• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Padé approximations of quantized-vortex solutions of the Gross–Pitaevskii equation

    2021-08-18 02:52:52WeiruChenShanquanLanXiyiLiuJiexiongMoXiaobaoXuandGuqiangLi
    Communications in Theoretical Physics 2021年8期

    Weiru Chen,Shanquan Lan,Xiyi Liu,Jiexiong Mo,Xiaobao Xu and Guqiang Li

    Institute of Theoretical Physics,Lingnan Normal University,Zhanjiang,524048,Guangdong,China

    Abstract Quantized vortices are important topological excitations in Bose–Einstein condensates.The Gross–Pitaevskii equation is a widely accepted theoretical tool.High accuracy quantized-vortex solutions are desirable in many numerical and analytical studies.We successfully derive the Padé approximate solutions for quantized vortices with winding numbers ω=1,2,3,4,5,6 in the context of the Gross–Pitaevskii equation for a uniform condensate.Compared with the numerical solutions,we find that(1)they approximate the entire solutions quite well from the core to infinity;(2)higher-order Padé approximate solutions have higher accuracy;(3)Padé approximate solutions for larger winding numbers have lower accuracy.The healing lengths of the quantized vortices are calculated and found to increase almost linearly with the winding number.Based on experiments performed with 87Rb cold atoms,the healing lengths of quantized vortices and the number of particles within the healing lengths are calculated,and they may be checked by experiment.Our results show that the Gross–Pitaevskii equation is capable of describing the structure of quantized vortices and physics at length scales smaller than the healing length.

    Keywords:Gross–Pitaevskii equation,Padé approximation,quantized-vortex solution

    1.Introduction

    Bose–Einstein condensates(BECs)have been extensively studied,both theoretically and experimentally,since their experimental realization in trapped atomic gases at ultralow temperatures[1–3].The Gross–Pitaevskii(GP)equation,which is a mean-field quantum field theory,is a widely accepted theoretical tool[4–6].The GP equation has the merit of providing an effective description of atomic condensates and their dynamics,such as the reconnection of quantized vortices[7–12],the splitting of multiply quantized vortices[13–18],and quantum turbulence[19–21],etc.Before an investigation of its interesting dynamic features,one should know its elementary structures,such as sound waves,solitons,and quantized vortices,which are also interesting and important in themselves.In this paper,we will concentrate on the quantized vortices of different winding numbers in a uniform two-dimensional condensate.

    Quantized vortices,the winding of order parameter,are one of the most fundamental topological excitations in BECs.In spite of the seeming simplicity of the GP equation,there is no analytic solution for quantized vortices.Typically,one resorts to numerical methods to obtain quantized-vortex solutions[22–24].Meanwhile,there are many situations in which asymptotic or approximate vortex solutions are desired.For example,Demircan investigated singly quantized vortex dynamics in superfluids[25]based on an approximate vortex solution given by Fetter[26]

    where φ is the wave function(see equation(10)).This semianalytical expression is simple.However,there is a big deviation from the numerical solution:the maximum disagreement is about δφ≈0.06(see the blue line in figure 1).Bradley applied a similar expression(where the constant 2 was replaced by a length scale parameter)to investigate the energy spectra of vortex distributions in quantum turbulence[27].Also,in many numerical studies,a specific vortex configuration is required as an initial starting condition[7,8,28–30].Therefore,finding good approximate vortex solutions is important.The Thomas–Fermi approximation method is valid in regions far from the vortex core[31].The Adomian decomposition method achieves good agreement between the semi-analytical solution and the numerical solution for small radii[24],but it fails in regions far from the vortex core.Other methods involve asymptotic expansions in several different regions and asymptotic matching between them,but the resulting approximations of the solutions are complicated[32,33].This problem was greatly abated when a much more accurate expression for singly and doubly quantized vortices was derived by Berloff,who applied the Padé approximation method.

    The Padé approximate solution is a rational function formed by the ratio of two power series.The numerator and denominator coefficients are determined by equating the approximate solution’s power series with the power series of the function it is approximating[34,35].The Padé approximate solution is more accurate than the Taylor series in approximating functions with poles.Therefore,as we will see below,this method works well for the quantized vortices that have poles.In practice,the standard Padé approximation method will be modified here.The general idea is that,if a function F(x)has power series expansions of the format x=0 andat x=∞,then the Padé approximate solution is

    where n=1,2,3,…,N=0,1,2,…,andwith Q0=F(∞),have the same asymptotes at zero and infinity as function F(x)does[36].

    For a singly quantized vortex,Berloff derived a secondorder(N=1)Padé approximate solution[36]

    This expression is much more accurate than equation(1).There is only a small deviation from the numerical solution,the maximum disagreement is about δφ≈0.01(see the green line in figure 2).Later,Rorai and others derived a third-order(N=2)Padé approximate solution[23]

    This expression is much more accurate than equation(3).Its maximum disagreement with the numerical solution is only δφ≈0.0016(see the blue line in figure 3).Beyond the above solutions,we have derived other solutions which have same order and accuracy(see more below),after a systematic analysis of the Padé approximation method.For a doubly quantized vortex,Berloff derived a second-order(N=1)Padé approximate solution[36]

    This has a maximum disagreement of δφ≈0.06 with the numerical result(see the green line in figure 4).The requirement for accuracy is not satisfied,and we have derived other solutions which are more accurate.What is more,we have derived Padé approximate solutions for other multiply quantized vortices and calculated the healing lengths of quantized vortices.

    The outline of this paper is as follows.In section 2,the asymptotic behaviors of quantized vortices are analyzed at zero and infinity.In section 3,different orders of Padé approximate solutions of quantized vortices with different winding numbers are presented and then compared with numerical solutions.In section 4,the healing lengths of the quantized vortices are discussed.In the last section,we end with conclusions.

    2.Asymptotic behavior of quantized vortices at zero and infinity

    We start with the three dimensional Gross–Pitaevskii equation[4–6],which is also known as the nonlinear Schr?dinger equation,

    where ψ(x,y,z,t)is the wave function and n3D=|ψ(x,y,z,t)|2is the number density of particles,M is the mass of the bosons,g3D=4π?2as/M is the interaction parameter for an s-wave scattering length as,and μ is the chemical potential.

    In this paper,we explore the structures of quantized vortices in a uniform two-dimensional Bose–Einstein condensate.Assuming that the thickness of the thin condensate is d,then the two-dimensional number density of particles can be written as n2D=n3Dd.Thus,the corresponding GP equation becomes

    By applying a rescale transformation

    the above GP equation can be rewritten in the following dimensionless form,

    As quantized vortices are static and have cylindrical symmetry,we will work in cylindrical coordinates(ρ,θ).The complex function φ(x,y)can be rewritten as φ(ρ)eiωθ,where ω is the winding number of the vortex.Here,ω have to be integers(without loss of generality,only positive ω cases are considered throughout this paper)to guarantee that φ(x,y)is a single-valued function.The GP equation is rewritten as

    Assuming φ∝ραwhen ρ→0,equation(10)gives α=ω.However,as ρ→∞,equation(10)gives φ=1.To apply the Padé approximation,one needs to check the detail of the asymptotic behavior of quantized vortices at zero and at infinity.

    When ρ→0,the asymptotic behavior of quantized vortices can be written as

    Here,the first ten terms are sufficient to show the behavior of the quantized vortex function φ(ρ)with winding numbers ω≤6 when ρ→0.We then substitute the above equation into equation(10)and expand the resulting expression in series of ρ.The coefficients at equal powers of ρ should be equal to zero.The first ten equations are listed below.

    For a quantized vortex with a winding number ω=1,the ten equations above give

    For a quantized vortex with a winding number ω=2,the ten equations above give

    For a quantized vortex with a winding number ω=3,the ten equations above give

    For a quantized vortex with a winding number ω=4,the ten equations above give

    For a quantized vortex with a winding number ω=5,the ten equations above give

    For a quantized vortex with a winding number ω=6,the ten equations above give

    One can find that the function φ(ρ)of quantized vortices has power series expansions of the format ρ=0.

    At ρ→∞,the asymptotic behavior of quantized vortices can be written as

    Then we substitute the above equation into equation(10)and expand the resulting expression in series of ρ?1.The coefficients at equal powers of ρ?1should be equal to zero.The first 8 equations are listed below.

    The above 8 equations give

    One can find that the function φ(ρ)of quantized vortices has power series expansions of the form(here,Q0=1)at ρ=∞.

    It is natural to ask that what kind of function has the same power series expansions of the above forms at ρ=0 and at ρ=∞.It is the Padé approximate solution,

    where b0=1 and aN=bN+ω.In the following section,we will find the Padé approximate solutions of quantized vortices with winding numbers ω=1,2,3,4,5,6 and then compare them to the numerical solutions.

    3.Quantized-vortex solutions in the Padé approximation

    3.1.The ω=1 case

    For N=0,the approximate solution is

    Note that there is only one parameter,which can be determined by just one equation.There are two ways to find the equation.One is to expand the above equation at ρ=0 or at ρ=∞and then compare them to equation(22)or equation(37).The other way is to substitute the above equation into equation(10)and then expand the resulting expression in series of ρ at ρ=0 or in series of ρ?1at ρ=∞.The coefficients of the series are set to zeros.In this paper,we will use the second way.The coefficients at O(ρ)and O(ρ-2)give

    Fetter improved the approximate solution by choosing b0=2[26].Figure 1 shows the vortex profiles and the difference between the approximate solutions and the numerical solution.In this paper,the numerical vortex solutions are obtained by the Chebyshev pseudo-spectral method[37].

    Figure 1.(a)Vortex profiles:the red line represents the numerical solution,and the green,black,and blue lines represent the solutions of the Padé approximation for ω=1 and N=0.(b)The difference between the approximate solutions and the numerical solution.

    Figure 2.(a)Vortex profiles:the red line represents the numerical solution and the green,black,blue,and yellow lines represent the solutions of the Padé approximation for ω=1 and N=1.(b)The difference between the approximate solutions and the numerical solution.

    Figure 3.(a)Vortex profiles:the red line represents the numerical solution and the green,black,blue,and yellow lines represent the solutions of the Padé approximation for ω=1 and N=2.(b)The difference between the approximate solutions and the numerical solution.

    Figure 4.(a)Vortex profiles:the red line represents the numerical solution and the green,black,blue,and yellow lines represent the solutions of the Padé approximation for ω=2 and N=1,2.(b)The difference between the approximate solutions and the numerical solution.

    For N=1,the approximate solution is

    Note that there are three parameters which can be determined by three equations.In the same way,we substitute the above equation into equation(10)and then expand the resulting expression in series of ρ at ρ=0 and in series of ρ?1at ρ=∞.The coefficients of the series are set to zeros.The coefficients at O(ρ),O(ρ3),and O(ρ5)give three equations and their only reasonable solution is[36]

    There are other choices for the three equations.For example,coefficients at O(ρ),O(ρ3),and O(ρ-2)also give three equations and their only reasonable solution is

    The coefficients at O(ρ),O(ρ-2),and O(ρ-4)give three equations and their only reasonable solution is

    Although the coefficients at O(ρ-2),O(ρ-4),and O(ρ-6)give three equations,there is no reasonable solution.Figure 2 shows the vortex profiles and the difference between the approximate solutions and the numerical solution for ω=1 and N=1.We can see that when more equations are chosen on the ρ=0 side,the approximate solution is more accurate there.Conversely,when more equations are chosen for ρ=∞,the approximate solution is more accurate there.To find the best approximate solutions,one needs to choose the right equations.

    For N=2,the approximate solution is

    Note that there are five parameters,which can be determined by five equations.In the same way,the coefficients at O(ρ),O (ρ3),O(ρ5),O(ρ7),and O(ρ-2)give five equations,and their only reasonable solution is

    There are other choices.For example,coefficients at O(ρ),O (ρ3),O(ρ5),O(ρ-2)and O(ρ-4)give five equations and their only reasonable solution is

    Based on numerical(by shooting)results p1=0.58278,Rorai et al used the first way to expand equation(45)at zero and at infinity,and then compared the results with{pi,qi}in equation(37)and equation(37)to derive[23]

    Figure 1,figure 2,and figure 3 show that the Padé approximations of vortex solutions are in good agreement with the numerical solution,especially for the larger N case.

    3.2.The ω=2 case

    For N=1,the approximate solution is

    In the same way,the coeffciients at O(ρ2),O(ρ4),O(ρ6),and O (ρ8)give four equations and their only reasonable solution is[36]

    There are,however,other choices.For example,the coefficients at O(ρ2),O(ρ4),O(ρ6),and O(ρ-2)give four equations and their only reasonable solution is

    For N=2,the approximate solution is

    In the same way,the coeffciients at O(ρ2),O(ρ4),O(ρ6),O(ρ8),O (ρ10),and O(ρ-2)give six equations and their only reasonable solution is

    If we choose the equations given by the coeffciients at O(ρ2),O (ρ4),O(ρ6),O(ρ8),O(ρ-2),and O(ρ-4),then the only reasonable solution is

    Figure 4 shows the Padé approximation of the quantizedvortex solutions of ω=2 for N=1,2,and the difference between the approximate solutions and the numerical solution.The Padé approximate solutions for N=2 are more accurate than those for N=1.

    3.3.The ω=3 case

    For N=1,the approximate solution is

    In the same way,the coefficients at O(ρ3),O(ρ5),O(ρ7),O (ρ9),and O(ρ-2)give five equations and their only reasonable solution is

    There are other choices:for example,the coefficients at O (ρ3),O(ρ5),O(ρ7),O(ρ-2),and O(ρ-4)give five equations.Unfortunately,there is no reasonable solution.However,the coefficients at O(ρ3),O(ρ5),O(ρ-2),O(ρ-4),and O(ρ-6)give five equations and their only reasonable solution is

    For N=2,the approximate solution is

    In the same way,the coefficients at O(ρ3),O(ρ5),O(ρ7),O (ρ9),O(ρ11),O(ρ13),and O(ρ-2)give seven equations and their only reasonable solution is

    If we choose equations given by the coefficients at O(ρ3),O (ρ5),O(ρ7),O(ρ9),O(ρ11),O(ρ-2),and O(ρ-4),then the only reasonable solution is

    Figure 5 shows the Padé approximation of the vortex solutions for ω=3 and the difference between the approximate solutions and the numerical solution.

    Figure 5.(a)Vortex profiles:The red line represents the numerical solution,and the green,black,blue,and yellow lines represent the solutions of the Padé approximation for ω=3 and N=1,2.(b)The difference between the approximate solutions and the numerical solution.

    3.4.The ω=4 case

    For N=1,the approximate solution is

    In the same way,the coefficients at O(ρ4),O(ρ6),O(ρ8),O (ρ10),O(ρ12),and O(ρ-2)give six equations and their only reasonable solution is

    If we choose equations given by the coefficients at O(ρ4),O (ρ6),O(ρ8),O(ρ10),O(ρ-2),and O(ρ-4),unfortunately,there is no reasonable solution.However,the coefficients at O (ρ4),O(ρ6),O(ρ8),O(ρ-2),O(ρ-4),and O(ρ-6)give six equations and their only reasonable solution is

    For N=2,the approximate solution is

    In the same way,the coefficients at O(ρ4),O(ρ6),O(ρ8),O (ρ10),O(ρ12),O(ρ14),O(ρ16),and O(ρ-2)give eight equations and their only reasonable solution is

    If we choose equations given by the coefficients at O(ρ4),O (ρ6),O(ρ8),O(ρ10),O(ρ12),O(ρ14),O(ρ-2),and O(ρ-4),then the only reasonable solution is

    Figure 6 shows the Padé approximation for the vortex solutions of ω=4 and the difference between the approximate solutions and the numerical solution.

    Figure 6.(a)Vortex profiles:the red line represents the numerical solution and the green,black,blue,and yellow lines represent the solutions of the Padé approximation for ω=4 and N=1,2.(b)The difference between the approximate solutions and the numerical solution.

    3.5.The ω=5 case

    For N=1,the approximate solution is

    In the same way,the coefficients at O(ρ5),O(ρ7),O(ρ9),O (ρ11),O(ρ13),O(ρ15),and O(ρ-2)give seven equations and their only reasonable solution is

    If we choose equations given by the coefficients at O(ρ5),O (ρ7),O(ρ9),O(ρ11),O(ρ13),O(ρ-2),and O(ρ-4),unfortunately,there is no reasonable solution.However,the coefficients at O(ρ5),O(ρ7),O(ρ9),O(ρ11),O(ρ-2),O(ρ-4),and O(ρ-6)give seven equations and their only reasonable solution is

    For N=2,the approximate solution is

    In the same way,the coefficients at O(ρ5),O(ρ7),O(ρ9),O (ρ11),O(ρ13),O(ρ15),O(ρ17),O(ρ-2),and O(ρ-4)give nine equations and their only reasonable solution is

    If we choose equations given by the coefficients at O(ρ5),O (ρ7),O(ρ9),O(ρ11),O(ρ13),O(ρ15),O(ρ-2),O(ρ-4),and O(ρ-6),then the only reasonable solution is

    Figure 7 shows the Padé approximation of the vortex solutions of ω=5 and the difference between the approximate solutions and the numerical solution.

    Figure 7.(a)Vortex profiles:the red line represents the numerical solution and the green,black,blue,and yellow lines represent the solutions of the Padé approximation for ω=5 and N=1,2.(b)The difference between the approximate solutions and the numerical solution.

    3.6.The ω=6 case

    For N=1,the approximate solution is

    In the same way,the coefficients at O(ρ6),O(ρ8),O(ρ10),O (ρ12),O(ρ14),O(ρ16),O(ρ-2),and O(ρ-4)or the coefficients at O(ρ6),O(ρ8),O(ρ10),O(ρ12),O(ρ14),O(ρ-2),O(ρ-4),and O(ρ-6)give eight equations.Unfortunately,there are no reasonable solutions.If we choose equations given by the coefficients at O(ρ6),O(ρ8),O(ρ10),O(ρ12),O(ρ-2),O(ρ-4),O(ρ-6),and O(ρ-8),then the only reasonable solution is

    For N=2,the approximate solution is

    In the same way,the coefficients at O(ρ6),O(ρ8),O(ρ10),O (ρ12),O(ρ14),O(ρ16),O(ρ18),O(ρ20),O(ρ-2),and O(ρ-4)give ten equations and their only reasonable solution is

    If we choose equations given by the coefficients at O(ρ6),O (ρ8),O(ρ10),O(ρ12),O(ρ14),O(ρ16),O(ρ18),O(ρ-2),O(ρ-4),and O(ρ-6),then the only reasonable solution is

    Figure 8 shows the Padé approximation of the vortex solutions of ω=6 and the difference between the approximate solutions and the numerical solution.

    Figure 8.(a)Vortex profiles:the red line represents the numerical solution and the green,black,blue,and yellow lines represent the solutions of the Padé approximation for ω=6 and N=1,2.(b)The difference between the approximate solutions and the numerical solution.

    Figure 9.(a)Density profiles of quantized vortices with winding numbers ω=1,2,3,4,5,6.(b)The healing lengths?defined as φ2(?)/φ2(∞)=0.9 for the six quantized vortices on the left.

    4.Healing lengths of quantized vortices with different winding numbers

    The healing length?is the scale on which the density rises to the uniform background value n2D(ρ=∞).Thus,it can be used to characterize the sizes of quantized vortices.The healing length of a quantized vortex is usually defined as[38,39]

    In our dimensionless GP equation,the above definition gives?=1,which is an important length scale.However,this definition is stereotypical,since the healing lengths of quantized vortices should be different for different winding numbers.In addition,even for the quantized vortex of ω=1,equation(46)gives the result that n2D(ρ=1)≈0.27,which is much less than n2D(ρ=∞)=1.0 and which does not heal the depletion of the quantized vortex.

    Therefore,we define a new healing length?as

    where the value of the constant c chosen is c=0.9.Thus,equation(46),equation(53),equation(60),equation(66),equation(71),and equation(76)give density profiles n2D=φ2(ρ)of the number of particles and the healing lengths?of quantized vortices with different winding numbers(see figure 9).It is somewhat surprising that the healing lengths increase almost linearly with the winding number according to the fitting function?=0.41+3.13ω.This feature still holds if one chooses the constant c to have values from 0.05 to 0.95.

    In experiments with87Rb cold atoms(M=1.44×10?25kg),the density n3Dis about 1019/m3[40,41]and the s-wave scattering length asis about 5nm[42,43].The chemical potential is the derived from the GP equation,yielding μ≈4.8×10?32J.The healing lengths of quantized vortices with different winding numbers become

    which are much larger than the average spacing of the particles.For a thin condensate with a thickness d=1um,one can derive the number W of particles within the healing lengths of quantized vortices of different winding numbers as

    which are big numbers.The above calculated healing lengths of quantized vortices and the numbers of particles inside the healing lengths could be checked by experiment.If the healing lengths?are small compared with the average spacing of the particles and the quantized vortices possess only a few particles,then the quantized-vortex solutions of the Gross–Pitaevskii equation are unreliable.In other words,we would show that the Gross–Pitaevskii equation is capable of describing the structure of the quantized vortices and the physics at length scales smaller than the healing length.

    5.Conclusions

    The main work of this paper is to use the Padé approximation method to find the approximate solutions for quantized vortices of winding numbers ω=1,2,3,4,5,6 in the Gross–Pitaevskii equation.First,the asymptotic behaviors of quantized vortices at zero and at infinity were analysed in section 2.At ρ→0,At ρ→∞,

    Second,Padé approximate solutions of different orders for quantized vortices with winding numbers ω=1,2,3,4,5,6 were derived and compared with numerical solutions in section 3.These solutions have the same asymptotic behaviours at zero and at infinity of the quantized-vortex solutions.In addition,they approximate the entire solutions quite well elsewhere.The higher-order Padé approximate solutions have higher accuracy,and the Padé approximate solutions of larger winding numbers have lower accuracy.Thus,for numerical or explicit analytic studies involving quantized vortices,we provide good approximate solutions for different orders and different winding numbers.

    Thirdly,the healing lengths of the quantized-vortex solutions are calculated in section 4.They increase almost linearly with the winding number.Based on experiments on87Rb condensates,the healing lengths of the quantized vortices and the number of particles inside the healing lengths are derived,which could be checked experimentally.The data show that the Gross–Pitaevskii equation is capable of describing the structure of the quantized vortices and the physics at length scales smaller than the healing length.

    In this paper,we only show Padé approximate solutions for quantized vortices with winding numbers 1?6.In fact,we have also derived the Padé approximate solutions for cases with winding numbers of 7 and 8,and the accuracy of the Padé approximate solutions was good.If needed,Padé approximate solutions for cases with even higher winding numbers could also be derived using the same method,according to equation(38).However,on the one hand,we find that the accuracy of the Padé approximate solution decreases as the winding number increases;on the other hand,from an energetic point of view,the higher the winding number,the more unstable the quantized vortex;and it is difficult to obtain quantized vortices with higher winding numbers in the laboratory.

    Acknowledgments

    This work is supported by Undergraduate Innovation and Entrepreneurship Program Grant No.S201910579797,National Natural Science Foundation of China with Grant No.12005088,11 847 001,11747017,Guangdong Basic and Applied Basic Research Foundation with Grant No.2021A1515010246.S.L.is supported by the Lingnan Normal University Project with Grant No.YL20200203,ZL1930.

    午夜福利乱码中文字幕| 国精品久久久久久国模美| 亚洲精品自拍成人| 在线天堂中文资源库| 新久久久久国产一级毛片| 色婷婷久久久亚洲欧美| 视频在线观看一区二区三区| 高清视频免费观看一区二区| 国产成人精品一,二区| 亚洲图色成人| 91精品伊人久久大香线蕉| 免费在线观看黄色视频的| 18禁国产床啪视频网站| 久久久久久久国产电影| 久久久久久人妻| 国产亚洲av片在线观看秒播厂| 内地一区二区视频在线| 又黄又粗又硬又大视频| 欧美日韩视频精品一区| 日韩,欧美,国产一区二区三区| 在线精品无人区一区二区三| 精品国产一区二区三区久久久樱花| 久久人妻熟女aⅴ| 大香蕉久久网| 午夜免费观看性视频| 天堂俺去俺来也www色官网| 美女内射精品一级片tv| 日韩欧美精品免费久久| 最近2019中文字幕mv第一页| 97人妻天天添夜夜摸| 一本大道久久a久久精品| 婷婷色麻豆天堂久久| 一个人免费看片子| 国产精品蜜桃在线观看| 18禁动态无遮挡网站| 日日啪夜夜爽| 热re99久久精品国产66热6| 美女内射精品一级片tv| 国产精品欧美亚洲77777| 亚洲av男天堂| 99久久中文字幕三级久久日本| 男人操女人黄网站| 亚洲精品日韩在线中文字幕| 1024视频免费在线观看| 亚洲av男天堂| 成年人午夜在线观看视频| 国产xxxxx性猛交| 狠狠婷婷综合久久久久久88av| 日本av免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 日本wwww免费看| av.在线天堂| 国产精品.久久久| 国产欧美亚洲国产| 欧美激情国产日韩精品一区| 国产毛片在线视频| 国产男女超爽视频在线观看| 久久久久视频综合| 国产 精品1| 日韩欧美一区视频在线观看| 日本与韩国留学比较| 国产日韩一区二区三区精品不卡| 久久精品国产综合久久久 | 黄网站色视频无遮挡免费观看| 卡戴珊不雅视频在线播放| 伦理电影免费视频| 日韩大片免费观看网站| 亚洲av.av天堂| 99久久综合免费| 99久久人妻综合| kizo精华| 国产精品一区二区在线观看99| av视频免费观看在线观看| 国产色婷婷99| 内地一区二区视频在线| 自线自在国产av| 国产一区有黄有色的免费视频| 国产av精品麻豆| 亚洲欧美成人综合另类久久久| 精品久久国产蜜桃| 午夜免费鲁丝| av一本久久久久| 国产激情久久老熟女| 七月丁香在线播放| 日韩av免费高清视频| 国产欧美另类精品又又久久亚洲欧美| 自拍欧美九色日韩亚洲蝌蚪91| 成人无遮挡网站| 涩涩av久久男人的天堂| 在线看a的网站| 国产激情久久老熟女| 久久精品夜色国产| 国产一区二区三区综合在线观看 | 欧美 日韩 精品 国产| www.av在线官网国产| 免费播放大片免费观看视频在线观看| 老司机影院成人| 亚洲三级黄色毛片| 国产黄频视频在线观看| 日韩成人av中文字幕在线观看| 欧美国产精品va在线观看不卡| 99久国产av精品国产电影| videossex国产| 午夜福利影视在线免费观看| 成人无遮挡网站| 色婷婷久久久亚洲欧美| 春色校园在线视频观看| 成年人午夜在线观看视频| 日韩一区二区视频免费看| 这个男人来自地球电影免费观看 | www.色视频.com| 亚洲成人手机| 亚洲丝袜综合中文字幕| 在线观看免费日韩欧美大片| 美国免费a级毛片| 精品一区二区三卡| 国产精品无大码| 国产成人免费无遮挡视频| 黑人巨大精品欧美一区二区蜜桃 | 99热全是精品| 看十八女毛片水多多多| 国产一区二区三区av在线| 久久人人爽人人爽人人片va| 黑人高潮一二区| 亚洲欧洲国产日韩| av在线观看视频网站免费| 免费在线观看黄色视频的| 国产精品人妻久久久影院| 黑人猛操日本美女一级片| 国产免费视频播放在线视频| 精品一区二区三卡| 日本色播在线视频| 国产亚洲精品久久久com| 男人添女人高潮全过程视频| 国产一区二区三区av在线| 亚洲成人手机| 成年女人在线观看亚洲视频| 成人手机av| 91精品伊人久久大香线蕉| 亚洲欧美色中文字幕在线| 欧美日韩综合久久久久久| 街头女战士在线观看网站| 七月丁香在线播放| 久久女婷五月综合色啪小说| 天天躁夜夜躁狠狠久久av| 久久99一区二区三区| 国产成人精品无人区| 男女啪啪激烈高潮av片| 日韩精品有码人妻一区| 夫妻午夜视频| 王馨瑶露胸无遮挡在线观看| 少妇的逼水好多| 一区在线观看完整版| 精品久久久精品久久久| 成人综合一区亚洲| 大陆偷拍与自拍| 69精品国产乱码久久久| 久久久久视频综合| 日本爱情动作片www.在线观看| 夜夜骑夜夜射夜夜干| 色哟哟·www| 又大又黄又爽视频免费| 亚洲精品aⅴ在线观看| 大香蕉久久成人网| 激情五月婷婷亚洲| 热99国产精品久久久久久7| 啦啦啦啦在线视频资源| 久久狼人影院| 亚洲人成77777在线视频| 亚洲av福利一区| 三级国产精品片| 久久久国产精品麻豆| 亚洲av福利一区| 啦啦啦啦在线视频资源| 一级毛片黄色毛片免费观看视频| 天美传媒精品一区二区| 亚洲丝袜综合中文字幕| 亚洲国产av影院在线观看| 欧美 亚洲 国产 日韩一| 国产色爽女视频免费观看| 欧美日本中文国产一区发布| 波野结衣二区三区在线| 免费高清在线观看日韩| 99视频精品全部免费 在线| 这个男人来自地球电影免费观看 | 丝袜喷水一区| 国产精品无大码| 春色校园在线视频观看| 黄色一级大片看看| 黑人猛操日本美女一级片| 亚洲精品国产av蜜桃| 天堂中文最新版在线下载| 9色porny在线观看| 男女午夜视频在线观看 | 久久久久久久国产电影| 欧美人与善性xxx| 国产黄频视频在线观看| 色吧在线观看| 欧美精品国产亚洲| 精品一区在线观看国产| 观看美女的网站| 午夜激情av网站| 国产深夜福利视频在线观看| 色5月婷婷丁香| 亚洲色图 男人天堂 中文字幕 | 日韩欧美一区视频在线观看| 久久久久久伊人网av| 99热全是精品| 男女下面插进去视频免费观看 | 久久人妻熟女aⅴ| 天堂8中文在线网| 免费黄频网站在线观看国产| 少妇被粗大猛烈的视频| 韩国av在线不卡| 色网站视频免费| www.熟女人妻精品国产 | 少妇被粗大猛烈的视频| 国产综合精华液| 国产亚洲精品久久久com| 97精品久久久久久久久久精品| 男人舔女人的私密视频| 午夜福利乱码中文字幕| 久久久久久久久久久免费av| 欧美日韩精品成人综合77777| 国产1区2区3区精品| 青春草视频在线免费观看| 欧美人与性动交α欧美精品济南到 | 蜜桃在线观看..| 久久国产精品大桥未久av| 亚洲精品乱码久久久久久按摩| 久久99精品国语久久久| 国产精品三级大全| 一二三四中文在线观看免费高清| 国产无遮挡羞羞视频在线观看| 国产精品.久久久| 亚洲伊人久久精品综合| 国产精品久久久久成人av| 伊人久久国产一区二区| 蜜桃在线观看..| 国产成人精品无人区| 69精品国产乱码久久久| 亚洲内射少妇av| 又黄又粗又硬又大视频| 亚洲欧美色中文字幕在线| 日本午夜av视频| 午夜福利影视在线免费观看| 在线观看人妻少妇| 中文字幕另类日韩欧美亚洲嫩草| 22中文网久久字幕| 极品人妻少妇av视频| 久久综合国产亚洲精品| av女优亚洲男人天堂| 成人综合一区亚洲| 国产白丝娇喘喷水9色精品| 99香蕉大伊视频| 毛片一级片免费看久久久久| 国产一区二区三区综合在线观看 | 欧美国产精品va在线观看不卡| 日日啪夜夜爽| 成人免费观看视频高清| 日韩av不卡免费在线播放| 极品人妻少妇av视频| 黄色毛片三级朝国网站| 麻豆乱淫一区二区| 国产淫语在线视频| 中国美白少妇内射xxxbb| 亚洲av中文av极速乱| 丰满迷人的少妇在线观看| 99热这里只有是精品在线观看| 97超碰精品成人国产| 免费av不卡在线播放| 一区在线观看完整版| 夫妻午夜视频| 免费日韩欧美在线观看| av在线app专区| 国产精品久久久久久久电影| 国产国拍精品亚洲av在线观看| 麻豆乱淫一区二区| 少妇高潮的动态图| 人人妻人人澡人人看| 天堂8中文在线网| 欧美日韩亚洲高清精品| 欧美老熟妇乱子伦牲交| 高清黄色对白视频在线免费看| 欧美bdsm另类| 免费久久久久久久精品成人欧美视频 | 久久精品久久久久久噜噜老黄| 天美传媒精品一区二区| 亚洲图色成人| 亚洲国产精品一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| 毛片一级片免费看久久久久| 少妇人妻精品综合一区二区| 18禁动态无遮挡网站| 女人久久www免费人成看片| 一级毛片 在线播放| 精品久久久精品久久久| 自线自在国产av| 日本免费在线观看一区| videossex国产| 99国产精品免费福利视频| 国产亚洲午夜精品一区二区久久| 免费少妇av软件| av播播在线观看一区| 9191精品国产免费久久| 久久国产精品男人的天堂亚洲 | 亚洲国产精品专区欧美| 亚洲精品av麻豆狂野| 亚洲综合精品二区| 亚洲三级黄色毛片| 日韩人妻精品一区2区三区| 日本猛色少妇xxxxx猛交久久| 一二三四在线观看免费中文在 | 美女中出高潮动态图| 国产成人午夜福利电影在线观看| 精品一区二区三区四区五区乱码 | 亚洲一级一片aⅴ在线观看| 秋霞在线观看毛片| 插逼视频在线观看| 中国国产av一级| 亚洲少妇的诱惑av| 亚洲一码二码三码区别大吗| 视频中文字幕在线观看| 在线观看一区二区三区激情| 两性夫妻黄色片 | 日韩电影二区| 视频在线观看一区二区三区| 久久午夜福利片| 精品一品国产午夜福利视频| 少妇被粗大猛烈的视频| 国产精品99久久99久久久不卡 | 欧美成人午夜精品| 人体艺术视频欧美日本| av一本久久久久| 精品人妻一区二区三区麻豆| 蜜臀久久99精品久久宅男| 亚洲高清免费不卡视频| 久久精品熟女亚洲av麻豆精品| 中文欧美无线码| 精品国产国语对白av| 免费人成在线观看视频色| 26uuu在线亚洲综合色| 一本大道久久a久久精品| 久久亚洲国产成人精品v| 国产国语露脸激情在线看| 亚洲欧美一区二区三区国产| 国产一区二区激情短视频 | 精品国产一区二区久久| 黄色视频在线播放观看不卡| 伦理电影大哥的女人| 国产激情久久老熟女| 欧美成人午夜免费资源| 久久免费观看电影| 大片免费播放器 马上看| 亚洲精品一二三| 七月丁香在线播放| 亚洲精品第二区| 成人亚洲欧美一区二区av| 成人漫画全彩无遮挡| 日本91视频免费播放| 蜜臀久久99精品久久宅男| 日韩免费高清中文字幕av| 欧美+日韩+精品| 久久久久视频综合| 国产精品蜜桃在线观看| 欧美精品一区二区大全| 毛片一级片免费看久久久久| 久久这里有精品视频免费| 少妇人妻 视频| 欧美成人午夜精品| 精品国产露脸久久av麻豆| 黑人欧美特级aaaaaa片| 亚洲国产毛片av蜜桃av| 在线观看免费日韩欧美大片| 99久国产av精品国产电影| 亚洲成av片中文字幕在线观看 | 亚洲av中文av极速乱| 日韩,欧美,国产一区二区三区| 黄片无遮挡物在线观看| 亚洲精品国产av成人精品| 人人妻人人爽人人添夜夜欢视频| 亚洲一级一片aⅴ在线观看| 亚洲成人一二三区av| 人成视频在线观看免费观看| 久久精品国产综合久久久 | 天美传媒精品一区二区| 男女无遮挡免费网站观看| 久久精品久久久久久噜噜老黄| 亚洲五月色婷婷综合| 大陆偷拍与自拍| 成人漫画全彩无遮挡| 国产免费又黄又爽又色| av播播在线观看一区| 在线 av 中文字幕| 99re6热这里在线精品视频| 国产在线视频一区二区| 九色成人免费人妻av| 久久精品国产鲁丝片午夜精品| 久久99精品国语久久久| 国产亚洲精品久久久com| 岛国毛片在线播放| 美女xxoo啪啪120秒动态图| 97在线人人人人妻| 欧美日韩成人在线一区二区| 热99国产精品久久久久久7| 日韩,欧美,国产一区二区三区| 国产成人精品婷婷| 妹子高潮喷水视频| 男女免费视频国产| 日日爽夜夜爽网站| 亚洲欧美成人精品一区二区| 又粗又硬又长又爽又黄的视频| 飞空精品影院首页| 婷婷色麻豆天堂久久| 色婷婷久久久亚洲欧美| 国产在线免费精品| 男女国产视频网站| 亚洲第一av免费看| 亚洲美女视频黄频| 国产精品一二三区在线看| 高清黄色对白视频在线免费看| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 精品久久国产蜜桃| 久久久久久久国产电影| 超色免费av| 热99国产精品久久久久久7| 女人久久www免费人成看片| 成人漫画全彩无遮挡| 国产淫语在线视频| 国产极品粉嫩免费观看在线| 欧美成人午夜精品| 高清黄色对白视频在线免费看| 好男人视频免费观看在线| 伦精品一区二区三区| 欧美另类一区| 亚洲欧美色中文字幕在线| 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 成人毛片60女人毛片免费| 少妇猛男粗大的猛烈进出视频| 国产成人一区二区在线| 精品久久国产蜜桃| 老女人水多毛片| 视频在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 成年人免费黄色播放视频| 欧美少妇被猛烈插入视频| 久久久国产欧美日韩av| 草草在线视频免费看| 蜜桃国产av成人99| 日韩av在线免费看完整版不卡| 国产亚洲精品久久久com| 久久精品人人爽人人爽视色| 欧美日韩视频高清一区二区三区二| 一区二区日韩欧美中文字幕 | 一级毛片我不卡| 九草在线视频观看| 色视频在线一区二区三区| 免费人成在线观看视频色| 最近最新中文字幕免费大全7| 亚洲美女搞黄在线观看| 成人手机av| 欧美xxxx性猛交bbbb| 亚洲国产精品一区二区三区在线| 人妻人人澡人人爽人人| 国产精品.久久久| 免费观看性生交大片5| 亚洲国产精品999| 男女高潮啪啪啪动态图| 国产精品久久久av美女十八| 咕卡用的链子| 国产一区有黄有色的免费视频| 搡女人真爽免费视频火全软件| 婷婷色av中文字幕| 只有这里有精品99| 五月天丁香电影| 精品熟女少妇av免费看| 99九九在线精品视频| 日本黄色日本黄色录像| 欧美性感艳星| 国产精品国产av在线观看| 国产精品人妻久久久影院| 亚洲av在线观看美女高潮| 亚洲欧洲国产日韩| 欧美3d第一页| 这个男人来自地球电影免费观看 | 99香蕉大伊视频| 欧美3d第一页| 街头女战士在线观看网站| 少妇熟女欧美另类| 中文天堂在线官网| 国产片特级美女逼逼视频| 天堂中文最新版在线下载| 一级毛片我不卡| 亚洲人成77777在线视频| 一二三四中文在线观看免费高清| 亚洲精品美女久久av网站| 久久97久久精品| 精品人妻熟女毛片av久久网站| 亚洲av电影在线观看一区二区三区| 精品一品国产午夜福利视频| 久久久国产一区二区| 国产一区有黄有色的免费视频| 色吧在线观看| 丁香六月天网| 七月丁香在线播放| 涩涩av久久男人的天堂| 日本wwww免费看| 亚洲精品国产av蜜桃| av福利片在线| 纯流量卡能插随身wifi吗| 看非洲黑人一级黄片| 国产欧美日韩一区二区三区在线| 日本色播在线视频| 婷婷色av中文字幕| 一区在线观看完整版| 久热久热在线精品观看| av免费观看日本| 蜜桃国产av成人99| 最黄视频免费看| 女的被弄到高潮叫床怎么办| 美女主播在线视频| 中文字幕亚洲精品专区| 日韩伦理黄色片| 国产爽快片一区二区三区| 国产国语露脸激情在线看| 久久精品国产亚洲av天美| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 美女国产视频在线观看| 精品人妻一区二区三区麻豆| 中国三级夫妇交换| 久久精品国产鲁丝片午夜精品| 18禁裸乳无遮挡动漫免费视频| 青春草视频在线免费观看| 国国产精品蜜臀av免费| 97超碰精品成人国产| 在线观看美女被高潮喷水网站| av有码第一页| 美女内射精品一级片tv| 人体艺术视频欧美日本| 一本大道久久a久久精品| 亚洲欧美精品自产自拍| 国产精品嫩草影院av在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品久久久com| 成人毛片60女人毛片免费| 熟女人妻精品中文字幕| 1024视频免费在线观看| 少妇熟女欧美另类| 两性夫妻黄色片 | 90打野战视频偷拍视频| 美女内射精品一级片tv| 熟女电影av网| 欧美 亚洲 国产 日韩一| 满18在线观看网站| a级毛片黄视频| 1024视频免费在线观看| 亚洲成人一二三区av| 久久精品国产自在天天线| 制服丝袜香蕉在线| 又黄又粗又硬又大视频| 男的添女的下面高潮视频| 久久人人爽人人片av| 久久99蜜桃精品久久| 三上悠亚av全集在线观看| 精品久久久久久电影网| av在线老鸭窝| 精品久久国产蜜桃| 日韩在线高清观看一区二区三区| 在线观看美女被高潮喷水网站| av有码第一页| 欧美日韩国产mv在线观看视频| 欧美最新免费一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产av码专区亚洲av| 午夜福利影视在线免费观看| 久久99一区二区三区| 狂野欧美激情性bbbbbb| 国产精品无大码| 精品99又大又爽又粗少妇毛片| 成人国产av品久久久| 免费女性裸体啪啪无遮挡网站| 黄色视频在线播放观看不卡| 亚洲精品,欧美精品| 欧美3d第一页| 成人手机av| 亚洲精品成人av观看孕妇| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 只有这里有精品99| 最近的中文字幕免费完整| av网站免费在线观看视频| 激情视频va一区二区三区| 搡女人真爽免费视频火全软件| 免费少妇av软件| 欧美精品av麻豆av| 亚洲精品美女久久久久99蜜臀 | 亚洲精品456在线播放app| 香蕉国产在线看| 亚洲伊人色综图| 国产激情久久老熟女| 高清视频免费观看一区二区| 丝袜美足系列| 国产一区二区激情短视频 | 国产精品秋霞免费鲁丝片| 精品亚洲乱码少妇综合久久| 2018国产大陆天天弄谢| 亚洲,欧美精品.| 18禁在线无遮挡免费观看视频| 国产成人精品无人区| 国产69精品久久久久777片| 精品一区二区三区四区五区乱码 | 亚洲欧美色中文字幕在线|