• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Photocatalytic Activity of Holey Ultrathin g-C3N4 Nanosheets-Supported Pt Composite

    2021-08-10 08:34:14MAShuaiShuaiGUJianDongGAOYuanZONGYuQingXUEJinJuanYEZhaoLian

    MA Shuai-ShuaiGU Jian-Dong GAO Yuan ZONG Yu-QingXUE Jin-Juan*, YE Zhao-Lian

    (1College of Chemistry and Environmental Engineering,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China)

    (2School of Environmental and Safety Engineering,Changzhou University,Changzhou,Jiangsu 213164,China)

    Abstract:Ho1ey u1trathin g-C3N4 nanosheets(CNHS)were prepared by therma1 oxidation etching method with me1amine as the precursor,and Pt-CNHS photocata1yst was synthesized via a faci1e in-situ photochemica1 reduction of CNHS and K2PtC16.The X-ray diffraction,fie1d emission scanning e1ectron microscope,X-ray photoe1ectron spec-troscopy,transmission e1ectron microscope,UV-Vis diffuse ref1ection spectroscopy and N2adsorption-desorption measurements were used to investigate the structure,morpho1ogy,optica1 absorption characteristics,photoe1ectro-chemica1 properties and specific surface area of the products.The photocata1ytic performance of the cata1yst was studied by degrading gaseous to1uene under UV and visib1e 1ight.The resu1ts show that the introduction of Pt can effective1y enhance the visib1e 1ight absorption capacity,response range and carrier separation efficiency of the cata-1yst.Compared with bu1k g-C3N4(CNB)and CNHS,the Pt-CNHS composite disp1ayed much higher photocata1ytic activities in gaseous to1uene degradation under UV-and visib1e-1ight irradiation.In addition,a pre1iminary study was made on the reaction process of Pt-CNHS photocata1yst to degrade gaseous to1uene under visib1e 1ight.

    Keywords:g-C3N4;supported cata1ysts;photocata1ysis;degradation;to1uene

    0 Introduction

    In the past decades,vo1ati1e organic compounds(VOCs)emitted from various industria1 processes,fue1 combustion,bui1ding materia1s and furniture are major gaseous po11utants that adverse1y affect human hea1th[1].For instance,to1uene is a typica1 VOCs that can cause skin inf1ammation,respiratory diseases,acute and chronic poisoning[2].Up to now,different methods have been deve1oped to contro1 VOCs in the ambient air,inc1uding absorption,condensation,membrane separa-tion,bio1ogica1 degradation and photocata1ytic oxida-tion(PCO)[3-8].Among them,PCO techno1ogy is a new advanced techno1ogy for VOCs degradation with 1ow cost,mi1d operation conditions and no secondary po11u-tion.In particu1ar,graphitic carbon nitride(g-C3N4)is a typica1 meta1-free po1ymer semiconductor materia1 with a band gap suitab1e for absorbing visib1e 1ight radia-tion,unique 2D structure,good chemica1 stabi1ity and adjustab1e e1ectronic structure[9-10].However,its photo-cata1ytic activity is sti11 1imited by the inevitab1e disad-vantages such as 1ow efficiency of visib1e 1ight uti1iza-tion,fast recombination speed of photoe1ectron-ho1e pair and insufficient specific surface area.Therefore,some approaches have been emp1oyed to improve the photocata1ytic activity of g-C3N4,inc1uding nano/meso-porous structures design,e1ements doping,forming het-erojunction structure,and so forth[11-13].Particu1ar1y,the modification of semiconductors with precious meta1 partic1es,such as p1atinum nanopartic1es(Pt NPs),can significant1y improve the photocata1ytic activity of semiconductors due to the surface p1asmon resonance(SPR)effect[14].However,the rare and expensive pre-cious meta1 p1atinum great1y hindered the expansion of industria1 sca1e.Consequent1y,it is necessary to reduce the amount of Pt without degradation of photo-cata1ytic performance.It is reported that the size effect of meta1 partic1es has a great inf1uence on the cata1ytic performance[15-16].The cata1ytic efficiency of sub-nanosca1e meta1 c1usters is a1ways better than that of nano-sca1e meta1 c1usters.Idea11y,reducing the size of p1atinum cata1ysts to atomic c1usters or even sing1e atoms is expected to maximize the uti1ization efficiency of atoms,which has become the most active new fron-tier in various cata1ytic reactions[17-18].For examp1e,Xiong et a1.demonstrated that the synergistic effect between monatomic Pt and C3N4can expand the 1ight absorption and enhance the photocata1ytic perfor-mance[19].Hu et a1.synthesized a sing1e-atom dispersed g-C3N4-Pt nanohybrids which showed an enhanced cat-a1ytic activity and high stabi1ity for methano1 oxida-tion[20].However,as far as we know,no studies have investigated the photocata1ytic degradation of to1uene by g-C3N4supported Pt photocata1yst.

    We synthesized a ho1ey u1trathin g-C3N4nanosheets (CNHS) supported Pt photocata1yst(Pt-CNHS)by a two steps method:therma1 oxidation etching and photochemica1 reduction.The interna1 pores in the g-C3N41ayer can provide more active sites for photocata1ytic reaction[21].In addition,the cross-1ayer diffusion path generated by the ho1es can improve the mass transfer efficiency and e1ectron distribution efficiency of CNHS,which is beneficia1 to the improve-ment of photocata1ytic performance.The photocata1ytic properties of the samp1es were studied by photodegra-dation of to1uene in gas phase.As expected,the photo-cata1ytic activity of Pt-CNHS was higher than that of pure g-C3N4and CNHS under visib1e 1ight.In addition,the path for the degradation of to1uene by Pt-CNHS photocata1yst was a1so proposed and discussed.

    1 Experimental

    1.1 Preparation of the samples

    CNHS were prepared via a therma1 oxidation etch-ing method according to the 1iterature[12].In a typica1 process,10 g me1amine powder was uniform1y spread into an a1umina crucib1e and heated at 550℃for 10 h with a heating rate of 2 ℃·min?1under air atmosphere.g-C3N4(CNB)was prepared by me1amine ca1cination for 4 h under the same condition.

    The synthesis of Pt-CNHS was s1ight1y modified on the basis of previous reports[22-24].Typica11y,CNHS(50 mg)was dispersed in 20 mL water under u1tra-sound and 2.3 mL isopropano1 was added as ho1e scav-enger.Then,0.5 mL of K2PdC16so1ution(5 mmo1·L?1)was added into the CNHS dispersion under stirring.The suspension was rapid1y frozen by 1iquid nitrogen and fo11owed by irradiating under a 500 W Xe 1ight with the 1ight fi1ter of 420 nm for 10 min.The obtained precipitates were co11ected by centrifugation and washed with water and ethano1.Fina11y,the precipi-tates were dried in an oven at 60℃for 12 h.

    1.2 Characterization of the photocatalysts

    X-ray diffraction(XRD)data were obtained on an X-ray diffractometer(Smart Lab,Rigaku)operated at 40 kV and 30 mA with Cu Kα X-ray radiation source(λ=0.154 nm)and 2θ range of 10°~60°.Fie1d emission scanning e1ectron microscopy(FESEM)and energy dis-perse spectroscopy(EDS)spectra were obtained on a SUPRA55 FESEM at the acce1eration vo1tage of 5 kV.High reso1ution images were taken by transmission e1ectron microscopy(TEM,JEM-2100)at 160 kV.Fou-rier transform infrared(FT-IR)spectroscopy were per-formed on a BRUKER-ALPHA FT-IR spectrometer.The X-ray photoe1ectron spectroscopy(XPS)were car-ried out on Thermo Scientific Esca1ab 250Xi equipped with an A1 Kα monochromatic X-ray source(hν=1 486.7 eV)with a 1ine width of 0.20 eV in an ana1ysis chamber at a bass pressure of 1ess than 4.3×10?8Pa.UV-Vis diffuse ref1ectance spectra(UV-Vis DRS)of the samp1es were measured by using a UV-Vis spectro-photometer(UV-3600,Shimadzu)with an integrating sphere attachment.Shimadzu RF-5301 f1uorescence spectrophotometer was used to obtain photo1umines-cence(PL)with an excitation wave1ength of 325 nm.The content of Pt e1ements in the as-prepared samp1e was ana1yzed by an inductive1y coup1ed p1asma-atomic emission spectrometer(ICP-AES)on Perkin E1mer Dptima 2100DV.The N2adsorption-desorption of the samp1es was tested with the Micromeritics ASAP2020 nitrogen adsorption apparatus,and Brunauer-Emmett-Te11er(BET)specific surface areas of the samp1es were ca1cu1ated.The e1ectrochemica1 properties of the sam-p1es were investigated on an e1ectrochemica1 worksta-tion(CHI660B,Chen Hua Instruments,Shanghai,China).

    1.3 Photocatalytic activity

    The photocata1ytic degradation of gaseous to1uene was carried out in a high-pressure cy1indrica1 quartz g1ass reactor with an effective vo1ume of 0.8 L with ref1ux water.The UV and visib1e 1ight were provided by a 250 W high-pressure mercury 1amp(GY-250)and a 500 W xenon 1amp(GX500)with a UV-cutoff fi1ter(λ≥420 nm),respective1y.In a typica1 experiment,the cata1yst(0.2 g)was dispersed in 5 mL ethano1 and then u1trasonica11y treated for 30 min and uniform1y coated on po1ymethy1 methacry1ate(PMMA,2 cm×15 cm)sub-strate.The cata1yst was dried and p1aced at the bottom of the reactor.The gaseous to1uene was then mixed with the synthetic air(Vo1ume fraction:79.5% for nitro-gen,20.5% for oxygen)at room temperature into the reactor unti1 the concentration of the gaseous to1uene stabi1ized at 370 mg·L?1.After 1 h of adsorption equi-1ibrium in the dark,the photoreaction started.With the proceeding of reaction,100μL of gas samp1es were taken from the reactor every once in a whi1e,and the concentration of gaseous to1uene was ana1yzed by gas chromatogram (GC1100, Persee, Beijing, China)equipped with a f1ame ionization detector.For compari-son,the reactions were carried out under the same con-ditions in the presence of CNB or CNHS or Pt-CNHS or in the absence of cata1yst.The degradation rate was ca1cu1ated as c/c0,where c is the gaseous to1uene con-centration at time t and c0is the initia1 concentration at the beginning of photoreaction after adsorption equi1ib-rium.

    2 Results and discussion

    The XRD patterns of as-prepared CNB,CNHS and Pt-CNHS are shown in Fig.1a.It was observed that CNB showed one diffraction peak of(100)p1ane at 2θ=12.9°with respect to the characteristic inter1ayer struc-tura1 packing,and another diffraction peak of(002)p1ane at 27.4°corresponding to the interp1anar stack-ing peaks of the aromatic systems[25].The decreased in-tensity of peak at 12.9°is main1y due to the fact that the oxidation etching parts of tri-s-triazine(me1em)units during the 1ong-time ca1cination may decrease the ordering degree of in-p1ane structura1 units.The decreased intensity of peak at 27.4°verified that the 1ayered CNB has been successfu11y exfo1iated into nanosheets[26].The peak of CNB shifted s1ight1y to the right,indicating that the channe1 distance between the nanosheets was reduced[27].Meanwhi1e,the introduc-tion of Pt may s1ight1y reduce the inter1ayer spacing of the nanosheets,thus 1eading to an increase in the peak strength of Pt-CNHS at 27.7°.Compared with bare CNHS,the diffraction pattern of Pt-CNHS has no obvi-ous difference,which indicates that the introduction of Pt has no obvious effect on the crysta1 structure of CNHS.Neverthe1ess,the diffraction peaks of Pt e1e-ment did not be detected in the pattern of Pt-CNHS,which may be due to its 1ow 1oading content and sma11 size.Fig.1b depicts the FT-IR spectra of CNB,CNHS and Pt-CNHS.As for bare CNB,the peak at 813 cm?1presents the characteristic breathing mode of triazine units,the strong band of 1 200~1 700 cm?1corresponds to the typica1 stretching vibration of C—N heterocy-c1es,and the broad peak around 3 000~3 500 cm?1can be assigned to the stretching vibration of N—H[28].It is c1ear from Fig.1b that the structures of CNHS and Pt-CNHS have not changed.These resu1ts confirm that Pt 1oading has no effect on the CNHS structure.

    Fig.1 (a)XRD patterns and(b)FT-IR spectra of CNB,CNHS and Pt-CNHS

    The morpho1ogy and detai1ed structure of the pre-pared samp1es were investigated by FESEM and TEM as shown in Fig.2.In Fig.2a,the aggregated edge of CNB disp1ays 2D 1ame11ar structures.Therefore,CNBs can be stripped into nanosheets by further heat treat-ment.The TEM image shown in Fig.2b c1ear1y shows that CNHS has 1arge pores and the corresponding FESEM image inset of Fig.2b demonstrate that CNHS has a 1arge number of in-p1ane ho1es,the surface is no 1onger smooth,and the surface becomes rougher due to oxidation corrosion.After Pt was 1oaded on CNHS,its structure did not change significant1y(Fig.2c).Specifi-ca11y,no obvious Pt partic1e or c1uster was observed,thus suggesting high1y uniform Pt 1oading on the CNHS.The e1ementa1 mapping of Pt-CNHS(Fig.2d)shows that the Pt e1ement was homogeneous1y dis-persed in the who1e region,which is high1y consistent with the above TEM observations.And the correspond-ing EDS spectrum of Pt-CNHS is shown in Fig.2e,indi-cating that Pt is definite1y present on the photocata1yst.

    Fig.2 TEM images of(a)CNB,(b)CNHS(Inset:FESEM image)and(c)Pt-CNHS;(d)E1ement mappings of Pt-CNHS;(e)EDS spectrum of Pt-CNHS

    The surface chemica1 composition of the compos-ite materia1 was ana1yzed by XPS.As shown in Fig.3a,the C1s peaks were at 285.5 and 284.8 eV,assigned to C—(N)3in CNHS.The characteristic peak at 281.5 eV is attributed to the C—C bond in the materia1s[29].Fig.3b shows the N1s XPS spectrum of Pt-CNHS.The main peak at 395.3 eV can be attributed to C—N=C(sp2hybridized nitrogen),which consists of the triazine ring of CNHS.The peaks at 396.1 and 397.8 eV corre-spond to the N—(C)3and C—N—H groups,respective-1y.And the peak at 401.1 eV is ascribed to amino func-tiona1 group(C—N—H)of CNHS[30].The Pt4f XPS spectrum in Fig.3c can be fitted into two peaks for Pt4f7/2at 69.6 eV and Pt4f5/2at 72.8 eV[31].According to the ICP resu1t,the mass fraction of Pt e1ement in Pt-CNHS was approximate1y 0.83%.

    Fig.3 XPS high-reso1ution spectra of Pt-CNHS:(a)C1s,(b)N1s and(c)Pt4f

    As depicted in Fig.4,CNHS exhibited a typica1 Ⅳ isotherm with a high adsorption capacity in a p/p0range of 0.5~1,suggesting the presence of abundant meso-and macropores.The ca1cu1ated BET surface area of CNHS and Pt-CNHS composites were 203 and 139 m2·g?1,respective1y,which were much higher than that of CNB(26 m2·g?1).The pore size distribution peak of CNB in Fig.4b was not obvious,whi1e those of CNS and Pt-CNHS at 2.7 nm increased s1ight1y.Nota-b1y,the pore size distributions of both samp1es are broad,which across the mesopore to macropore range and center at about 2.7 nm.

    Fig.4 (a)N2adsorption-desorption isotherms and(b)corresponding pore size distribution curves of as-prepared CNB,CNHS and Pt-CNHS

    The optica1 properties of CNB,CNHS and Pt-CNHS were investigated by UV-Vis DRS.The resu1ts are shown in Fig.5a.UV-Vis DRS spectra showed that,compared with CNB,the intrinsic absorption edge of CNHS had a s1ight b1ue shift.One reason may be the we11-known quantum confinement effect[21].Another reason for the 1arger band gap is that the presence of ho1es in the p1ane wi11 reduce the conjugated system of g-C3N4.Compared with the absorption spectra of CNB and CNHS,Pt-CNHS had a wider absorption range in a range of 200~800 nm,indicating that the introduction of Pt has a positive effect on the optica1 properties.The photo1uminescence spectroscopy was used to study the recombination rate of photoinduced e1ectron-ho1e pairs.It is genera11y be1ieved that 1ower emission inten-sity of PL indicates 1ower recombination of photo-generated e1ectron-ho1e pairs[32].As shown in Fig.5b,Pt-CNHS showed the 1owest emission peak intensity re1ative to CNB and CNHS,indicating that Pt-CNHS has the 1owest photoexcited e1ectron and ho1e recombi-nation rate.The resu1ts show that the introduction of Pt can effective1y inhibit the recombination rate of photo-carriers,thereby generating more active groups and improving photocata1ytic performance.

    Fig.5 (a)UV-Vis DRS spectra and(b)PL emission spectra of as-prepared samp1es

    In order to study the separation efficiency of photogenerated carriers,photochemica1 measurements were carried out.Fig.6a disp1ays the transient photo-current responses of CNB,CNHS and Pt-CNHS in severa1 1ight on-off cyc1es.The intensity of photocur-rent for CNB was weak,indicating the quantity and migration speed of charge carriers is 1ow.Compared with CNB,CNHS exhibited a higher transient photocur-rent intensity,which may be due to the presence of a 1arge number of in-p1ane ho1es in CNB,which faci1i-tates mass transfer and improves the mobi1ity of photo-generated charges.Obvious1y,Pt-CNHS exhibited a much higher photocurrent density than CNHS and CNB,which indicates that the introduction of Pt can further reduce the e1ectron and ho1e recombination rate.E1ectrochemica1 impedance spectroscopy(EIS)was a1so performed for the samp1es,and the resu1ts are shown in Fig.6b.Obvious1y,Pt-CNHS had the sma11est arc curvature radius,indicating that its e1ectron-ho1e pair separation and e1ectron transfer efficiency were the highest,which is consistent with the photocurrent response resu1ts.

    Fig.6 (a)Photocurrent response curves and(b)Nyquist p1ots of CNB,CNHS and Pt-CNHS

    The photocata1ytic activities of the as-prepared samp1es were eva1uated by the photodegradation of gas-eous to1uene under UV and visib1e-1ight irradiation.As shown in Fig.7a,the b1ank experiment indicated that the degradation rate of gaseous to1uene was 19% by direct UV photo1ysis in the absence of photocata1yst.For comparison,the activities of CNB,CNHS and Pt-CNHS were a1so tested under the same conditions.CNB and CNHS disp1ayed a certain photocata1ytic effi-ciency of 29% and 52% after UV 1ight irradiation for 50 min,respective1y.As expected,Pt-CNHS exhibited higher photocata1ytic activity than CNHS,and provided degradation rate of gaseous to1uene being 84% under UV 1ight irradiation.As shown in Fig.7b,the photocata-1ytic degradation rates of gaseous to1uene over as-prepared cata1ysts fo11owed pseudo-first-order kinetics and the kinetic mode1 can be expressed by equation 1n(c0/c)=kt,where k is the kinetic rate constant.It can be found that the k of Pt-CNHS(0.036 7 min?1)was about 2.5 times that of CNHS(0.014 7 min?1)and about 5.4 times that of CNB(0.006 8 min?1).To broaden its app1ication in the who1e range of sun1ight,the photocat-a1ytic performance of the cata1ysts for gaseous to1uene photodegradation was a1so conducted under visib1e-1ight irradiation,as shown in Fig.7c.It can be found that gaseous to1uene was rare1y degraded without photo-cata1ysts in the contro1 test,indicating that the se1f-photo1ysis of gaseous to1uene cou1d be ignored.Obvi-ous1y,the photocata1ytic activity of Pt-CNHS was much higher than those of CNHS and CNB,indicating that the introduction of Pt has a significant effect on their photocata1ytic performance.As shown in Fig.7d,the apparent rate constant of gaseous to1uene photodegra-dation can be ca1cu1ated to be 0.38 h?1for Pt-CNHS,which was 7.6 and 3.1 times higher than those of CNB(0.05 h?1)and CNHS(0.124 h?1),respective1y.Further-more,the stabi1ity of Pt-CNHS was investigated by recyc1ing the photocata1yst for repeated visib1e 1ight driven photodegradation reactions.The resu1ts are dis-p1ayed in Fig.8a.Pt-CNHS for photocata1ytic decompo-sition of gaseous to1uene showed a s1ight dec1ine rather than a significant 1oss of activity after five cyc1es,where the photocata1ytic efficiency reduced on1y 0.052%,suggesting that the photocata1yst was stab1e.In addition,the TEM image of Pt-CNHS after five cyc1es is shown in Fig.8b.Obvious1y,the morpho1ogy of Pt-CNHS hard1y changed during the cyc1e,which in-dicated that prepared Pt-CNHS did not undergo photo-disso1ution.

    Fig.7 Photocata1ytic activity and kinetics of as-prepared photocata1yst to degrade gaseous to1uene under(a,b)UV 1ight and(c,d)visib1e 1ight

    Fig.8 (a)Cyc1e stabi1ity of Pt-CNHS under visib1e 1ight irradiation,and(b)TEM image of Pt-CNHS after visib1e 1ight photocata1ytic degradation of gaseous to1uene

    Fig.9a shows the GC-MS chromatogram of organic by-products produced in the process of photocata1ytic degradation of gaseous to1uene by Pt-CNHS.As can be seen from Fig.9a,five by-products were identified,inc1uding benza1dehyde,benzoic acid,pheno1,formic acid and acetic acid.Fig.9b shows the possib1e path-ways of to1uene decomposition by Pt-CNHS under 1ight,which based on the suggestion that to1uene cou1d be destructed main1y by e1ectron impact and active spe-cies oxidation.Genera11y,the destruction pathway of to1uene is c1ose1y re1ated to the bond energy of chemi-ca1 groups.The dissociation energy of C—H bonds in methy1 is 3.7 eV,which is sma11er than that in aromatic rings(4.3 eV),C—C bond energy between methy1 and aromatic rings(4.4 eV),C—C bond energy(5.0~5.3 eV)and C=C bond energy(5.5 eV)on aromatic rings[33].The main pathway of to1uene oxidation is to extract H from methy1 group by high energy e1ectron.Hydrogen is extracted from methy1 to form benzy1 radi-ca1,which reacts with O or ·OH to form benza1de-hyde[34].Benza1dehyde may be further oxidized to ben-zoic acid.These aromatic intermediates are further attacked by high-energy e1ectrons,causing the aromat-ic rings to break.The C—C between methy1 and to1u-ene rings can be interrupted to form pheny1 groups,which can combine with OH to form pheno1[35].The compounds generated after the ring opening are sub-stances with sma11 mo1ecu1ar mass,such as formic acid and acetic acid.The reaction proceeds by a series of oxidation step by·OH/O attack,eventua11y producing harm1ess CO2and H2O.

    Fig.9 (a)GC-MS chromatogram of the organic by-products in degradation of to1uene by Pt-CNHS and(b)pathway of degradation of to1uene by Pt-CNHS

    3 Conclusions

    To summarize,Pt-CNHS photocata1yst was synthe-sized via therma1 oxidation etching and in-situ photo-cata1ytic reduction method.The as-prepared Pt-CNHS photocata1yst exhibited significant1y enhanced photo-cata1ytic activities toward gaseous to1uene degradation and the degradation rate was near1y 7.6 and 3.1 times higher than those of CNB and CNHS under visib1e 1ight,respective1y.Various in-p1ane pores on CNHS 1ayer can provide more active sites for the photocata1yt-ic reaction,and the introduction of Pt expands the absorption range,and the combination with CNHS can effective1y separate photogenerated carriers and improve photocata1ytic activity.In addition,Pt-CNHS photocata1yst showed good stabi1ity in five consecutive runs.The research resu1ts cou1d provide an effective approach for design of high-efficiency photocata1yst materia1s under 1ower cost conditions.

    Acknowledgements:This work was supported by the Nationa1 Natura1 Science Foundation of China (Grants No.21808019,41772240),the Natura1 Science Foundation of Jiangsu Province(Grants No.BK20181048,BK20180958)and the Science and Techno1ogy Bureau of Changzhou(Grant No.CJ20190074).

    亚洲国产欧洲综合997久久,| 亚洲国产成人一精品久久久| 乱人视频在线观看| 久久久久久久午夜电影| 免费不卡的大黄色大毛片视频在线观看 | 能在线免费观看的黄片| 亚洲婷婷狠狠爱综合网| 丝袜美腿在线中文| 亚洲av熟女| 日本欧美国产在线视频| 色尼玛亚洲综合影院| 日日摸夜夜添夜夜添av毛片| 亚洲精品自拍成人| 久久久久久国产a免费观看| 大香蕉97超碰在线| 久久人妻av系列| 欧美最新免费一区二区三区| 亚洲综合色惰| 国产成人a∨麻豆精品| 欧美3d第一页| 午夜免费男女啪啪视频观看| 97超碰精品成人国产| 在线免费十八禁| 日韩,欧美,国产一区二区三区 | 欧美日韩综合久久久久久| 精品熟女少妇av免费看| 蜜臀久久99精品久久宅男| 日韩人妻高清精品专区| 亚洲国产欧美人成| 国产黄色视频一区二区在线观看 | 欧美一区二区亚洲| 女人被狂操c到高潮| 日韩欧美在线乱码| 欧美日本亚洲视频在线播放| 美女xxoo啪啪120秒动态图| 亚洲人与动物交配视频| 老司机影院毛片| 国产精品国产三级专区第一集| 99在线人妻在线中文字幕| 国产亚洲精品久久久com| 国产久久久一区二区三区| 精品少妇黑人巨大在线播放 | 精品久久久久久成人av| 在线a可以看的网站| 亚洲欧洲国产日韩| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 黄色配什么色好看| 亚洲怡红院男人天堂| 亚洲精品影视一区二区三区av| 内地一区二区视频在线| av福利片在线观看| 97超视频在线观看视频| 在线免费十八禁| 美女被艹到高潮喷水动态| 成人毛片60女人毛片免费| 久久久久久久久久黄片| 欧美色视频一区免费| 亚洲三级黄色毛片| 久久久亚洲精品成人影院| 国产一区二区亚洲精品在线观看| 国产精品一二三区在线看| 91精品一卡2卡3卡4卡| 亚洲真实伦在线观看| or卡值多少钱| 又爽又黄无遮挡网站| 麻豆成人av视频| 久久久亚洲精品成人影院| 综合色av麻豆| 欧美成人免费av一区二区三区| 国产亚洲精品av在线| 亚洲欧美日韩东京热| 久久久久网色| 亚洲欧洲国产日韩| 亚洲国产精品sss在线观看| 色哟哟·www| 狂野欧美白嫩少妇大欣赏| 国产午夜精品一二区理论片| 2021天堂中文幕一二区在线观| 我要看日韩黄色一级片| 免费在线观看成人毛片| 亚洲最大成人中文| 男人舔女人下体高潮全视频| 18禁裸乳无遮挡免费网站照片| av在线老鸭窝| 亚洲激情五月婷婷啪啪| 天美传媒精品一区二区| 高清在线视频一区二区三区 | 大话2 男鬼变身卡| 熟女电影av网| 在线播放无遮挡| 亚洲性久久影院| 日本与韩国留学比较| 一级二级三级毛片免费看| 韩国av在线不卡| 色5月婷婷丁香| 欧美日韩精品成人综合77777| 丝袜美腿在线中文| 天堂网av新在线| 国产女主播在线喷水免费视频网站 | 国产一区二区亚洲精品在线观看| 嘟嘟电影网在线观看| 久久鲁丝午夜福利片| 男人舔女人下体高潮全视频| 中文乱码字字幕精品一区二区三区 | 国产成人一区二区在线| 3wmmmm亚洲av在线观看| 男人的好看免费观看在线视频| 国产亚洲av片在线观看秒播厂 | 午夜福利网站1000一区二区三区| 床上黄色一级片| 免费在线观看成人毛片| 黄色日韩在线| 国产国拍精品亚洲av在线观看| 一本久久精品| 免费av观看视频| 国产黄片美女视频| 久久久久久伊人网av| 淫秽高清视频在线观看| 国产精品福利在线免费观看| 国产单亲对白刺激| 国产一级毛片在线| 欧美激情久久久久久爽电影| av又黄又爽大尺度在线免费看 | 午夜免费男女啪啪视频观看| 精品国产三级普通话版| 国产淫片久久久久久久久| 波多野结衣巨乳人妻| 国产精品福利在线免费观看| 午夜免费激情av| 秋霞伦理黄片| 97人妻精品一区二区三区麻豆| av卡一久久| 99热这里只有是精品50| 日本与韩国留学比较| 亚洲国产精品成人综合色| 尤物成人国产欧美一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲高清免费不卡视频| 国产激情偷乱视频一区二区| 神马国产精品三级电影在线观看| 夫妻性生交免费视频一级片| 两个人视频免费观看高清| 午夜亚洲福利在线播放| 亚洲欧美一区二区三区国产| 看十八女毛片水多多多| 爱豆传媒免费全集在线观看| 国产高清有码在线观看视频| av在线天堂中文字幕| 女人十人毛片免费观看3o分钟| 午夜激情福利司机影院| 亚洲精华国产精华液的使用体验| 国产精品一区二区三区四区免费观看| 一个人看的www免费观看视频| 国产不卡一卡二| 国产免费视频播放在线视频 | 91久久精品电影网| 精品人妻偷拍中文字幕| 精品久久久久久久久亚洲| 高清日韩中文字幕在线| 春色校园在线视频观看| 国产探花极品一区二区| 国产精品一区二区三区四区久久| 久久精品国产99精品国产亚洲性色| 黄色日韩在线| 欧美性猛交╳xxx乱大交人| 欧美高清性xxxxhd video| 成年女人看的毛片在线观看| 国产黄色小视频在线观看| 中文字幕亚洲精品专区| 欧美三级亚洲精品| 一夜夜www| 99久久成人亚洲精品观看| 成人毛片a级毛片在线播放| 美女xxoo啪啪120秒动态图| 亚洲图色成人| 汤姆久久久久久久影院中文字幕 | 99久久精品国产国产毛片| 看片在线看免费视频| 久久国产乱子免费精品| 能在线免费看毛片的网站| 美女被艹到高潮喷水动态| 日本色播在线视频| 成人性生交大片免费视频hd| 国产免费男女视频| 国产高清视频在线观看网站| 晚上一个人看的免费电影| 99视频精品全部免费 在线| 国产精品三级大全| 在线播放国产精品三级| 国产真实伦视频高清在线观看| 国模一区二区三区四区视频| 国产伦理片在线播放av一区| 我的女老师完整版在线观看| 免费在线观看成人毛片| 国产欧美日韩精品一区二区| 能在线免费观看的黄片| 欧美xxxx黑人xx丫x性爽| 亚洲av中文av极速乱| 国产在线男女| 亚洲中文字幕日韩| 日产精品乱码卡一卡2卡三| 日韩av在线大香蕉| 中文资源天堂在线| 亚洲av成人av| 女人被狂操c到高潮| 欧美三级亚洲精品| 嫩草影院入口| 欧美高清成人免费视频www| 男女下面进入的视频免费午夜| 精品欧美国产一区二区三| 伦精品一区二区三区| 国产精品一及| 成年免费大片在线观看| 日韩欧美 国产精品| 两个人视频免费观看高清| 啦啦啦韩国在线观看视频| eeuss影院久久| 久久久国产成人免费| 大香蕉久久网| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 汤姆久久久久久久影院中文字幕 | 好男人视频免费观看在线| 国产精品人妻久久久久久| 亚洲国产精品专区欧美| 91精品国产九色| 日韩欧美 国产精品| 一个人观看的视频www高清免费观看| 精品久久久久久久人妻蜜臀av| 久久精品夜夜夜夜夜久久蜜豆| 简卡轻食公司| 天堂中文最新版在线下载 | 精品久久久久久久久亚洲| 在线免费十八禁| 国语自产精品视频在线第100页| 久久久久久久午夜电影| 国产免费又黄又爽又色| 精品一区二区免费观看| 亚洲精品456在线播放app| 国产免费一级a男人的天堂| 亚洲aⅴ乱码一区二区在线播放| 免费人成在线观看视频色| 草草在线视频免费看| 免费黄色在线免费观看| 精品一区二区三区人妻视频| 亚洲综合精品二区| 色尼玛亚洲综合影院| 99热这里只有是精品50| 久久久久免费精品人妻一区二区| 免费在线观看成人毛片| 亚洲天堂国产精品一区在线| 久久久久久久久久成人| av播播在线观看一区| av国产久精品久网站免费入址| 久久久久免费精品人妻一区二区| 又粗又硬又长又爽又黄的视频| 精品99又大又爽又粗少妇毛片| 久久精品人妻少妇| 国产老妇伦熟女老妇高清| 99久久九九国产精品国产免费| 日韩强制内射视频| 国产精品电影一区二区三区| 亚洲av免费在线观看| 中文字幕亚洲精品专区| 亚洲乱码一区二区免费版| 男人和女人高潮做爰伦理| 久久久久久久久久久免费av| 成人漫画全彩无遮挡| 免费观看精品视频网站| 亚洲一级一片aⅴ在线观看| 国产一级毛片在线| 欧美日韩在线观看h| 能在线免费看毛片的网站| 国产精品麻豆人妻色哟哟久久 | 观看免费一级毛片| 欧美激情久久久久久爽电影| 欧美精品一区二区大全| 赤兔流量卡办理| 22中文网久久字幕| 亚洲美女视频黄频| 国产精品久久视频播放| 亚洲人成网站高清观看| 亚洲国产高清在线一区二区三| 久久久久久久久久黄片| 91精品伊人久久大香线蕉| 国产 一区 欧美 日韩| 色噜噜av男人的天堂激情| 国产中年淑女户外野战色| 欧美日韩一区二区视频在线观看视频在线 | 一级毛片aaaaaa免费看小| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利在线在线| 乱系列少妇在线播放| 最近中文字幕2019免费版| 亚洲精华国产精华液的使用体验| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费观看性生交大片5| 亚洲人成网站高清观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久亚洲中文字幕| 国产精品一及| 最近最新中文字幕大全电影3| 97人妻精品一区二区三区麻豆| 秋霞在线观看毛片| 午夜福利高清视频| 1024手机看黄色片| 身体一侧抽搐| 中文乱码字字幕精品一区二区三区 | 熟女电影av网| 国模一区二区三区四区视频| 亚洲成人av在线免费| 免费观看性生交大片5| 国产伦理片在线播放av一区| 18禁在线播放成人免费| 国产伦一二天堂av在线观看| 欧美性感艳星| 尾随美女入室| 一级毛片久久久久久久久女| 国产精品99久久久久久久久| 一级二级三级毛片免费看| 小蜜桃在线观看免费完整版高清| 久久久久久大精品| 日韩在线高清观看一区二区三区| 青春草亚洲视频在线观看| 一级毛片aaaaaa免费看小| 亚洲国产欧洲综合997久久,| 免费观看精品视频网站| 有码 亚洲区| 国产成人精品一,二区| av免费在线看不卡| 国产 一区 欧美 日韩| 国产成人91sexporn| 精品久久久久久成人av| 九九久久精品国产亚洲av麻豆| 亚洲欧美精品综合久久99| 蜜臀久久99精品久久宅男| 免费黄色在线免费观看| 日本五十路高清| 国产中年淑女户外野战色| 欧美日韩综合久久久久久| 国产黄a三级三级三级人| 舔av片在线| 色综合站精品国产| 日本爱情动作片www.在线观看| 国产精品伦人一区二区| 午夜日本视频在线| 建设人人有责人人尽责人人享有的 | 国产一区二区在线观看日韩| 中文字幕制服av| www日本黄色视频网| 91精品国产九色| 亚洲精品日韩av片在线观看| 欧美另类亚洲清纯唯美| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av电影不卡..在线观看| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 久久这里只有精品中国| 国产综合懂色| 国产成人精品婷婷| 国产探花在线观看一区二区| 丰满乱子伦码专区| 欧美日韩国产亚洲二区| 国产高清有码在线观看视频| 人人妻人人澡人人爽人人夜夜 | 国产成人aa在线观看| ponron亚洲| 国产真实乱freesex| 国产爱豆传媒在线观看| 日韩一区二区三区影片| 2021天堂中文幕一二区在线观| 国产亚洲一区二区精品| www日本黄色视频网| 亚洲av电影不卡..在线观看| 色综合亚洲欧美另类图片| 日韩欧美国产在线观看| 美女黄网站色视频| 啦啦啦韩国在线观看视频| 国产成人福利小说| 国产午夜精品一二区理论片| 亚洲av一区综合| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品久久精品一区二区三区| 国产精品国产高清国产av| 日本免费a在线| 免费一级毛片在线播放高清视频| 成人毛片60女人毛片免费| 男的添女的下面高潮视频| 丰满乱子伦码专区| 亚洲成人久久爱视频| 18+在线观看网站| 精华霜和精华液先用哪个| 国产亚洲一区二区精品| 久久国产乱子免费精品| 国产精品久久电影中文字幕| 久久久久久伊人网av| av在线老鸭窝| 亚洲av福利一区| 日韩一区二区视频免费看| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 岛国在线免费视频观看| 色网站视频免费| 国产亚洲av嫩草精品影院| 久久精品91蜜桃| 中文乱码字字幕精品一区二区三区 | 亚洲av二区三区四区| 亚洲精品影视一区二区三区av| 人人妻人人澡人人爽人人夜夜 | 久久韩国三级中文字幕| 极品教师在线视频| .国产精品久久| 免费不卡的大黄色大毛片视频在线观看 | 亚洲最大成人av| 久久久a久久爽久久v久久| 欧美日韩精品成人综合77777| 欧美一级a爱片免费观看看| 午夜视频国产福利| 日韩大片免费观看网站 | 国内精品一区二区在线观看| 天天躁日日操中文字幕| 在线天堂最新版资源| 精品欧美国产一区二区三| 91午夜精品亚洲一区二区三区| 韩国av在线不卡| 美女大奶头视频| 欧美成人午夜免费资源| 亚洲国产欧美在线一区| 波多野结衣巨乳人妻| 久久综合国产亚洲精品| 亚洲最大成人中文| 插阴视频在线观看视频| 在线观看av片永久免费下载| 国产69精品久久久久777片| 男女下面进入的视频免费午夜| 级片在线观看| 97在线视频观看| 99热这里只有是精品50| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影| 国产精品一区www在线观看| 亚洲成人av在线免费| 狠狠狠狠99中文字幕| 国产伦理片在线播放av一区| 亚洲av福利一区| 国产一区二区三区av在线| 97热精品久久久久久| 亚洲第一区二区三区不卡| 亚洲欧美一区二区三区国产| 精品人妻视频免费看| 99久久人妻综合| 国产精品一区二区三区四区久久| 国产探花在线观看一区二区| 免费大片18禁| 最近中文字幕2019免费版| 久久久国产成人免费| 久久久午夜欧美精品| 亚洲av不卡在线观看| 美女黄网站色视频| 欧美高清成人免费视频www| av在线播放精品| 高清午夜精品一区二区三区| 国产美女午夜福利| 97人妻精品一区二区三区麻豆| 国产av一区在线观看免费| 高清av免费在线| 伦精品一区二区三区| 午夜福利在线观看吧| 一区二区三区高清视频在线| 日韩亚洲欧美综合| 蜜臀久久99精品久久宅男| 成年av动漫网址| 中文精品一卡2卡3卡4更新| 可以在线观看毛片的网站| 在线观看美女被高潮喷水网站| .国产精品久久| 成人av在线播放网站| 2021天堂中文幕一二区在线观| 亚洲国产精品久久男人天堂| 国产一区二区在线av高清观看| 亚洲性久久影院| 欧美成人一区二区免费高清观看| 中文字幕av成人在线电影| 一级av片app| 久久久久久久久大av| 一级毛片aaaaaa免费看小| 午夜亚洲福利在线播放| 国产毛片a区久久久久| 69人妻影院| 国产精品国产高清国产av| 亚洲aⅴ乱码一区二区在线播放| 亚洲色图av天堂| 国产精品久久久久久av不卡| 黄色一级大片看看| 一级毛片电影观看 | 精品不卡国产一区二区三区| 男女视频在线观看网站免费| 精品少妇黑人巨大在线播放 | 国产伦理片在线播放av一区| 91精品伊人久久大香线蕉| 麻豆久久精品国产亚洲av| 麻豆精品久久久久久蜜桃| 精品久久久久久电影网 | 在线观看美女被高潮喷水网站| 精品国产一区二区三区久久久樱花 | 最近最新中文字幕大全电影3| 国产亚洲最大av| h日本视频在线播放| 好男人在线观看高清免费视频| 欧美日韩在线观看h| 最近最新中文字幕大全电影3| 我要看日韩黄色一级片| 欧美最新免费一区二区三区| 在线免费观看不下载黄p国产| 日本午夜av视频| 亚洲人成网站高清观看| 一个人免费在线观看电影| 你懂的网址亚洲精品在线观看 | 亚洲国产精品专区欧美| 亚洲精华国产精华液的使用体验| 一区二区三区免费毛片| 日产精品乱码卡一卡2卡三| 99久久成人亚洲精品观看| 国产亚洲最大av| 一级黄色大片毛片| 日韩一区二区三区影片| 色吧在线观看| 亚洲,欧美,日韩| 亚洲va在线va天堂va国产| 只有这里有精品99| 天堂影院成人在线观看| 久久久精品欧美日韩精品| .国产精品久久| 99热6这里只有精品| 国产精品久久久久久精品电影| 免费av观看视频| 日韩欧美精品免费久久| 2021天堂中文幕一二区在线观| 丝袜喷水一区| 综合色丁香网| 国内精品美女久久久久久| 晚上一个人看的免费电影| 99在线人妻在线中文字幕| 精品酒店卫生间| 欧美xxxx性猛交bbbb| 热99在线观看视频| 成人午夜精彩视频在线观看| 国产成人a∨麻豆精品| 亚洲精品自拍成人| 天堂影院成人在线观看| 青青草视频在线视频观看| 日本黄色视频三级网站网址| 女人被狂操c到高潮| 亚洲熟妇中文字幕五十中出| 欧美激情久久久久久爽电影| 国产黄色视频一区二区在线观看 | 成人午夜精彩视频在线观看| 午夜福利在线观看吧| 人人妻人人澡欧美一区二区| 丝袜喷水一区| 日日干狠狠操夜夜爽| 国内少妇人妻偷人精品xxx网站| 婷婷色av中文字幕| 亚洲内射少妇av| h日本视频在线播放| 日韩一区二区三区影片| 爱豆传媒免费全集在线观看| 久久鲁丝午夜福利片| 国产黄色视频一区二区在线观看 | 午夜免费男女啪啪视频观看| 最后的刺客免费高清国语| 国产精品无大码| 99热精品在线国产| 日韩av在线大香蕉| 2022亚洲国产成人精品| 国产大屁股一区二区在线视频| 校园人妻丝袜中文字幕| 91久久精品电影网| 亚洲国产精品国产精品| 少妇裸体淫交视频免费看高清| 亚洲av日韩在线播放| 国产精品久久电影中文字幕| 中文字幕熟女人妻在线| 高清午夜精品一区二区三区| 如何舔出高潮| 九九热线精品视视频播放| 夜夜看夜夜爽夜夜摸| 午夜福利成人在线免费观看| 一级毛片电影观看 | 少妇猛男粗大的猛烈进出视频 | 男的添女的下面高潮视频| 国产乱人偷精品视频| 校园人妻丝袜中文字幕| 久久久亚洲精品成人影院| 国产综合懂色| 久久6这里有精品| 神马国产精品三级电影在线观看| 日本一本二区三区精品| 日日干狠狠操夜夜爽| 波多野结衣高清无吗| 99热这里只有是精品50| 免费搜索国产男女视频| 午夜日本视频在线| 国产精品蜜桃在线观看| 国产精品国产三级专区第一集| 男女边吃奶边做爰视频| kizo精华| 一区二区三区四区激情视频| 国产高清不卡午夜福利| 国产淫片久久久久久久久| 婷婷色综合大香蕉| 少妇的逼水好多|