].

    Acknowledgments

    QM would like to thank the Higher Education Commission,Islamabad,Pakistan for its financial support through the Indigenous Ph.D.Fellowship,Phase-II,Batch-III.

    国产伦理片在线播放av一区| 天天躁夜夜躁狠狠久久av| 久久女婷五月综合色啪小说| 少妇裸体淫交视频免费看高清 | 亚洲天堂av无毛| 国产精品久久久久久人妻精品电影 | 久久久久精品国产欧美久久久 | 日本av免费视频播放| 成人黄色视频免费在线看| 精品一区二区三区四区五区乱码 | xxxhd国产人妻xxx| 国产人伦9x9x在线观看| 欧美精品av麻豆av| 大码成人一级视频| 日韩一卡2卡3卡4卡2021年| 美女大奶头黄色视频| 成年美女黄网站色视频大全免费| 国产福利在线免费观看视频| 男女高潮啪啪啪动态图| 国产亚洲欧美精品永久| 菩萨蛮人人尽说江南好唐韦庄| 嫁个100分男人电影在线观看 | 一区二区三区乱码不卡18| 天堂8中文在线网| 男女床上黄色一级片免费看| 亚洲成人国产一区在线观看 | 亚洲精品国产一区二区精华液| 黑人欧美特级aaaaaa片| 国产av国产精品国产| 热99国产精品久久久久久7| 韩国高清视频一区二区三区| 999久久久国产精品视频| www.自偷自拍.com| 国产午夜精品一二区理论片| 免费观看av网站的网址| 在线观看免费日韩欧美大片| 啦啦啦在线观看免费高清www| 免费在线观看日本一区| 一区二区三区乱码不卡18| 亚洲欧美精品综合一区二区三区| 国产深夜福利视频在线观看| 一区二区日韩欧美中文字幕| 夫妻性生交免费视频一级片| 丝袜人妻中文字幕| 亚洲美女黄色视频免费看| 观看av在线不卡| 各种免费的搞黄视频| 久久久久久久久免费视频了| 丝袜美足系列| 在线 av 中文字幕| 侵犯人妻中文字幕一二三四区| 亚洲少妇的诱惑av| 18禁国产床啪视频网站| 免费观看人在逋| 中国美女看黄片| 久久免费观看电影| 人人妻人人澡人人看| 少妇人妻久久综合中文| 亚洲国产av影院在线观看| 一区二区av电影网| av又黄又爽大尺度在线免费看| 又粗又硬又长又爽又黄的视频| 男女高潮啪啪啪动态图| 亚洲 欧美一区二区三区| 午夜91福利影院| 老司机影院成人| 妹子高潮喷水视频| 日本91视频免费播放| 一区二区日韩欧美中文字幕| 九草在线视频观看| 男女免费视频国产| 波多野结衣一区麻豆| 性少妇av在线| 最近手机中文字幕大全| 亚洲精品一区蜜桃| videos熟女内射| 高清不卡的av网站| 91九色精品人成在线观看| 亚洲自偷自拍图片 自拍| 欧美精品亚洲一区二区| 一区二区三区激情视频| 在线亚洲精品国产二区图片欧美| 亚洲伊人色综图| 两个人免费观看高清视频| 性高湖久久久久久久久免费观看| 男女之事视频高清在线观看 | 极品人妻少妇av视频| 成人国语在线视频| 亚洲av电影在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 9热在线视频观看99| 老司机靠b影院| 精品亚洲成国产av| 亚洲国产欧美一区二区综合| 搡老乐熟女国产| 午夜两性在线视频| 尾随美女入室| 一区二区av电影网| 欧美精品亚洲一区二区| kizo精华| 波多野结衣一区麻豆| 久久国产亚洲av麻豆专区| 国产一区二区三区av在线| 久久久久精品国产欧美久久久 | 自线自在国产av| 久久女婷五月综合色啪小说| 日韩中文字幕视频在线看片| 国产精品国产三级国产专区5o| 人妻一区二区av| av福利片在线| 国产一级毛片在线| 欧美xxⅹ黑人| 欧美久久黑人一区二区| 国产在线一区二区三区精| 黄频高清免费视频| 久久国产精品人妻蜜桃| av天堂在线播放| 日本a在线网址| 一边亲一边摸免费视频| 国产精品久久久久久精品古装| 国产精品九九99| 极品人妻少妇av视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲免费av在线视频| 好男人视频免费观看在线| 新久久久久国产一级毛片| 你懂的网址亚洲精品在线观看| 熟女少妇亚洲综合色aaa.| 亚洲精品第二区| 亚洲成av片中文字幕在线观看| 人人妻人人澡人人看| 亚洲精品国产av成人精品| 久久精品熟女亚洲av麻豆精品| 嫁个100分男人电影在线观看 | 丝袜美腿诱惑在线| 2018国产大陆天天弄谢| 三上悠亚av全集在线观看| 精品久久久久久久毛片微露脸 | 欧美久久黑人一区二区| av天堂在线播放| 大型av网站在线播放| 伦理电影免费视频| 亚洲av在线观看美女高潮| 国产伦人伦偷精品视频| 黑人欧美特级aaaaaa片| 国产日韩欧美在线精品| 日本午夜av视频| 丰满少妇做爰视频| 赤兔流量卡办理| 美女主播在线视频| 最近手机中文字幕大全| 亚洲国产精品999| 如日韩欧美国产精品一区二区三区| 国产高清国产精品国产三级| 国产深夜福利视频在线观看| 最新的欧美精品一区二区| 免费在线观看日本一区| 丰满饥渴人妻一区二区三| 亚洲成人免费av在线播放| 欧美激情 高清一区二区三区| 色网站视频免费| 国产成人影院久久av| 欧美人与性动交α欧美精品济南到| av片东京热男人的天堂| 久久久国产一区二区| 91精品国产国语对白视频| 亚洲欧美清纯卡通| 亚洲精品国产av蜜桃| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 交换朋友夫妻互换小说| 日本vs欧美在线观看视频| 亚洲 欧美一区二区三区| 一级黄色大片毛片| 巨乳人妻的诱惑在线观看| 成人免费观看视频高清| 中文字幕人妻熟女乱码| av天堂久久9| 99热全是精品| 国产欧美日韩一区二区三 | 亚洲伊人久久精品综合| 亚洲三区欧美一区| 天堂中文最新版在线下载| 久久影院123| 丝瓜视频免费看黄片| 大话2 男鬼变身卡| 精品少妇内射三级| 人人妻人人爽人人添夜夜欢视频| 国产男人的电影天堂91| 欧美国产精品va在线观看不卡| 好男人电影高清在线观看| 高清黄色对白视频在线免费看| 我的亚洲天堂| 欧美av亚洲av综合av国产av| 女警被强在线播放| 欧美成人午夜精品| 51午夜福利影视在线观看| 9色porny在线观看| 一个人免费看片子| 观看av在线不卡| 亚洲一区中文字幕在线| 人人妻人人澡人人爽人人夜夜| 国产成人啪精品午夜网站| 纯流量卡能插随身wifi吗| 国产成人精品久久久久久| 国产人伦9x9x在线观看| 亚洲欧美色中文字幕在线| 免费人妻精品一区二区三区视频| 一级毛片我不卡| 亚洲,欧美精品.| 观看av在线不卡| 老司机影院成人| 亚洲国产日韩一区二区| 在线观看国产h片| 日本91视频免费播放| 老鸭窝网址在线观看| 99精品久久久久人妻精品| 美女脱内裤让男人舔精品视频| 18禁黄网站禁片午夜丰满| 18禁黄网站禁片午夜丰满| 亚洲熟女精品中文字幕| 青春草亚洲视频在线观看| 美女视频免费永久观看网站| 精品国产一区二区三区四区第35| 在线看a的网站| 桃花免费在线播放| 97人妻天天添夜夜摸| 巨乳人妻的诱惑在线观看| 国产成人精品无人区| 熟女少妇亚洲综合色aaa.| 亚洲欧美中文字幕日韩二区| 国产免费又黄又爽又色| 久久免费观看电影| 高潮久久久久久久久久久不卡| 亚洲精品国产av蜜桃| 日本黄色日本黄色录像| 香蕉国产在线看| 美女福利国产在线| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 免费看不卡的av| 女警被强在线播放| 国语对白做爰xxxⅹ性视频网站| av天堂在线播放| 色网站视频免费| 色婷婷av一区二区三区视频| 国产成人a∨麻豆精品| 亚洲精品中文字幕在线视频| 宅男免费午夜| 久久久久久久久久久久大奶| 国产激情久久老熟女| 2021少妇久久久久久久久久久| 午夜精品国产一区二区电影| 亚洲成av片中文字幕在线观看| 日韩一本色道免费dvd| 亚洲成国产人片在线观看| av电影中文网址| 亚洲成人免费av在线播放| 国产成人精品久久久久久| 夫妻午夜视频| 男女午夜视频在线观看| 日本一区二区免费在线视频| 999精品在线视频| 国产色视频综合| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久久久精品古装| 青春草视频在线免费观看| 精品人妻1区二区| 免费女性裸体啪啪无遮挡网站| 又大又黄又爽视频免费| 真人做人爱边吃奶动态| 亚洲精品国产av蜜桃| 欧美日韩亚洲综合一区二区三区_| 亚洲精品乱久久久久久| 在线 av 中文字幕| 国产精品久久久av美女十八| 男女之事视频高清在线观看 | 久久久久视频综合| 欧美性长视频在线观看| 国产精品久久久av美女十八| 黄频高清免费视频| 成人三级做爰电影| 五月天丁香电影| 国产又爽黄色视频| 纵有疾风起免费观看全集完整版| 国产精品三级大全| 国产欧美日韩一区二区三区在线| 欧美人与性动交α欧美精品济南到| 亚洲五月色婷婷综合| 亚洲av日韩在线播放| 咕卡用的链子| 女性生殖器流出的白浆| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 国产精品一区二区在线不卡| 国产又色又爽无遮挡免| 夫妻午夜视频| 国产av一区二区精品久久| 18禁裸乳无遮挡动漫免费视频| 在线亚洲精品国产二区图片欧美| 婷婷色综合大香蕉| 亚洲三区欧美一区| 国产黄频视频在线观看| 亚洲精品成人av观看孕妇| 精品免费久久久久久久清纯 | 精品国产乱码久久久久久男人| 啦啦啦在线免费观看视频4| 熟女av电影| 免费av中文字幕在线| 亚洲 国产 在线| 欧美亚洲 丝袜 人妻 在线| 老司机亚洲免费影院| 黑丝袜美女国产一区| 黄色毛片三级朝国网站| 看十八女毛片水多多多| 大片免费播放器 马上看| 看免费成人av毛片| 黄色怎么调成土黄色| 欧美黑人精品巨大| 国产成人啪精品午夜网站| 国产又爽黄色视频| 在线av久久热| 无遮挡黄片免费观看| 亚洲国产av新网站| 午夜免费成人在线视频| bbb黄色大片| 飞空精品影院首页| 中文字幕人妻熟女乱码| 纯流量卡能插随身wifi吗| 久久九九热精品免费| 99热全是精品| 久久久亚洲精品成人影院| 色婷婷久久久亚洲欧美| 在线看a的网站| 一本综合久久免费| 少妇裸体淫交视频免费看高清 | 制服人妻中文乱码| av欧美777| 十分钟在线观看高清视频www| 久久久久网色| 99精国产麻豆久久婷婷| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区黑人| 久久精品亚洲熟妇少妇任你| 成年美女黄网站色视频大全免费| 老司机亚洲免费影院| 天堂中文最新版在线下载| 一区二区三区乱码不卡18| 久久女婷五月综合色啪小说| 欧美日韩国产mv在线观看视频| 国产精品一区二区在线观看99| 黄色毛片三级朝国网站| 90打野战视频偷拍视频| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| 欧美国产精品va在线观看不卡| 狠狠婷婷综合久久久久久88av| 天天躁日日躁夜夜躁夜夜| 波野结衣二区三区在线| 一本综合久久免费| 男女免费视频国产| 黄色视频在线播放观看不卡| 伊人亚洲综合成人网| 亚洲欧美中文字幕日韩二区| 日韩av在线免费看完整版不卡| 97人妻天天添夜夜摸| 交换朋友夫妻互换小说| 久热爱精品视频在线9| 一级,二级,三级黄色视频| 老司机在亚洲福利影院| 日韩一本色道免费dvd| 亚洲欧美一区二区三区国产| 亚洲精品日韩在线中文字幕| 黄网站色视频无遮挡免费观看| 汤姆久久久久久久影院中文字幕| 丰满饥渴人妻一区二区三| 欧美日韩成人在线一区二区| 免费看av在线观看网站| 日本色播在线视频| 午夜视频精品福利| 精品国产乱码久久久久久小说| 国产高清视频在线播放一区 | 男男h啪啪无遮挡| 国产精品九九99| 在线观看免费高清a一片| 国产在线免费精品| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av高清一级| 不卡av一区二区三区| 国产成人精品久久二区二区91| 亚洲精品日本国产第一区| 亚洲黑人精品在线| 一二三四在线观看免费中文在| 丝袜人妻中文字幕| 老司机靠b影院| 黄色片一级片一级黄色片| 成年av动漫网址| 国产成人91sexporn| 国产亚洲av片在线观看秒播厂| 国产精品亚洲av一区麻豆| 免费少妇av软件| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 国产视频首页在线观看| 十八禁网站网址无遮挡| 丝袜美足系列| 大话2 男鬼变身卡| 侵犯人妻中文字幕一二三四区| 大香蕉久久成人网| 久久久久久久国产电影| 色婷婷av一区二区三区视频| 日韩电影二区| 亚洲av电影在线观看一区二区三区| 尾随美女入室| 91精品国产国语对白视频| 视频区欧美日本亚洲| 男男h啪啪无遮挡| 精品国产乱码久久久久久男人| 在现免费观看毛片| 麻豆av在线久日| 久久精品久久久久久久性| 久9热在线精品视频| 男女边吃奶边做爰视频| 宅男免费午夜| 在线观看免费高清a一片| 亚洲九九香蕉| 亚洲精品av麻豆狂野| 一区福利在线观看| 久久99一区二区三区| 两性夫妻黄色片| 不卡av一区二区三区| 岛国毛片在线播放| 国产片内射在线| 国产视频一区二区在线看| 亚洲欧美精品综合一区二区三区| 精品一区二区三卡| bbb黄色大片| 黄网站色视频无遮挡免费观看| 肉色欧美久久久久久久蜜桃| 精品一区在线观看国产| 免费少妇av软件| 2018国产大陆天天弄谢| 巨乳人妻的诱惑在线观看| 国产成人欧美在线观看 | 岛国毛片在线播放| 人人妻人人添人人爽欧美一区卜| 亚洲人成网站在线观看播放| 国产熟女午夜一区二区三区| 欧美精品亚洲一区二区| 国产成人精品无人区| 久久精品久久久久久久性| kizo精华| 美女扒开内裤让男人捅视频| 亚洲av成人不卡在线观看播放网 | 日本色播在线视频| 精品少妇一区二区三区视频日本电影| 亚洲九九香蕉| 99国产精品99久久久久| 亚洲精品美女久久久久99蜜臀 | 国产主播在线观看一区二区 | 国产成人系列免费观看| 一区二区av电影网| 纯流量卡能插随身wifi吗| 91国产中文字幕| 99热全是精品| 亚洲精品日韩在线中文字幕| 老司机在亚洲福利影院| 欧美精品人与动牲交sv欧美| 国产老妇伦熟女老妇高清| 欧美激情高清一区二区三区| 王馨瑶露胸无遮挡在线观看| 成年人免费黄色播放视频| 免费av中文字幕在线| 真人做人爱边吃奶动态| 十八禁网站网址无遮挡| 两性夫妻黄色片| 国产成人欧美| 国产色视频综合| 国产亚洲av高清不卡| 国产成人精品无人区| 手机成人av网站| 久久免费观看电影| 亚洲欧美中文字幕日韩二区| 欧美激情高清一区二区三区| 高清不卡的av网站| 十八禁网站网址无遮挡| 一本色道久久久久久精品综合| 午夜福利视频在线观看免费| 最黄视频免费看| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 中文字幕av电影在线播放| 亚洲成av片中文字幕在线观看| 色综合欧美亚洲国产小说| 日韩制服丝袜自拍偷拍| 久久久精品国产亚洲av高清涩受| 波多野结衣av一区二区av| 在线av久久热| 99久久人妻综合| 日本色播在线视频| 免费看av在线观看网站| 这个男人来自地球电影免费观看| 精品国产超薄肉色丝袜足j| 51午夜福利影视在线观看| 精品福利观看| 久久99一区二区三区| 亚洲欧美清纯卡通| 51午夜福利影视在线观看| 2021少妇久久久久久久久久久| 叶爱在线成人免费视频播放| 美国免费a级毛片| 99国产精品一区二区蜜桃av | 老司机影院成人| 中文字幕人妻丝袜制服| 黄色怎么调成土黄色| 美女高潮到喷水免费观看| 精品高清国产在线一区| 国产欧美日韩精品亚洲av| 久久影院123| 蜜桃在线观看..| av天堂久久9| 亚洲久久久国产精品| 高清av免费在线| 亚洲成人国产一区在线观看 | 高清视频免费观看一区二区| av一本久久久久| 午夜免费男女啪啪视频观看| 欧美少妇被猛烈插入视频| 免费少妇av软件| 一级毛片电影观看| 久久av网站| 两个人看的免费小视频| 国产精品久久久人人做人人爽| 黑人猛操日本美女一级片| 在线观看免费视频网站a站| 美国免费a级毛片| av视频免费观看在线观看| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 男女边吃奶边做爰视频| 日韩欧美一区视频在线观看| 黄片播放在线免费| 色94色欧美一区二区| 天天躁日日躁夜夜躁夜夜| 国产伦人伦偷精品视频| 欧美性长视频在线观看| 亚洲欧美精品自产自拍| 老鸭窝网址在线观看| 国产一级毛片在线| 曰老女人黄片| 日本欧美视频一区| 国产精品偷伦视频观看了| 国产成人免费无遮挡视频| 亚洲伊人色综图| 免费高清在线观看视频在线观看| 精品国产国语对白av| 两个人免费观看高清视频| 在线观看免费午夜福利视频| 在线 av 中文字幕| 蜜桃在线观看..| 国产精品免费大片| 欧美+亚洲+日韩+国产| 国产一区二区三区av在线| 亚洲欧美清纯卡通| 丝袜美足系列| 欧美日本中文国产一区发布| 成人三级做爰电影| 嫩草影视91久久| 男人操女人黄网站| 亚洲专区国产一区二区| 久久精品国产亚洲av高清一级| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 啦啦啦在线观看免费高清www| 成人国产一区最新在线观看 | 50天的宝宝边吃奶边哭怎么回事| 免费少妇av软件| 两人在一起打扑克的视频| 18禁观看日本| 婷婷色综合大香蕉| 亚洲av综合色区一区| 亚洲五月婷婷丁香| 国产精品免费视频内射| 国产免费福利视频在线观看| 欧美乱码精品一区二区三区| 亚洲精品美女久久av网站| 国产视频首页在线观看| avwww免费| 婷婷丁香在线五月| 一个人免费看片子| av片东京热男人的天堂| 国产爽快片一区二区三区| 成年人黄色毛片网站| 麻豆乱淫一区二区| 又大又爽又粗| 久久人人爽人人片av| 麻豆av在线久日| 手机成人av网站| 色精品久久人妻99蜜桃| 婷婷色av中文字幕| 99香蕉大伊视频| 国产成人欧美| 亚洲天堂av无毛| 丝袜在线中文字幕| 如日韩欧美国产精品一区二区三区| 午夜两性在线视频| 18在线观看网站| 亚洲精品成人av观看孕妇| 日韩一本色道免费dvd| 久久久久国产精品人妻一区二区| 日韩av不卡免费在线播放|