• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive input-to-state stable synchronization for uncertain time-delay Lur’e systems

    2021-08-18 02:51:44ZhiZhang章枝ZhilianYan閆志蓮JianpingZhou周建平andYebinChen陳業(yè)斌
    Communications in Theoretical Physics 2021年8期
    關(guān)鍵詞:建平

    Zhi Zhang(章枝),Zhilian Yan(閆志蓮)Jianping Zhou(周建平),3,4 and Yebin Chen(陳業(yè)斌)

    1 School of Computer Science&Technology,Anhui University of Technology,Ma’anshan 243032,China

    2 College of Electrical Engineering & Automation,Shandong University of Science and Technology,Qingdao 266590,China

    3 Research Institute of Information Technology,Anhui University of Technology,Ma’anshan 243000,China

    4 Anhui Province Key Laboratory of Special Heavy Load Robot,Anhui University of Technology,Ma’anshan 243032,China

    Abstract This paper is dedicated to the study of adaptive input-to-state stable synchronization of uncertain time-delay Lur’e systems with exterior interference.With the help of the Lyapunov function approach,a sufficient condition for the input-to-state stability of the synchronization-error system is derived,which is theoretically less conservative than a previously reported criterion in the absence of parameter uncertainties.On the basis of the present condition,a co-design of the feedback gain and estimates of the uncertain parameters is given to determine the desired adaptive synchronization controller.Finally,an example with simulations is provided to demonstrate the applicability and superiority of the analysis and design strategies.

    Keywords:input-to-state stability,Lur’e systems,parameter uncertainty,adaptive control

    1.Introduction

    Lur’e systems are a class of typical nonlinear dynamic systems that include a number of different chaotic models,such as Chua’s circuits,Hopfield neural networks,Lorenz systems,and genetic oscillators,as their special cases.Over the past few decades,synchronization of Lur’e systems without and with time-delay has attracted increasing attention from researchers in various disciplines owing to their applications in image encryption as well as secure communication[1,2].Corresponding,plenty of research results regarding the synchronization of Lur’e systems have been proposed in the literature;see,e.g.[3–7]and the references therein.

    An actual dynamic system inevitably suffers from exterior interference of varying degrees,which may have a great influence on the synchronization behaviors.Considering that the existing interference is bounded in most cases,it is of necessity to make sure that the state of the synchronization-error system(SES)is also bounded.This issue,called the input-to-state stable(ISS)synchronization problem[8–11],has drawn the interest of researchers in the control community.Nevertheless,it seems that there are few results available on ISS synchronization of timedelay Lur’e systems despite their importance.

    On the other hand,structure and parameter uncertainties often exist owing to modeling errors.It is often the case that one has very little information on the bound of these uncertainties,which had led in the past decades to a focus on the adaptive control scheme,with the belief that such a control scheme not only is easy to be implemented,but also can relatively smoothly and accurately track the system trajectory during normal operation[12].For time-delay Lur’e systems,although the adaptive control approach has been considered in[13–15],how to use it to achieve ISS synchronization of uncertain time-delay Lur’e systems with exterior interference is still unclear and deserves further detailed investigation.

    In this paper,we attempt to study the issue of adaptive ISS synchronization for uncertain time-delay Lur’e systems with exterior interference.The main contributions of our work are twofold:A sufficient condition on the ISS of the SES is derived with the help of the Lyapunov function approach.It is theoretically less conservative than the criterion presented in[16]when there are no parameter uncertainties in the Lur’e system;

    A co-design of the feedback gain and estimates of the uncertain parameters is given to determine the desired adaptive synchronization controller.It depends on the feasibility of few linear matrix inequalities(LMIs)and,therefore,is numerically tractable.

    2.Preliminaries

    Consider a type of Lur’e system modeled as

    Remark 1.Lur’e system is a common type of nonlinear system formed by a linear time-invariant system and a feedback loop involving nonlinear dynamics.Such systems are capable of generating strange chaotic attractors and,thus,of great application potential in image encryption and secure communication.It is worthy to point out that the Lur’e system model considered herein includes many famous chaotic models,such as the Lorenz systems,Chua’s circuits,and chaotic Hopfield neural networks as its special cases.

    In the past decades,chaotic synchronization has aroused great interest in various fields.The existing schemes of synchronization can be roughly divided into two types:the coupled synchronization[17–19]and drive-response(or master-slave)synchronization[20–22].In this paper,the drive-response scheme will be utilized.Let us set(1)as a drive(master)system and then set the following as the corresponding response(slave)system:

    in whichζ2(t)?Rm,u(t)?Rm,andη2(t)?Rnstand for the state,input,and output vectors,respectively;ε2?Rn×lis a constant matrix.

    Define?(t)=ζ2(t)-ζ1(t).Then we are able to establish the following SES:

    in which

    In the paper,the adaptive control approach will be adopted.The form of the controller is as follows:

    Remark 2.In order to achieve synchronization of Lur’e systems,a lot of control strategies including the PD control[6],the adaptive control[13–15],the sampled-state feedback control[23],the time-delayed feedback control[24],the output-feedback control[25],and the sliding mode control[26]etc,have been utilized.Among these control strategies,the adaptive control method not only is easy to be implemented,but also can relatively smoothly and accurately track the system trajectory during normal operation[12].When the drive system under consideration is subject to structure and parameter uncertainties,such a control method serves as an ideal candidate.

    Substituting(4)into(3),one has

    In what follows we give the definitions of ISS and ISS synchronization:

    Definition 1.Suppose that there are aK function γ(ρ)and a strictly decreasing function β(t)that converges to 0 ast→∞.Then,system(5)is called to be ISS if

    holds for each t≥0.

    Definition 2.Systems(1)and(2)are said to be ISS synchronized if their SES(5)is ISS.

    Remark 3.In a physical system,exterior interference is usually unavoidable,which is able to make the system oscillating,unstable or difficult to synchronize.Generally,the interference is not known a priori but is bounded in most cases.It can be observed from definition 1 that the ISS means that the system not only has bounded state under any bounded interference input but also is Lyapunov asymptotically stable in the absence of the interference.Thus the ISS may serve as a bridge among the input-output stability and the Lyapunov stability[27].Especially,ifβ(t)is chosen to beβe-εt[28],where β and ε are positive constants,then the ISS implies the exponential stability for the zero interference input case.Therefore,it is of great significance to study the ISS synchronization problem of Lur’e systems with exterior interference.

    In this paper,the aim is to give a design of a adaptive controller in the form of(4)to make sure that the drive and response systems(1)and(2)to be ISS synchronized.

    To accomplish the aim,let us introduce the following assumption,which is frequently applied in the literature[29–33]:

    Assumption 1.FunctionsF1(·),…,Fm(·),G1(·),…,andGm(·)are global Lipschitz continuous;that is,there exist constantsLfi≥0andLgj≥0,i=1,…,m,j=1,…,msuch that

    for any α,β?R.

    Besides,we prepare two necessary lemmas,where the proof of lemma 2 is not difficult and is omitted herein for brevity:

    Lemma 1.[34]Given real matrices P and Q of suitable size,for any real constant θ>0 we have

    Lemma 2.For anyω(ρ)?C([a,b],Rn)(a,b?R),the following equality holds true:

    3.Main results

    This section is focused on the ISS analysis and the corresponding adaptive synchronization controller design.The following criterion regarding the ISS analysis of the SES in(5)can be established:

    Theorem 1.Suppose that there are scalars θ1>0,θ2>0,and matrices P,Q,R,S?such that

    where

    Then,system(5)is ISS if

    whereεis a scalar satisfying

    andμ,ν are any positive scalars.

    Proof.Let us select a Lyapunov function as

    We have along system(5)that

    With Assumption 1,the following inequalities hold true:

    which together with lemma 1 result in

    Noting(13)and(14),it follows from(12)that

    where

    According to Schur’s complement,(7)ensures that

    Using(8),(9),and(16),we have from(15)that

    Deriving the derivative of e2εtV(t)and using(11)and(17),one gains

    By integrating both sides of(18)from 0 to t,one has

    From the second term on the right hand side of(19),it can be calculated that

    Substituting the above inequality into(19),we can obtain

    On the basis of(10),it follows by(20)that

    On the other hand,it is effortless to get

    Now,using(21),(22)and lemma 2,we can get(6),where

    with

    Therefore,system(5)is ISS and the proof is finished.

    Remark 4.When ω(t)≡0,it can be seen from the above proof that system(5)is exponentially stable with decay rate ε under the conditions of theorem 1.

    Next,attention will be concentrated on the no parameter uncertainties case(i.e.φj≡ψj≡0).In this case,system(5)becomes

    And one can write the following results:

    Corollary 1.System(23)is ISS if there exist scalars θ1>0,θ2>0 and matrices P,Q,R,S?such that

    where

    Proof.Let us select a Lyapunov function as

    Then,along parallel lines as the proof of theorem 1,one can readily reveal that system(23)is ISS for any bounded interference ω(t).

    In[16],the ISS filtering issue for delayed nonlinear systems was considered.With the application of a more complicated Lyapunov function as

    together with the analysis approach therein,the following criterion concerning ISS of system(23)was obtained:

    Proposition 1.[16]System(23)is ISS if there exist matrices P,Q,R,S1,S2,U?such that

    where

    Remark 5.With the aid of Schur’s complement,it is not difficult to see that(24)is a necessary condition for establishing(26),which means that the present ISS analysis approach is less conservative than that proposed in[16].

    Now we are in a position to present our design method for the adaptive synchronization controller in(4)via the following theorem.

    Theorem 2.Suppose that there are scalars θ1>0,θ2>0,matrices P,Q,R,S?and a matrixM?Rn×msuch that

    She was flushed and breathing hard when I entered her room. I slipped the tape into the recorder and held the microphone to her lips. Ruthie, Hannah, Molly?this is the most important tape. She held my hand and closed her eyes. Someday your daddy will bring home a new mommy. Please make her feel special. Show her how to take care of you. Ruthie, honey, help her get your Brownie uniform ready each Tuesday. Hannah, tell her you don t want meat sauce on your spaghetti(). She won t know you like it separate. Molly, don t get mad if there s no apple juice. Drink something else. It s okay to be sad, sweeties. Jesus cried too. He knows about sadness and will help you to be happy again. Remember, I ll always love you.

    where

    Then,under the adaptive controller in(4)with gain K=P?1M as well as updating laws(8)and(9),systems(1)and(2)are ISS synchronized.

    Proof.With PK=M,the inequality of(7)can be rewritten as that of(27).Thus,systems(1)and(2)are ISS synchronized according to definition 2.

    Remark 6.Once the LMIs in theorem 2 are feasible,one can obtain the feedback gain K as well as the estimates of the uncertain parametersφjand ψjsimultaneously.Note that there are efficient numerical algorithms available to check the feasibility of LMIs,such as alternating projection method,the ellipsoid method,and the interior-point method.Thus,the present design method of adaptive controller in(4)for ISS synchronization is numerically tractable.

    4.Example

    The section provides an example with simulations to show the applicability and superiority of the analysis and design approach.

    Example 1.Consider the drive and response Lur’e systems in(1)and(2)subject to parameters

    Notice Assumption 1 is satisfeid withLf=Lg=diag {1,0,0}.

    When φj≡ψj≡0,(i.e.there are no parameter uncertainties),then the system considered in this example can be viewed as a time-delay Chua’s circuit[35].For this situation,both proposition 1 and corollary 1 can be used to check the ISS of the SES.However,as theoretically explained in remark 5,the former is much conservative than the latter.To illustrate this,let us consider the case thatK=k[1 1 1]T.Then,it can be verified that the LMIs in proposition 1 hold true for k≤-3.062,while,by corollary 1,it is observed that the ISS can be ensured even for k?[-3.062,-1.651].

    Next,let us show the applicability of our design approach.Solving the LMIs in theorem 2,we can obtain a feasible solution,where

    Therefore,according to theorem 2,the ISS synchronization of the drive and response systems can be ensured under the controller in(4)with feedback gain

    as well as updating laws in(8)and(9).

    The simulations are carried out in MATLAB R2020b.As in[36],we consider the case when the uncertain parameters have different orders of magnitude.More specifically,the following two cases will be examined:Case A.φ1=0.02,ψ1=-0.005;Case B.φ1=-0.75,ψ1=-0.075.Under initial condition

    figure 1 shows the chaotic behavior of drive system(1)for Case A.For Case B,the chaotic behavior is similar to figure 1 and therefore omitted herein for brevity.

    Next,set μ=0.1,ν=0.1,ε=0.001,(0)=-0.5,=0.3,and randomly choose the initial value of response system(2)between-1 and 1 as follows:

    Figures 2 and 3 show the state of the SES and the estimatesof φ1,ψ1with exterior interference for Case A and Case B,respectively;figures 4 and 5 further show the trajectories in the absence of exterior interference.It is found from these figures that the SES based on the designed adaptive controller is state-bounded under the bounded interference and quickly convergent in the absence of interference.Therefore,the simulations coincide with the present theoretical results.

    Figure 1.Chaotic behavior.

    Figure 2.Trajectories of?i(t)(i=1,2,3),andwhen(φ1,ψ1)=(0.02,-0.005).

    Figure 3.Trajectories of?i(t)(i=1,2,3),andwhen(φ1,ψ1)=(-0.75,-0.075).

    Figure 4.Trajectories of?i(t)(i=1,2,3),,andwhen(φ1,ψ1)=(0.02,-0.005)and ω(t)≡0.

    Figure 5.Trajectories of?i(t)(i=1,2,3),andwhen(φ1,ψ1)=(-0.75,-0.075)and ω(t)≡0.

    5.Conclusions

    In this paper,the issue of adaptive ISS synchronization of timedelay Lur’e systems has been studied,where the exterior interference and parameter uncertainties have been considered simultaneously.With the aid of a Lyapunov function and some inequality techniques,a co-design of the feedback gain and estimates of the uncertain parameters has been proposed to determine the desired adaptive synchronization controller.For showing the applicability and superiority of the analysis and design approaches,an example with simulations has been given.

    Acknowledgements

    This work was supported by the Natural Science Foundation of the Anhui Higher Education Institutions(Grant No.KJ2020A0248),the National Natural Science Foundation of China(Grant Nos.61806004 and 61503002),and the Open Project of Anhui Province Key Laboratory of Special and Heavy Load Robot(Grant No.TZJQR005-2020).

    ORCID iDs

    猜你喜歡
    建平
    Her dream came true
    Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
    建平博物館藏遼代雞冠壺
    仝建平 教授
    Preface
    周建平教授
    清·傅山論書句
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    Ideology Manipulation Reflected in the Translation of Selected Works of Mao Zedong
    教師·下(2009年11期)2009-12-25 08:53:50
    影像站等
    文史天地(2009年11期)2009-12-09 05:55:10
    街头女战士在线观看网站| 最近最新中文字幕免费大全7| 爱豆传媒免费全集在线观看| 国精品久久久久久国模美| 久久精品夜色国产| 99热全是精品| 亚洲三级黄色毛片| 久久热精品热| 亚洲欧洲精品一区二区精品久久久 | 欧美97在线视频| 男人添女人高潮全过程视频| 精品国产露脸久久av麻豆| 国内揄拍国产精品人妻在线| 99久久综合免费| 水蜜桃什么品种好| kizo精华| 国产亚洲5aaaaa淫片| 亚洲av男天堂| 日韩大片免费观看网站| 成人黄色视频免费在线看| 国产精品一区www在线观看| 综合色丁香网| 一级毛片电影观看| 国产亚洲午夜精品一区二区久久| www.色视频.com| 精品一区在线观看国产| 一级毛片我不卡| 嫩草影院新地址| 亚洲,一卡二卡三卡| 日韩免费高清中文字幕av| 午夜激情福利司机影院| 国产爽快片一区二区三区| 久久精品久久久久久久性| 精品人妻一区二区三区麻豆| 自线自在国产av| 亚洲久久久国产精品| 国产有黄有色有爽视频| 久久99一区二区三区| 精品久久久久久久久亚洲| 一边亲一边摸免费视频| 色吧在线观看| 嫩草影院新地址| 国产成人aa在线观看| 九九爱精品视频在线观看| 午夜免费男女啪啪视频观看| 国产欧美亚洲国产| .国产精品久久| 久久免费观看电影| 亚洲精品,欧美精品| 十分钟在线观看高清视频www | 国产精品国产三级国产av玫瑰| 国产男女内射视频| 国产亚洲欧美精品永久| 国产一区二区在线观看av| 一级毛片 在线播放| 一级毛片电影观看| 日日爽夜夜爽网站| 毛片一级片免费看久久久久| videossex国产| 91精品国产九色| 国产爽快片一区二区三区| av黄色大香蕉| a级片在线免费高清观看视频| av视频免费观看在线观看| 亚洲性久久影院| 高清午夜精品一区二区三区| 最黄视频免费看| 亚洲精品乱久久久久久| 97超视频在线观看视频| 日韩大片免费观看网站| videossex国产| 国产精品伦人一区二区| 少妇的逼水好多| 中文字幕久久专区| 黄色欧美视频在线观看| 欧美日本中文国产一区发布| 人妻夜夜爽99麻豆av| 少妇人妻 视频| av免费在线看不卡| 国产成人91sexporn| 中国国产av一级| 日韩亚洲欧美综合| 国产中年淑女户外野战色| 精品亚洲成国产av| 看免费成人av毛片| 伊人亚洲综合成人网| 日本vs欧美在线观看视频 | 亚洲精品中文字幕在线视频 | 制服丝袜香蕉在线| 亚洲第一区二区三区不卡| 亚洲熟女精品中文字幕| 久久久久久久久大av| 天堂8中文在线网| 亚洲高清免费不卡视频| 曰老女人黄片| 一级毛片电影观看| 日韩成人av中文字幕在线观看| 人妻少妇偷人精品九色| 久久久国产欧美日韩av| 亚洲精品一二三| 国产精品一区二区在线观看99| 久久久午夜欧美精品| 一边亲一边摸免费视频| 日韩欧美精品免费久久| 欧美精品亚洲一区二区| 国产精品一二三区在线看| h视频一区二区三区| 日本免费在线观看一区| 哪个播放器可以免费观看大片| 一本—道久久a久久精品蜜桃钙片| 91在线精品国自产拍蜜月| 在线免费观看不下载黄p国产| 国产成人精品一,二区| 黄色日韩在线| 国内少妇人妻偷人精品xxx网站| 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂| 热99国产精品久久久久久7| 香蕉精品网在线| 国产成人午夜福利电影在线观看| 亚洲成人av在线免费| 美女主播在线视频| 免费大片18禁| 99九九在线精品视频 | 中文天堂在线官网| 国产国拍精品亚洲av在线观看| videossex国产| 亚洲国产成人一精品久久久| av在线老鸭窝| 免费av不卡在线播放| 日本午夜av视频| 青青草视频在线视频观看| 久久青草综合色| 男男h啪啪无遮挡| 五月天丁香电影| 亚洲三级黄色毛片| 欧美日韩综合久久久久久| 哪个播放器可以免费观看大片| 欧美另类一区| 美女cb高潮喷水在线观看| 熟妇人妻不卡中文字幕| 岛国毛片在线播放| 欧美精品一区二区大全| 亚洲欧美精品专区久久| 亚洲国产精品专区欧美| 一区二区三区免费毛片| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产成人一精品久久久| 亚洲久久久国产精品| 免费观看a级毛片全部| 人人妻人人添人人爽欧美一区卜| 天堂俺去俺来也www色官网| 一级毛片aaaaaa免费看小| 国产精品一区二区性色av| 国产成人精品婷婷| 久久 成人 亚洲| 嘟嘟电影网在线观看| 免费看不卡的av| 永久网站在线| 久久久久视频综合| 热re99久久国产66热| 亚洲图色成人| 精品少妇黑人巨大在线播放| 亚洲国产精品一区二区三区在线| 欧美亚洲 丝袜 人妻 在线| 欧美国产精品一级二级三级 | 久久热精品热| 有码 亚洲区| 男人爽女人下面视频在线观看| 青春草视频在线免费观看| 久久国产精品大桥未久av | av线在线观看网站| 女性生殖器流出的白浆| 精品久久久久久久久亚洲| 亚洲情色 制服丝袜| 一本大道久久a久久精品| 久久精品国产鲁丝片午夜精品| 欧美日本中文国产一区发布| 日本色播在线视频| 国产视频首页在线观看| 丝袜脚勾引网站| 黄色欧美视频在线观看| 91久久精品电影网| 夫妻午夜视频| 欧美精品亚洲一区二区| 免费黄频网站在线观看国产| 寂寞人妻少妇视频99o| 国产亚洲欧美精品永久| 亚洲婷婷狠狠爱综合网| 乱人伦中国视频| 人人妻人人澡人人爽人人夜夜| 国产熟女午夜一区二区三区 | 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线 | 欧美区成人在线视频| 久久久久久伊人网av| 日韩免费高清中文字幕av| 亚洲第一av免费看| 中文天堂在线官网| 3wmmmm亚洲av在线观看| 国产视频首页在线观看| 色视频www国产| 欧美人与善性xxx| 成人黄色视频免费在线看| 亚洲色图综合在线观看| 免费黄色在线免费观看| 熟女av电影| 久久热精品热| 一级二级三级毛片免费看| 超碰97精品在线观看| 不卡视频在线观看欧美| 一区在线观看完整版| 成人漫画全彩无遮挡| 大片免费播放器 马上看| 91成人精品电影| 国产熟女欧美一区二区| 亚洲国产av新网站| 视频中文字幕在线观看| 建设人人有责人人尽责人人享有的| 亚洲精品一二三| 日本与韩国留学比较| 草草在线视频免费看| 热re99久久国产66热| 高清毛片免费看| 大话2 男鬼变身卡| 亚洲怡红院男人天堂| 日韩免费高清中文字幕av| 丝袜喷水一区| 99视频精品全部免费 在线| 777米奇影视久久| 欧美精品亚洲一区二区| kizo精华| 69精品国产乱码久久久| 国产亚洲最大av| 亚洲精品456在线播放app| 伦理电影大哥的女人| 99久久中文字幕三级久久日本| 一本一本综合久久| 免费人成在线观看视频色| 伊人亚洲综合成人网| 国产日韩一区二区三区精品不卡 | 亚洲婷婷狠狠爱综合网| 欧美97在线视频| 日韩欧美 国产精品| 777米奇影视久久| 人妻人人澡人人爽人人| 国产乱人偷精品视频| 国产有黄有色有爽视频| 国产伦精品一区二区三区视频9| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 不卡视频在线观看欧美| 日本av免费视频播放| 色视频在线一区二区三区| 亚洲精品第二区| av在线老鸭窝| 国内少妇人妻偷人精品xxx网站| 18禁裸乳无遮挡动漫免费视频| 王馨瑶露胸无遮挡在线观看| 极品少妇高潮喷水抽搐| 欧美日韩一区二区视频在线观看视频在线| 九九久久精品国产亚洲av麻豆| 高清不卡的av网站| 亚洲美女搞黄在线观看| 国产白丝娇喘喷水9色精品| 国产黄频视频在线观看| 9色porny在线观看| 超碰97精品在线观看| 国产一区有黄有色的免费视频| 大话2 男鬼变身卡| 久久久国产一区二区| 少妇 在线观看| 精品少妇黑人巨大在线播放| 久久国产乱子免费精品| 美女xxoo啪啪120秒动态图| 一级黄片播放器| 两个人免费观看高清视频 | 夜夜骑夜夜射夜夜干| 久久亚洲国产成人精品v| av福利片在线| 综合色丁香网| 99久久人妻综合| 日本-黄色视频高清免费观看| 黑人猛操日本美女一级片| 在线观看www视频免费| 成年人免费黄色播放视频 | 久久综合国产亚洲精品| 午夜精品国产一区二区电影| av网站免费在线观看视频| 久久影院123| 99热6这里只有精品| 老司机影院毛片| 五月玫瑰六月丁香| 亚洲国产色片| 99久久精品一区二区三区| 男女免费视频国产| 黑人猛操日本美女一级片| 免费在线观看成人毛片| 国产成人一区二区在线| 精华霜和精华液先用哪个| videossex国产| 免费黄频网站在线观看国产| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 少妇人妻精品综合一区二区| 一级毛片aaaaaa免费看小| 黑丝袜美女国产一区| 国产男女内射视频| 久久精品久久久久久久性| 日本黄色日本黄色录像| 国产一区亚洲一区在线观看| 国产高清三级在线| 成人国产av品久久久| 免费黄网站久久成人精品| 日本av免费视频播放| 亚洲精品成人av观看孕妇| 亚洲成色77777| 免费观看性生交大片5| 日韩电影二区| 九色成人免费人妻av| 少妇精品久久久久久久| 一本色道久久久久久精品综合| 亚洲av在线观看美女高潮| 最黄视频免费看| 国产精品一二三区在线看| 日韩一本色道免费dvd| 成年人午夜在线观看视频| 免费观看av网站的网址| 日本欧美国产在线视频| 欧美三级亚洲精品| 国内精品宾馆在线| 永久网站在线| 中文乱码字字幕精品一区二区三区| 中文字幕人妻丝袜制服| 高清欧美精品videossex| 色94色欧美一区二区| 色视频在线一区二区三区| 日日摸夜夜添夜夜添av毛片| 久久久久久伊人网av| 亚洲不卡免费看| 最新中文字幕久久久久| av线在线观看网站| 七月丁香在线播放| 国产色爽女视频免费观看| 女人精品久久久久毛片| 免费黄频网站在线观看国产| 七月丁香在线播放| 国产日韩欧美在线精品| 高清av免费在线| 大又大粗又爽又黄少妇毛片口| 五月玫瑰六月丁香| 一级毛片aaaaaa免费看小| 大片电影免费在线观看免费| 精品视频人人做人人爽| 欧美另类一区| 91久久精品国产一区二区三区| 国产精品麻豆人妻色哟哟久久| 七月丁香在线播放| 中文字幕人妻熟人妻熟丝袜美| 免费观看a级毛片全部| 国产精品久久久久久精品古装| 国产精品成人在线| 国产精品蜜桃在线观看| 成人国产麻豆网| 内地一区二区视频在线| www.色视频.com| 伊人久久国产一区二区| 99久久精品热视频| 亚洲av在线观看美女高潮| 亚洲欧美成人综合另类久久久| 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| 国产乱人偷精品视频| 久久久久久伊人网av| 高清在线视频一区二区三区| 亚洲欧洲国产日韩| 97在线人人人人妻| 亚洲自偷自拍三级| 精品人妻一区二区三区麻豆| 亚州av有码| 一级爰片在线观看| 久久久国产一区二区| 成年女人在线观看亚洲视频| 亚洲内射少妇av| 国产伦精品一区二区三区四那| 多毛熟女@视频| 国产精品国产av在线观看| 国产高清国产精品国产三级| 精品少妇黑人巨大在线播放| 男男h啪啪无遮挡| 亚洲中文av在线| 亚洲成人手机| 大陆偷拍与自拍| 国产亚洲最大av| 精品亚洲成a人片在线观看| 日韩大片免费观看网站| 丝瓜视频免费看黄片| 国产高清不卡午夜福利| 美女内射精品一级片tv| 肉色欧美久久久久久久蜜桃| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 少妇 在线观看| 亚洲精品,欧美精品| 性色av一级| 69精品国产乱码久久久| 亚洲美女搞黄在线观看| 十分钟在线观看高清视频www | a级毛片在线看网站| 黄色视频在线播放观看不卡| 亚洲精品视频女| 国产日韩欧美视频二区| 自拍偷自拍亚洲精品老妇| 韩国高清视频一区二区三区| 日本午夜av视频| 亚洲精品国产av蜜桃| 少妇丰满av| 国产欧美日韩一区二区三区在线 | 天天躁夜夜躁狠狠久久av| 日韩 亚洲 欧美在线| 亚洲精品视频女| 少妇人妻精品综合一区二区| 自拍偷自拍亚洲精品老妇| 久久精品久久久久久久性| 国产真实伦视频高清在线观看| 男人狂女人下面高潮的视频| av福利片在线| 97在线人人人人妻| 亚洲国产欧美在线一区| 美女中出高潮动态图| 国产成人精品婷婷| 欧美变态另类bdsm刘玥| 黄色怎么调成土黄色| 亚洲国产日韩一区二区| 国产免费一区二区三区四区乱码| 欧美三级亚洲精品| 曰老女人黄片| 亚洲真实伦在线观看| 亚洲精品中文字幕在线视频 | 99久国产av精品国产电影| 午夜福利网站1000一区二区三区| 精品人妻熟女av久视频| 如日韩欧美国产精品一区二区三区 | 国产亚洲最大av| 99国产精品免费福利视频| av卡一久久| 欧美三级亚洲精品| 免费在线观看成人毛片| 视频区图区小说| 亚洲图色成人| 2018国产大陆天天弄谢| 国产成人一区二区在线| av国产久精品久网站免费入址| 在线看a的网站| 久久人人爽人人片av| 国产真实伦视频高清在线观看| 亚洲美女搞黄在线观看| 2018国产大陆天天弄谢| 99re6热这里在线精品视频| 久久韩国三级中文字幕| 亚洲第一区二区三区不卡| 国产黄色视频一区二区在线观看| 深夜a级毛片| 精品亚洲乱码少妇综合久久| 高清av免费在线| 午夜福利,免费看| 在线观看免费高清a一片| 欧美三级亚洲精品| 国产视频内射| 国产精品秋霞免费鲁丝片| 成人美女网站在线观看视频| 亚洲av电影在线观看一区二区三区| 精品酒店卫生间| 大香蕉97超碰在线| 国产精品偷伦视频观看了| 自线自在国产av| 国产男人的电影天堂91| 国产毛片在线视频| 一级毛片我不卡| 精品人妻偷拍中文字幕| 如何舔出高潮| 一本—道久久a久久精品蜜桃钙片| 国产av一区二区精品久久| 久久精品久久精品一区二区三区| 免费观看在线日韩| 青春草国产在线视频| 国产欧美日韩综合在线一区二区 | 22中文网久久字幕| 建设人人有责人人尽责人人享有的| 视频区图区小说| 男人添女人高潮全过程视频| 黄色怎么调成土黄色| 美女脱内裤让男人舔精品视频| 乱系列少妇在线播放| 成人黄色视频免费在线看| 中文在线观看免费www的网站| 欧美另类一区| 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说| 日本与韩国留学比较| 高清在线视频一区二区三区| 精品一区在线观看国产| 久久女婷五月综合色啪小说| 国产美女午夜福利| 日韩精品有码人妻一区| 男人添女人高潮全过程视频| 久久精品久久精品一区二区三区| 亚洲欧美精品自产自拍| 国产精品久久久久久精品古装| 中国三级夫妇交换| 国产伦在线观看视频一区| 精品久久久精品久久久| 日产精品乱码卡一卡2卡三| 乱人伦中国视频| 一级毛片电影观看| .国产精品久久| 亚洲欧美中文字幕日韩二区| 日韩伦理黄色片| 日韩电影二区| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区黑人 | 18禁裸乳无遮挡动漫免费视频| 国产精品不卡视频一区二区| 欧美日韩国产mv在线观看视频| 亚洲精品日韩在线中文字幕| 久久精品国产鲁丝片午夜精品| 久久久精品94久久精品| 免费av不卡在线播放| 久久精品夜色国产| 日本wwww免费看| 另类亚洲欧美激情| 一区二区三区免费毛片| 亚洲精品日韩在线中文字幕| 日日啪夜夜爽| 久久影院123| 熟女电影av网| 另类精品久久| 自拍欧美九色日韩亚洲蝌蚪91 | 大香蕉97超碰在线| 亚洲天堂av无毛| 一级爰片在线观看| av在线播放精品| 午夜福利网站1000一区二区三区| 三上悠亚av全集在线观看 | 黄色配什么色好看| a 毛片基地| 少妇人妻 视频| 少妇被粗大的猛进出69影院 | 一本色道久久久久久精品综合| 免费在线观看成人毛片| 日本色播在线视频| 日韩电影二区| 亚洲欧美日韩卡通动漫| 亚洲第一区二区三区不卡| 丝袜在线中文字幕| 亚洲av福利一区| 伊人久久精品亚洲午夜| 黄色视频在线播放观看不卡| 九九久久精品国产亚洲av麻豆| 97超碰精品成人国产| 能在线免费看毛片的网站| 免费高清在线观看视频在线观看| 少妇精品久久久久久久| 啦啦啦中文免费视频观看日本| 国产女主播在线喷水免费视频网站| 精品99又大又爽又粗少妇毛片| 一级毛片电影观看| 熟女电影av网| 如何舔出高潮| 欧美另类一区| 99视频精品全部免费 在线| 欧美丝袜亚洲另类| 亚洲av在线观看美女高潮| 欧美国产精品一级二级三级 | 少妇 在线观看| 桃花免费在线播放| 国产精品99久久久久久久久| 亚洲四区av| 国产欧美日韩综合在线一区二区 | 在线观看三级黄色| 久久久久国产网址| 久久久久国产精品人妻一区二区| 国产成人免费观看mmmm| 精品少妇黑人巨大在线播放| 国产 精品1| www.色视频.com| 国产精品99久久久久久久久| 丝袜脚勾引网站| www.色视频.com| 亚洲久久久国产精品| 久久久久精品性色| 美女国产视频在线观看| 亚洲性久久影院| av女优亚洲男人天堂| 国产伦精品一区二区三区视频9| 国产伦理片在线播放av一区| 久久久久网色| 国产一区二区在线观看av| 国产毛片在线视频| 久久久久精品性色| 国产成人91sexporn| 伊人久久精品亚洲午夜| 久久精品夜色国产| 久久久久视频综合| 久久久久久久久久久免费av| 天堂俺去俺来也www色官网| 大片电影免费在线观看免费| 久久国产精品大桥未久av | 18禁裸乳无遮挡动漫免费视频| 欧美激情极品国产一区二区三区 | 热99国产精品久久久久久7| 成人国产麻豆网| 久久久久久久久久成人| 国产精品99久久99久久久不卡 | 成年人午夜在线观看视频|