• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive input-to-state stable synchronization for uncertain time-delay Lur’e systems

    2021-08-18 02:51:44ZhiZhang章枝ZhilianYan閆志蓮JianpingZhou周建平andYebinChen陳業(yè)斌
    Communications in Theoretical Physics 2021年8期
    關(guān)鍵詞:建平

    Zhi Zhang(章枝),Zhilian Yan(閆志蓮)Jianping Zhou(周建平),3,4 and Yebin Chen(陳業(yè)斌)

    1 School of Computer Science&Technology,Anhui University of Technology,Ma’anshan 243032,China

    2 College of Electrical Engineering & Automation,Shandong University of Science and Technology,Qingdao 266590,China

    3 Research Institute of Information Technology,Anhui University of Technology,Ma’anshan 243000,China

    4 Anhui Province Key Laboratory of Special Heavy Load Robot,Anhui University of Technology,Ma’anshan 243032,China

    Abstract This paper is dedicated to the study of adaptive input-to-state stable synchronization of uncertain time-delay Lur’e systems with exterior interference.With the help of the Lyapunov function approach,a sufficient condition for the input-to-state stability of the synchronization-error system is derived,which is theoretically less conservative than a previously reported criterion in the absence of parameter uncertainties.On the basis of the present condition,a co-design of the feedback gain and estimates of the uncertain parameters is given to determine the desired adaptive synchronization controller.Finally,an example with simulations is provided to demonstrate the applicability and superiority of the analysis and design strategies.

    Keywords:input-to-state stability,Lur’e systems,parameter uncertainty,adaptive control

    1.Introduction

    Lur’e systems are a class of typical nonlinear dynamic systems that include a number of different chaotic models,such as Chua’s circuits,Hopfield neural networks,Lorenz systems,and genetic oscillators,as their special cases.Over the past few decades,synchronization of Lur’e systems without and with time-delay has attracted increasing attention from researchers in various disciplines owing to their applications in image encryption as well as secure communication[1,2].Corresponding,plenty of research results regarding the synchronization of Lur’e systems have been proposed in the literature;see,e.g.[3–7]and the references therein.

    An actual dynamic system inevitably suffers from exterior interference of varying degrees,which may have a great influence on the synchronization behaviors.Considering that the existing interference is bounded in most cases,it is of necessity to make sure that the state of the synchronization-error system(SES)is also bounded.This issue,called the input-to-state stable(ISS)synchronization problem[8–11],has drawn the interest of researchers in the control community.Nevertheless,it seems that there are few results available on ISS synchronization of timedelay Lur’e systems despite their importance.

    On the other hand,structure and parameter uncertainties often exist owing to modeling errors.It is often the case that one has very little information on the bound of these uncertainties,which had led in the past decades to a focus on the adaptive control scheme,with the belief that such a control scheme not only is easy to be implemented,but also can relatively smoothly and accurately track the system trajectory during normal operation[12].For time-delay Lur’e systems,although the adaptive control approach has been considered in[13–15],how to use it to achieve ISS synchronization of uncertain time-delay Lur’e systems with exterior interference is still unclear and deserves further detailed investigation.

    In this paper,we attempt to study the issue of adaptive ISS synchronization for uncertain time-delay Lur’e systems with exterior interference.The main contributions of our work are twofold:A sufficient condition on the ISS of the SES is derived with the help of the Lyapunov function approach.It is theoretically less conservative than the criterion presented in[16]when there are no parameter uncertainties in the Lur’e system;

    A co-design of the feedback gain and estimates of the uncertain parameters is given to determine the desired adaptive synchronization controller.It depends on the feasibility of few linear matrix inequalities(LMIs)and,therefore,is numerically tractable.

    2.Preliminaries

    Consider a type of Lur’e system modeled as

    Remark 1.Lur’e system is a common type of nonlinear system formed by a linear time-invariant system and a feedback loop involving nonlinear dynamics.Such systems are capable of generating strange chaotic attractors and,thus,of great application potential in image encryption and secure communication.It is worthy to point out that the Lur’e system model considered herein includes many famous chaotic models,such as the Lorenz systems,Chua’s circuits,and chaotic Hopfield neural networks as its special cases.

    In the past decades,chaotic synchronization has aroused great interest in various fields.The existing schemes of synchronization can be roughly divided into two types:the coupled synchronization[17–19]and drive-response(or master-slave)synchronization[20–22].In this paper,the drive-response scheme will be utilized.Let us set(1)as a drive(master)system and then set the following as the corresponding response(slave)system:

    in whichζ2(t)?Rm,u(t)?Rm,andη2(t)?Rnstand for the state,input,and output vectors,respectively;ε2?Rn×lis a constant matrix.

    Define?(t)=ζ2(t)-ζ1(t).Then we are able to establish the following SES:

    in which

    In the paper,the adaptive control approach will be adopted.The form of the controller is as follows:

    Remark 2.In order to achieve synchronization of Lur’e systems,a lot of control strategies including the PD control[6],the adaptive control[13–15],the sampled-state feedback control[23],the time-delayed feedback control[24],the output-feedback control[25],and the sliding mode control[26]etc,have been utilized.Among these control strategies,the adaptive control method not only is easy to be implemented,but also can relatively smoothly and accurately track the system trajectory during normal operation[12].When the drive system under consideration is subject to structure and parameter uncertainties,such a control method serves as an ideal candidate.

    Substituting(4)into(3),one has

    In what follows we give the definitions of ISS and ISS synchronization:

    Definition 1.Suppose that there are aK function γ(ρ)and a strictly decreasing function β(t)that converges to 0 ast→∞.Then,system(5)is called to be ISS if

    holds for each t≥0.

    Definition 2.Systems(1)and(2)are said to be ISS synchronized if their SES(5)is ISS.

    Remark 3.In a physical system,exterior interference is usually unavoidable,which is able to make the system oscillating,unstable or difficult to synchronize.Generally,the interference is not known a priori but is bounded in most cases.It can be observed from definition 1 that the ISS means that the system not only has bounded state under any bounded interference input but also is Lyapunov asymptotically stable in the absence of the interference.Thus the ISS may serve as a bridge among the input-output stability and the Lyapunov stability[27].Especially,ifβ(t)is chosen to beβe-εt[28],where β and ε are positive constants,then the ISS implies the exponential stability for the zero interference input case.Therefore,it is of great significance to study the ISS synchronization problem of Lur’e systems with exterior interference.

    In this paper,the aim is to give a design of a adaptive controller in the form of(4)to make sure that the drive and response systems(1)and(2)to be ISS synchronized.

    To accomplish the aim,let us introduce the following assumption,which is frequently applied in the literature[29–33]:

    Assumption 1.FunctionsF1(·),…,Fm(·),G1(·),…,andGm(·)are global Lipschitz continuous;that is,there exist constantsLfi≥0andLgj≥0,i=1,…,m,j=1,…,msuch that

    for any α,β?R.

    Besides,we prepare two necessary lemmas,where the proof of lemma 2 is not difficult and is omitted herein for brevity:

    Lemma 1.[34]Given real matrices P and Q of suitable size,for any real constant θ>0 we have

    Lemma 2.For anyω(ρ)?C([a,b],Rn)(a,b?R),the following equality holds true:

    3.Main results

    This section is focused on the ISS analysis and the corresponding adaptive synchronization controller design.The following criterion regarding the ISS analysis of the SES in(5)can be established:

    Theorem 1.Suppose that there are scalars θ1>0,θ2>0,and matrices P,Q,R,S?such that

    where

    Then,system(5)is ISS if

    whereεis a scalar satisfying

    andμ,ν are any positive scalars.

    Proof.Let us select a Lyapunov function as

    We have along system(5)that

    With Assumption 1,the following inequalities hold true:

    which together with lemma 1 result in

    Noting(13)and(14),it follows from(12)that

    where

    According to Schur’s complement,(7)ensures that

    Using(8),(9),and(16),we have from(15)that

    Deriving the derivative of e2εtV(t)and using(11)and(17),one gains

    By integrating both sides of(18)from 0 to t,one has

    From the second term on the right hand side of(19),it can be calculated that

    Substituting the above inequality into(19),we can obtain

    On the basis of(10),it follows by(20)that

    On the other hand,it is effortless to get

    Now,using(21),(22)and lemma 2,we can get(6),where

    with

    Therefore,system(5)is ISS and the proof is finished.

    Remark 4.When ω(t)≡0,it can be seen from the above proof that system(5)is exponentially stable with decay rate ε under the conditions of theorem 1.

    Next,attention will be concentrated on the no parameter uncertainties case(i.e.φj≡ψj≡0).In this case,system(5)becomes

    And one can write the following results:

    Corollary 1.System(23)is ISS if there exist scalars θ1>0,θ2>0 and matrices P,Q,R,S?such that

    where

    Proof.Let us select a Lyapunov function as

    Then,along parallel lines as the proof of theorem 1,one can readily reveal that system(23)is ISS for any bounded interference ω(t).

    In[16],the ISS filtering issue for delayed nonlinear systems was considered.With the application of a more complicated Lyapunov function as

    together with the analysis approach therein,the following criterion concerning ISS of system(23)was obtained:

    Proposition 1.[16]System(23)is ISS if there exist matrices P,Q,R,S1,S2,U?such that

    where

    Remark 5.With the aid of Schur’s complement,it is not difficult to see that(24)is a necessary condition for establishing(26),which means that the present ISS analysis approach is less conservative than that proposed in[16].

    Now we are in a position to present our design method for the adaptive synchronization controller in(4)via the following theorem.

    Theorem 2.Suppose that there are scalars θ1>0,θ2>0,matrices P,Q,R,S?and a matrixM?Rn×msuch that

    She was flushed and breathing hard when I entered her room. I slipped the tape into the recorder and held the microphone to her lips. Ruthie, Hannah, Molly?this is the most important tape. She held my hand and closed her eyes. Someday your daddy will bring home a new mommy. Please make her feel special. Show her how to take care of you. Ruthie, honey, help her get your Brownie uniform ready each Tuesday. Hannah, tell her you don t want meat sauce on your spaghetti(). She won t know you like it separate. Molly, don t get mad if there s no apple juice. Drink something else. It s okay to be sad, sweeties. Jesus cried too. He knows about sadness and will help you to be happy again. Remember, I ll always love you.

    where

    Then,under the adaptive controller in(4)with gain K=P?1M as well as updating laws(8)and(9),systems(1)and(2)are ISS synchronized.

    Proof.With PK=M,the inequality of(7)can be rewritten as that of(27).Thus,systems(1)and(2)are ISS synchronized according to definition 2.

    Remark 6.Once the LMIs in theorem 2 are feasible,one can obtain the feedback gain K as well as the estimates of the uncertain parametersφjand ψjsimultaneously.Note that there are efficient numerical algorithms available to check the feasibility of LMIs,such as alternating projection method,the ellipsoid method,and the interior-point method.Thus,the present design method of adaptive controller in(4)for ISS synchronization is numerically tractable.

    4.Example

    The section provides an example with simulations to show the applicability and superiority of the analysis and design approach.

    Example 1.Consider the drive and response Lur’e systems in(1)and(2)subject to parameters

    Notice Assumption 1 is satisfeid withLf=Lg=diag {1,0,0}.

    When φj≡ψj≡0,(i.e.there are no parameter uncertainties),then the system considered in this example can be viewed as a time-delay Chua’s circuit[35].For this situation,both proposition 1 and corollary 1 can be used to check the ISS of the SES.However,as theoretically explained in remark 5,the former is much conservative than the latter.To illustrate this,let us consider the case thatK=k[1 1 1]T.Then,it can be verified that the LMIs in proposition 1 hold true for k≤-3.062,while,by corollary 1,it is observed that the ISS can be ensured even for k?[-3.062,-1.651].

    Next,let us show the applicability of our design approach.Solving the LMIs in theorem 2,we can obtain a feasible solution,where

    Therefore,according to theorem 2,the ISS synchronization of the drive and response systems can be ensured under the controller in(4)with feedback gain

    as well as updating laws in(8)and(9).

    The simulations are carried out in MATLAB R2020b.As in[36],we consider the case when the uncertain parameters have different orders of magnitude.More specifically,the following two cases will be examined:Case A.φ1=0.02,ψ1=-0.005;Case B.φ1=-0.75,ψ1=-0.075.Under initial condition

    figure 1 shows the chaotic behavior of drive system(1)for Case A.For Case B,the chaotic behavior is similar to figure 1 and therefore omitted herein for brevity.

    Next,set μ=0.1,ν=0.1,ε=0.001,(0)=-0.5,=0.3,and randomly choose the initial value of response system(2)between-1 and 1 as follows:

    Figures 2 and 3 show the state of the SES and the estimatesof φ1,ψ1with exterior interference for Case A and Case B,respectively;figures 4 and 5 further show the trajectories in the absence of exterior interference.It is found from these figures that the SES based on the designed adaptive controller is state-bounded under the bounded interference and quickly convergent in the absence of interference.Therefore,the simulations coincide with the present theoretical results.

    Figure 1.Chaotic behavior.

    Figure 2.Trajectories of?i(t)(i=1,2,3),andwhen(φ1,ψ1)=(0.02,-0.005).

    Figure 3.Trajectories of?i(t)(i=1,2,3),andwhen(φ1,ψ1)=(-0.75,-0.075).

    Figure 4.Trajectories of?i(t)(i=1,2,3),,andwhen(φ1,ψ1)=(0.02,-0.005)and ω(t)≡0.

    Figure 5.Trajectories of?i(t)(i=1,2,3),andwhen(φ1,ψ1)=(-0.75,-0.075)and ω(t)≡0.

    5.Conclusions

    In this paper,the issue of adaptive ISS synchronization of timedelay Lur’e systems has been studied,where the exterior interference and parameter uncertainties have been considered simultaneously.With the aid of a Lyapunov function and some inequality techniques,a co-design of the feedback gain and estimates of the uncertain parameters has been proposed to determine the desired adaptive synchronization controller.For showing the applicability and superiority of the analysis and design approaches,an example with simulations has been given.

    Acknowledgements

    This work was supported by the Natural Science Foundation of the Anhui Higher Education Institutions(Grant No.KJ2020A0248),the National Natural Science Foundation of China(Grant Nos.61806004 and 61503002),and the Open Project of Anhui Province Key Laboratory of Special and Heavy Load Robot(Grant No.TZJQR005-2020).

    ORCID iDs

    猜你喜歡
    建平
    Her dream came true
    Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
    建平博物館藏遼代雞冠壺
    仝建平 教授
    Preface
    周建平教授
    清·傅山論書句
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    Ideology Manipulation Reflected in the Translation of Selected Works of Mao Zedong
    教師·下(2009年11期)2009-12-25 08:53:50
    影像站等
    文史天地(2009年11期)2009-12-09 05:55:10
    美女被艹到高潮喷水动态| 噜噜噜噜噜久久久久久91| 色综合亚洲欧美另类图片| av国产免费在线观看| 午夜福利18| 免费看a级黄色片| 国产男靠女视频免费网站| 日韩一本色道免费dvd| 日韩人妻高清精品专区| 人人妻,人人澡人人爽秒播| 1000部很黄的大片| 久久热精品热| 久久欧美精品欧美久久欧美| 精品一区二区三区人妻视频| 亚洲专区国产一区二区| 黄色日韩在线| 欧美人与善性xxx| 国产欧美日韩精品一区二区| 成人美女网站在线观看视频| 国产大屁股一区二区在线视频| 99久国产av精品| 国产精品伦人一区二区| 嫩草影院入口| 亚洲aⅴ乱码一区二区在线播放| 99久久无色码亚洲精品果冻| 久久6这里有精品| 中国美女看黄片| 俺也久久电影网| av女优亚洲男人天堂| 最近在线观看免费完整版| 简卡轻食公司| 国产麻豆成人av免费视频| 99在线视频只有这里精品首页| 99热6这里只有精品| 国产麻豆成人av免费视频| 国产精品久久久久久久久免| 精品日产1卡2卡| 国产av一区在线观看免费| 99热精品在线国产| netflix在线观看网站| 国产午夜精品论理片| 国产精品国产高清国产av| 亚洲中文字幕日韩| 久久欧美精品欧美久久欧美| 日韩精品有码人妻一区| 美女黄网站色视频| 欧美一区二区国产精品久久精品| 国产精品精品国产色婷婷| 亚洲黑人精品在线| 中亚洲国语对白在线视频| 真人一进一出gif抽搐免费| 无人区码免费观看不卡| 久久久国产成人精品二区| 亚洲图色成人| 中文字幕久久专区| 在线国产一区二区在线| 黄色配什么色好看| 午夜福利在线观看免费完整高清在 | 国产极品精品免费视频能看的| 在线观看免费视频日本深夜| 久久香蕉精品热| 精品一区二区三区人妻视频| 波多野结衣高清无吗| 精品人妻视频免费看| 国产伦精品一区二区三区视频9| 亚洲av免费在线观看| 天堂√8在线中文| 色哟哟·www| 国产精品自产拍在线观看55亚洲| 国产一区二区三区在线臀色熟女| 听说在线观看完整版免费高清| 亚洲欧美日韩卡通动漫| 亚洲va在线va天堂va国产| 别揉我奶头~嗯~啊~动态视频| x7x7x7水蜜桃| 直男gayav资源| 国产高清三级在线| 人人妻人人看人人澡| 国产伦一二天堂av在线观看| 亚洲专区国产一区二区| 97碰自拍视频| 亚洲美女视频黄频| 哪里可以看免费的av片| 国产精品爽爽va在线观看网站| 国产一区二区三区在线臀色熟女| 69人妻影院| 给我免费播放毛片高清在线观看| 国产日本99.免费观看| 蜜桃亚洲精品一区二区三区| 国产av一区在线观看免费| 天堂影院成人在线观看| 成人精品一区二区免费| 国产精品亚洲美女久久久| 欧美日韩综合久久久久久 | 成年女人永久免费观看视频| 欧美一区二区亚洲| 最后的刺客免费高清国语| 无人区码免费观看不卡| 亚洲欧美激情综合另类| 午夜福利成人在线免费观看| 老师上课跳d突然被开到最大视频| 日韩一区二区视频免费看| 黄色一级大片看看| 亚洲电影在线观看av| 国产av在哪里看| 国产主播在线观看一区二区| 亚洲国产欧洲综合997久久,| 精品久久久久久,| avwww免费| 嫩草影视91久久| 欧美bdsm另类| a级毛片免费高清观看在线播放| 欧美成人性av电影在线观看| 日本欧美国产在线视频| 国产精品伦人一区二区| 人妻丰满熟妇av一区二区三区| 国产伦一二天堂av在线观看| 精品一区二区三区视频在线观看免费| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区三区视频了| 自拍偷自拍亚洲精品老妇| 亚洲av.av天堂| 国产精品精品国产色婷婷| 免费搜索国产男女视频| bbb黄色大片| 亚洲精品乱码久久久v下载方式| 日韩欧美国产在线观看| av在线亚洲专区| 国产色爽女视频免费观看| 欧美绝顶高潮抽搐喷水| 亚洲国产高清在线一区二区三| 91午夜精品亚洲一区二区三区 | 国产v大片淫在线免费观看| 人妻丰满熟妇av一区二区三区| 色综合色国产| 女同久久另类99精品国产91| 日韩精品青青久久久久久| 一区福利在线观看| 久久久久久国产a免费观看| 精品免费久久久久久久清纯| 给我免费播放毛片高清在线观看| 很黄的视频免费| 久久人妻av系列| 国产成人一区二区在线| 亚洲精品一卡2卡三卡4卡5卡| 又粗又爽又猛毛片免费看| 国产高清激情床上av| 我要看日韩黄色一级片| 久久午夜亚洲精品久久| 中文字幕免费在线视频6| 成人欧美大片| av天堂中文字幕网| 国内少妇人妻偷人精品xxx网站| www.色视频.com| 亚洲av第一区精品v没综合| 国产人妻一区二区三区在| 日韩欧美在线二视频| 小蜜桃在线观看免费完整版高清| 在线观看免费视频日本深夜| 国产真实伦视频高清在线观看 | 大又大粗又爽又黄少妇毛片口| 欧美激情久久久久久爽电影| 久久欧美精品欧美久久欧美| 亚洲一级一片aⅴ在线观看| av在线天堂中文字幕| 真人一进一出gif抽搐免费| 欧美成人一区二区免费高清观看| 热99re8久久精品国产| 国产精品永久免费网站| 国产免费男女视频| 国产乱人视频| 丰满人妻一区二区三区视频av| av视频在线观看入口| 国产日本99.免费观看| 成人美女网站在线观看视频| 国产精品1区2区在线观看.| 午夜影院日韩av| 国产男人的电影天堂91| 亚洲国产精品成人综合色| 精品人妻熟女av久视频| 午夜久久久久精精品| 欧美日韩国产亚洲二区| 亚洲一区二区三区色噜噜| 日本 av在线| 我要搜黄色片| 久99久视频精品免费| 久久国产精品人妻蜜桃| 老熟妇乱子伦视频在线观看| 99国产极品粉嫩在线观看| 亚州av有码| 毛片一级片免费看久久久久 | av在线亚洲专区| 91久久精品电影网| 久久久久久久久久黄片| 少妇猛男粗大的猛烈进出视频 | 熟女电影av网| 亚洲欧美日韩无卡精品| 中文字幕熟女人妻在线| 99在线视频只有这里精品首页| 天堂影院成人在线观看| 黄色一级大片看看| 亚洲成人精品中文字幕电影| 国产精品三级大全| 国模一区二区三区四区视频| 欧美3d第一页| 免费一级毛片在线播放高清视频| 国产探花极品一区二区| 久久精品国产亚洲av涩爱 | 久久午夜亚洲精品久久| 九九爱精品视频在线观看| 天天一区二区日本电影三级| 无遮挡黄片免费观看| 亚洲精品国产成人久久av| 久久九九热精品免费| 女的被弄到高潮叫床怎么办 | 有码 亚洲区| 真人一进一出gif抽搐免费| 校园春色视频在线观看| av在线亚洲专区| 国产精品久久久久久亚洲av鲁大| 精品乱码久久久久久99久播| 毛片一级片免费看久久久久 | 色5月婷婷丁香| 男人舔奶头视频| 有码 亚洲区| 午夜免费激情av| 亚洲精品乱码久久久v下载方式| 特级一级黄色大片| 亚洲人成网站在线播放欧美日韩| 成人三级黄色视频| 露出奶头的视频| 1024手机看黄色片| 久久国产精品人妻蜜桃| 一级黄色大片毛片| 成人国产麻豆网| a级毛片免费高清观看在线播放| 成年人黄色毛片网站| 久久人妻av系列| 国产亚洲精品久久久久久毛片| 三级男女做爰猛烈吃奶摸视频| 男人舔女人下体高潮全视频| 99热网站在线观看| 久久6这里有精品| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 人妻夜夜爽99麻豆av| 国产精品免费一区二区三区在线| 国产精品人妻久久久影院| 免费观看的影片在线观看| 免费黄网站久久成人精品| 看免费成人av毛片| 亚洲成人中文字幕在线播放| 亚洲av第一区精品v没综合| 极品教师在线视频| 不卡视频在线观看欧美| 精品人妻视频免费看| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩瑟瑟在线播放| 日韩中字成人| 少妇猛男粗大的猛烈进出视频 | 久久人人精品亚洲av| 九九热线精品视视频播放| 能在线免费观看的黄片| 午夜福利成人在线免费观看| 成人国产综合亚洲| 国产不卡一卡二| 色哟哟·www| 久久天躁狠狠躁夜夜2o2o| 亚洲成a人片在线一区二区| 中文资源天堂在线| 色在线成人网| 少妇裸体淫交视频免费看高清| 麻豆精品久久久久久蜜桃| 国产在线男女| 亚洲精品在线观看二区| a级毛片a级免费在线| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区久久| 国模一区二区三区四区视频| 天堂影院成人在线观看| 成人特级黄色片久久久久久久| 精品乱码久久久久久99久播| 久久九九热精品免费| 国产在线精品亚洲第一网站| 成人特级黄色片久久久久久久| 丰满的人妻完整版| 午夜福利在线观看吧| 国产综合懂色| 在线观看免费视频日本深夜| 丰满人妻一区二区三区视频av| 亚洲四区av| 成人综合一区亚洲| av在线蜜桃| 色综合站精品国产| 在线免费十八禁| 成人精品一区二区免费| 国内精品美女久久久久久| 变态另类丝袜制服| 麻豆成人午夜福利视频| 免费人成在线观看视频色| 日韩欧美 国产精品| 少妇的逼好多水| 午夜精品久久久久久毛片777| 国产探花在线观看一区二区| 波多野结衣高清无吗| 最近中文字幕高清免费大全6 | 国产视频一区二区在线看| 亚洲熟妇中文字幕五十中出| 在现免费观看毛片| 精品久久久久久久人妻蜜臀av| 自拍偷自拍亚洲精品老妇| av视频在线观看入口| 尤物成人国产欧美一区二区三区| 在线天堂最新版资源| 99在线人妻在线中文字幕| 夜夜夜夜夜久久久久| 国产毛片a区久久久久| 久久精品国产清高在天天线| 精品欧美国产一区二区三| a级一级毛片免费在线观看| 自拍偷自拍亚洲精品老妇| 久久久久久久精品吃奶| 一本精品99久久精品77| 一进一出抽搐gif免费好疼| 国产精品爽爽va在线观看网站| 亚洲一区高清亚洲精品| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月| 中国美女看黄片| 中文字幕久久专区| 国产av在哪里看| 亚洲国产精品成人综合色| 久久久久久久亚洲中文字幕| 97碰自拍视频| 亚洲av第一区精品v没综合| 色av中文字幕| 欧美三级亚洲精品| 精品午夜福利在线看| 日本撒尿小便嘘嘘汇集6| 少妇高潮的动态图| 美女黄网站色视频| 可以在线观看的亚洲视频| 国产精品99久久久久久久久| 国产伦精品一区二区三区视频9| 国内精品宾馆在线| 亚洲国产日韩欧美精品在线观看| 国产三级在线视频| 久久6这里有精品| 男女那种视频在线观看| 亚洲 国产 在线| 狠狠狠狠99中文字幕| 久久人妻av系列| 欧美又色又爽又黄视频| 18禁在线播放成人免费| 直男gayav资源| 日韩欧美 国产精品| 制服丝袜大香蕉在线| 精品日产1卡2卡| 一个人看的www免费观看视频| 亚洲av免费在线观看| 欧美xxxx性猛交bbbb| 欧美不卡视频在线免费观看| 波多野结衣高清作品| 99热这里只有是精品在线观看| 白带黄色成豆腐渣| 哪里可以看免费的av片| 国产亚洲欧美98| 网址你懂的国产日韩在线| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 免费av不卡在线播放| 国产成人福利小说| 亚洲精品456在线播放app | a在线观看视频网站| 亚洲中文日韩欧美视频| 日韩精品有码人妻一区| 国产淫片久久久久久久久| 免费av观看视频| 国产主播在线观看一区二区| 在线观看美女被高潮喷水网站| 成人亚洲精品av一区二区| 成年女人看的毛片在线观看| 久久精品综合一区二区三区| 色av中文字幕| 国产精品一区二区性色av| 免费大片18禁| 亚洲人成网站在线播| 成人毛片a级毛片在线播放| av视频在线观看入口| 国产色婷婷99| 久久久久久九九精品二区国产| 99国产精品一区二区蜜桃av| 99热精品在线国产| 婷婷色综合大香蕉| 成人性生交大片免费视频hd| 搞女人的毛片| 在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 成年版毛片免费区| 国产高清激情床上av| 狂野欧美白嫩少妇大欣赏| 亚洲经典国产精华液单| 有码 亚洲区| 女人被狂操c到高潮| 亚洲第一区二区三区不卡| 俄罗斯特黄特色一大片| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色视频三级网站网址| 日韩欧美免费精品| 亚洲av成人精品一区久久| 村上凉子中文字幕在线| 亚洲精品久久国产高清桃花| 日日摸夜夜添夜夜添av毛片 | 天堂影院成人在线观看| av在线观看视频网站免费| 国产一区二区在线av高清观看| 欧美成人免费av一区二区三区| 国产高潮美女av| 一区二区三区四区激情视频 | 日日摸夜夜添夜夜添小说| av国产免费在线观看| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 亚洲av美国av| 国产v大片淫在线免费观看| 99久久久亚洲精品蜜臀av| 丝袜美腿在线中文| 波多野结衣巨乳人妻| 国产免费av片在线观看野外av| 精品无人区乱码1区二区| 国产老妇女一区| 免费大片18禁| 99热这里只有是精品50| 亚洲乱码一区二区免费版| 国产成人影院久久av| av专区在线播放| 日韩精品有码人妻一区| 非洲黑人性xxxx精品又粗又长| 97碰自拍视频| 久久精品国产自在天天线| 亚洲成人久久爱视频| 国语自产精品视频在线第100页| 九色成人免费人妻av| 亚洲国产精品久久男人天堂| 欧美又色又爽又黄视频| 日韩高清综合在线| 看黄色毛片网站| 热99在线观看视频| 午夜爱爱视频在线播放| 黄色日韩在线| 偷拍熟女少妇极品色| 中文字幕人妻熟人妻熟丝袜美| 日韩人妻高清精品专区| 日韩欧美精品免费久久| 国产午夜精品论理片| 亚洲国产欧洲综合997久久,| 女的被弄到高潮叫床怎么办 | 真人一进一出gif抽搐免费| 天天一区二区日本电影三级| 波多野结衣高清作品| 又爽又黄无遮挡网站| 中文亚洲av片在线观看爽| 一夜夜www| 人妻丰满熟妇av一区二区三区| 色噜噜av男人的天堂激情| 久99久视频精品免费| 伦理电影大哥的女人| 有码 亚洲区| 久久精品国产鲁丝片午夜精品 | 一级av片app| 不卡一级毛片| 观看美女的网站| 男女那种视频在线观看| 国产精品98久久久久久宅男小说| 美女免费视频网站| 1024手机看黄色片| 精品福利观看| 久久久久久国产a免费观看| 一进一出抽搐动态| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 天天躁日日操中文字幕| 精品一区二区三区av网在线观看| 国产一区二区在线观看日韩| 国产精品美女特级片免费视频播放器| 黄色日韩在线| 精品免费久久久久久久清纯| 久久国产精品人妻蜜桃| 精品人妻偷拍中文字幕| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩高清在线视频| 精品国产三级普通话版| 桃色一区二区三区在线观看| 国内精品美女久久久久久| 欧美激情在线99| 真人做人爱边吃奶动态| 免费av毛片视频| 色视频www国产| 国产免费一级a男人的天堂| 99久久无色码亚洲精品果冻| 亚洲成av人片在线播放无| 国内揄拍国产精品人妻在线| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品久久久久久毛片| 舔av片在线| 老师上课跳d突然被开到最大视频| 日韩人妻高清精品专区| 久久天躁狠狠躁夜夜2o2o| 中文字幕av在线有码专区| 亚洲无线观看免费| 精品一区二区免费观看| 无人区码免费观看不卡| 国产熟女欧美一区二区| 免费看美女性在线毛片视频| 天堂网av新在线| 久久99热这里只有精品18| 日本黄色片子视频| 免费观看在线日韩| 一区二区三区免费毛片| 欧美日韩瑟瑟在线播放| 我要看日韩黄色一级片| 日日夜夜操网爽| 久久久成人免费电影| 欧美日韩亚洲国产一区二区在线观看| 99国产极品粉嫩在线观看| 久99久视频精品免费| 亚洲电影在线观看av| 日本 欧美在线| 久久久久国产精品人妻aⅴ院| 欧美一区二区亚洲| a级一级毛片免费在线观看| 高清日韩中文字幕在线| 亚洲人成网站在线播| 亚洲精品日韩av片在线观看| 免费在线观看成人毛片| 99久久久亚洲精品蜜臀av| 久久天躁狠狠躁夜夜2o2o| 日韩,欧美,国产一区二区三区 | 99国产精品一区二区蜜桃av| 搞女人的毛片| 免费看美女性在线毛片视频| netflix在线观看网站| 国产精品国产三级国产av玫瑰| 亚洲精品乱码久久久v下载方式| www日本黄色视频网| 国产成人影院久久av| 少妇熟女aⅴ在线视频| 69人妻影院| 伦精品一区二区三区| 91久久精品国产一区二区三区| 淫妇啪啪啪对白视频| 欧美黑人欧美精品刺激| 九色国产91popny在线| 九九久久精品国产亚洲av麻豆| 99热这里只有精品一区| 少妇人妻一区二区三区视频| 两人在一起打扑克的视频| 日韩欧美 国产精品| 动漫黄色视频在线观看| 性插视频无遮挡在线免费观看| 亚洲欧美日韩东京热| 欧美一区二区亚洲| av在线亚洲专区| 露出奶头的视频| 国产探花在线观看一区二区| 国产男人的电影天堂91| 国产又黄又爽又无遮挡在线| 久久这里只有精品中国| 内地一区二区视频在线| 亚洲精品日韩av片在线观看| aaaaa片日本免费| 成人国产一区最新在线观看| 日韩亚洲欧美综合| 波野结衣二区三区在线| 狂野欧美激情性xxxx在线观看| 可以在线观看毛片的网站| 免费av毛片视频| 国产精品久久电影中文字幕| 91午夜精品亚洲一区二区三区 | 亚洲专区国产一区二区| 成人午夜高清在线视频| 特级一级黄色大片| 亚洲av一区综合| 韩国av一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 天堂网av新在线| 亚洲精品色激情综合| 亚洲在线自拍视频| 美女黄网站色视频| 级片在线观看| 精品乱码久久久久久99久播| 国产综合懂色| 国产精品av视频在线免费观看| 日韩欧美在线二视频| 久久精品国产亚洲av香蕉五月| 别揉我奶头 嗯啊视频| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 草草在线视频免费看| 直男gayav资源| www.色视频.com| 国产色爽女视频免费观看| 欧美精品国产亚洲| 99热精品在线国产| 男女边吃奶边做爰视频| 成人欧美大片| 成人特级av手机在线观看| 在线国产一区二区在线| 日韩强制内射视频| 国产亚洲精品av在线| 乱人视频在线观看| 久久久久免费精品人妻一区二区|