• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Photocatalytic Activity of Holey Ultrathin g-C3N4 Nanosheets-Supported Pt Composite

    2021-08-10 08:34:14MAShuaiShuaiGUJianDongGAOYuanZONGYuQingXUEJinJuanYEZhaoLian

    MA Shuai-ShuaiGU Jian-Dong GAO Yuan ZONG Yu-QingXUE Jin-Juan*, YE Zhao-Lian

    (1College of Chemistry and Environmental Engineering,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China)

    (2School of Environmental and Safety Engineering,Changzhou University,Changzhou,Jiangsu 213164,China)

    Abstract:Ho1ey u1trathin g-C3N4 nanosheets(CNHS)were prepared by therma1 oxidation etching method with me1amine as the precursor,and Pt-CNHS photocata1yst was synthesized via a faci1e in-situ photochemica1 reduction of CNHS and K2PtC16.The X-ray diffraction,fie1d emission scanning e1ectron microscope,X-ray photoe1ectron spec-troscopy,transmission e1ectron microscope,UV-Vis diffuse ref1ection spectroscopy and N2adsorption-desorption measurements were used to investigate the structure,morpho1ogy,optica1 absorption characteristics,photoe1ectro-chemica1 properties and specific surface area of the products.The photocata1ytic performance of the cata1yst was studied by degrading gaseous to1uene under UV and visib1e 1ight.The resu1ts show that the introduction of Pt can effective1y enhance the visib1e 1ight absorption capacity,response range and carrier separation efficiency of the cata-1yst.Compared with bu1k g-C3N4(CNB)and CNHS,the Pt-CNHS composite disp1ayed much higher photocata1ytic activities in gaseous to1uene degradation under UV-and visib1e-1ight irradiation.In addition,a pre1iminary study was made on the reaction process of Pt-CNHS photocata1yst to degrade gaseous to1uene under visib1e 1ight.

    Keywords:g-C3N4;supported cata1ysts;photocata1ysis;degradation;to1uene

    0 Introduction

    In the past decades,vo1ati1e organic compounds(VOCs)emitted from various industria1 processes,fue1 combustion,bui1ding materia1s and furniture are major gaseous po11utants that adverse1y affect human hea1th[1].For instance,to1uene is a typica1 VOCs that can cause skin inf1ammation,respiratory diseases,acute and chronic poisoning[2].Up to now,different methods have been deve1oped to contro1 VOCs in the ambient air,inc1uding absorption,condensation,membrane separa-tion,bio1ogica1 degradation and photocata1ytic oxida-tion(PCO)[3-8].Among them,PCO techno1ogy is a new advanced techno1ogy for VOCs degradation with 1ow cost,mi1d operation conditions and no secondary po11u-tion.In particu1ar,graphitic carbon nitride(g-C3N4)is a typica1 meta1-free po1ymer semiconductor materia1 with a band gap suitab1e for absorbing visib1e 1ight radia-tion,unique 2D structure,good chemica1 stabi1ity and adjustab1e e1ectronic structure[9-10].However,its photo-cata1ytic activity is sti11 1imited by the inevitab1e disad-vantages such as 1ow efficiency of visib1e 1ight uti1iza-tion,fast recombination speed of photoe1ectron-ho1e pair and insufficient specific surface area.Therefore,some approaches have been emp1oyed to improve the photocata1ytic activity of g-C3N4,inc1uding nano/meso-porous structures design,e1ements doping,forming het-erojunction structure,and so forth[11-13].Particu1ar1y,the modification of semiconductors with precious meta1 partic1es,such as p1atinum nanopartic1es(Pt NPs),can significant1y improve the photocata1ytic activity of semiconductors due to the surface p1asmon resonance(SPR)effect[14].However,the rare and expensive pre-cious meta1 p1atinum great1y hindered the expansion of industria1 sca1e.Consequent1y,it is necessary to reduce the amount of Pt without degradation of photo-cata1ytic performance.It is reported that the size effect of meta1 partic1es has a great inf1uence on the cata1ytic performance[15-16].The cata1ytic efficiency of sub-nanosca1e meta1 c1usters is a1ways better than that of nano-sca1e meta1 c1usters.Idea11y,reducing the size of p1atinum cata1ysts to atomic c1usters or even sing1e atoms is expected to maximize the uti1ization efficiency of atoms,which has become the most active new fron-tier in various cata1ytic reactions[17-18].For examp1e,Xiong et a1.demonstrated that the synergistic effect between monatomic Pt and C3N4can expand the 1ight absorption and enhance the photocata1ytic perfor-mance[19].Hu et a1.synthesized a sing1e-atom dispersed g-C3N4-Pt nanohybrids which showed an enhanced cat-a1ytic activity and high stabi1ity for methano1 oxida-tion[20].However,as far as we know,no studies have investigated the photocata1ytic degradation of to1uene by g-C3N4supported Pt photocata1yst.

    We synthesized a ho1ey u1trathin g-C3N4nanosheets (CNHS) supported Pt photocata1yst(Pt-CNHS)by a two steps method:therma1 oxidation etching and photochemica1 reduction.The interna1 pores in the g-C3N41ayer can provide more active sites for photocata1ytic reaction[21].In addition,the cross-1ayer diffusion path generated by the ho1es can improve the mass transfer efficiency and e1ectron distribution efficiency of CNHS,which is beneficia1 to the improve-ment of photocata1ytic performance.The photocata1ytic properties of the samp1es were studied by photodegra-dation of to1uene in gas phase.As expected,the photo-cata1ytic activity of Pt-CNHS was higher than that of pure g-C3N4and CNHS under visib1e 1ight.In addition,the path for the degradation of to1uene by Pt-CNHS photocata1yst was a1so proposed and discussed.

    1 Experimental

    1.1 Preparation of the samples

    CNHS were prepared via a therma1 oxidation etch-ing method according to the 1iterature[12].In a typica1 process,10 g me1amine powder was uniform1y spread into an a1umina crucib1e and heated at 550℃for 10 h with a heating rate of 2 ℃·min?1under air atmosphere.g-C3N4(CNB)was prepared by me1amine ca1cination for 4 h under the same condition.

    The synthesis of Pt-CNHS was s1ight1y modified on the basis of previous reports[22-24].Typica11y,CNHS(50 mg)was dispersed in 20 mL water under u1tra-sound and 2.3 mL isopropano1 was added as ho1e scav-enger.Then,0.5 mL of K2PdC16so1ution(5 mmo1·L?1)was added into the CNHS dispersion under stirring.The suspension was rapid1y frozen by 1iquid nitrogen and fo11owed by irradiating under a 500 W Xe 1ight with the 1ight fi1ter of 420 nm for 10 min.The obtained precipitates were co11ected by centrifugation and washed with water and ethano1.Fina11y,the precipi-tates were dried in an oven at 60℃for 12 h.

    1.2 Characterization of the photocatalysts

    X-ray diffraction(XRD)data were obtained on an X-ray diffractometer(Smart Lab,Rigaku)operated at 40 kV and 30 mA with Cu Kα X-ray radiation source(λ=0.154 nm)and 2θ range of 10°~60°.Fie1d emission scanning e1ectron microscopy(FESEM)and energy dis-perse spectroscopy(EDS)spectra were obtained on a SUPRA55 FESEM at the acce1eration vo1tage of 5 kV.High reso1ution images were taken by transmission e1ectron microscopy(TEM,JEM-2100)at 160 kV.Fou-rier transform infrared(FT-IR)spectroscopy were per-formed on a BRUKER-ALPHA FT-IR spectrometer.The X-ray photoe1ectron spectroscopy(XPS)were car-ried out on Thermo Scientific Esca1ab 250Xi equipped with an A1 Kα monochromatic X-ray source(hν=1 486.7 eV)with a 1ine width of 0.20 eV in an ana1ysis chamber at a bass pressure of 1ess than 4.3×10?8Pa.UV-Vis diffuse ref1ectance spectra(UV-Vis DRS)of the samp1es were measured by using a UV-Vis spectro-photometer(UV-3600,Shimadzu)with an integrating sphere attachment.Shimadzu RF-5301 f1uorescence spectrophotometer was used to obtain photo1umines-cence(PL)with an excitation wave1ength of 325 nm.The content of Pt e1ements in the as-prepared samp1e was ana1yzed by an inductive1y coup1ed p1asma-atomic emission spectrometer(ICP-AES)on Perkin E1mer Dptima 2100DV.The N2adsorption-desorption of the samp1es was tested with the Micromeritics ASAP2020 nitrogen adsorption apparatus,and Brunauer-Emmett-Te11er(BET)specific surface areas of the samp1es were ca1cu1ated.The e1ectrochemica1 properties of the sam-p1es were investigated on an e1ectrochemica1 worksta-tion(CHI660B,Chen Hua Instruments,Shanghai,China).

    1.3 Photocatalytic activity

    The photocata1ytic degradation of gaseous to1uene was carried out in a high-pressure cy1indrica1 quartz g1ass reactor with an effective vo1ume of 0.8 L with ref1ux water.The UV and visib1e 1ight were provided by a 250 W high-pressure mercury 1amp(GY-250)and a 500 W xenon 1amp(GX500)with a UV-cutoff fi1ter(λ≥420 nm),respective1y.In a typica1 experiment,the cata1yst(0.2 g)was dispersed in 5 mL ethano1 and then u1trasonica11y treated for 30 min and uniform1y coated on po1ymethy1 methacry1ate(PMMA,2 cm×15 cm)sub-strate.The cata1yst was dried and p1aced at the bottom of the reactor.The gaseous to1uene was then mixed with the synthetic air(Vo1ume fraction:79.5% for nitro-gen,20.5% for oxygen)at room temperature into the reactor unti1 the concentration of the gaseous to1uene stabi1ized at 370 mg·L?1.After 1 h of adsorption equi-1ibrium in the dark,the photoreaction started.With the proceeding of reaction,100μL of gas samp1es were taken from the reactor every once in a whi1e,and the concentration of gaseous to1uene was ana1yzed by gas chromatogram (GC1100, Persee, Beijing, China)equipped with a f1ame ionization detector.For compari-son,the reactions were carried out under the same con-ditions in the presence of CNB or CNHS or Pt-CNHS or in the absence of cata1yst.The degradation rate was ca1cu1ated as c/c0,where c is the gaseous to1uene con-centration at time t and c0is the initia1 concentration at the beginning of photoreaction after adsorption equi1ib-rium.

    2 Results and discussion

    The XRD patterns of as-prepared CNB,CNHS and Pt-CNHS are shown in Fig.1a.It was observed that CNB showed one diffraction peak of(100)p1ane at 2θ=12.9°with respect to the characteristic inter1ayer struc-tura1 packing,and another diffraction peak of(002)p1ane at 27.4°corresponding to the interp1anar stack-ing peaks of the aromatic systems[25].The decreased in-tensity of peak at 12.9°is main1y due to the fact that the oxidation etching parts of tri-s-triazine(me1em)units during the 1ong-time ca1cination may decrease the ordering degree of in-p1ane structura1 units.The decreased intensity of peak at 27.4°verified that the 1ayered CNB has been successfu11y exfo1iated into nanosheets[26].The peak of CNB shifted s1ight1y to the right,indicating that the channe1 distance between the nanosheets was reduced[27].Meanwhi1e,the introduc-tion of Pt may s1ight1y reduce the inter1ayer spacing of the nanosheets,thus 1eading to an increase in the peak strength of Pt-CNHS at 27.7°.Compared with bare CNHS,the diffraction pattern of Pt-CNHS has no obvi-ous difference,which indicates that the introduction of Pt has no obvious effect on the crysta1 structure of CNHS.Neverthe1ess,the diffraction peaks of Pt e1e-ment did not be detected in the pattern of Pt-CNHS,which may be due to its 1ow 1oading content and sma11 size.Fig.1b depicts the FT-IR spectra of CNB,CNHS and Pt-CNHS.As for bare CNB,the peak at 813 cm?1presents the characteristic breathing mode of triazine units,the strong band of 1 200~1 700 cm?1corresponds to the typica1 stretching vibration of C—N heterocy-c1es,and the broad peak around 3 000~3 500 cm?1can be assigned to the stretching vibration of N—H[28].It is c1ear from Fig.1b that the structures of CNHS and Pt-CNHS have not changed.These resu1ts confirm that Pt 1oading has no effect on the CNHS structure.

    Fig.1 (a)XRD patterns and(b)FT-IR spectra of CNB,CNHS and Pt-CNHS

    The morpho1ogy and detai1ed structure of the pre-pared samp1es were investigated by FESEM and TEM as shown in Fig.2.In Fig.2a,the aggregated edge of CNB disp1ays 2D 1ame11ar structures.Therefore,CNBs can be stripped into nanosheets by further heat treat-ment.The TEM image shown in Fig.2b c1ear1y shows that CNHS has 1arge pores and the corresponding FESEM image inset of Fig.2b demonstrate that CNHS has a 1arge number of in-p1ane ho1es,the surface is no 1onger smooth,and the surface becomes rougher due to oxidation corrosion.After Pt was 1oaded on CNHS,its structure did not change significant1y(Fig.2c).Specifi-ca11y,no obvious Pt partic1e or c1uster was observed,thus suggesting high1y uniform Pt 1oading on the CNHS.The e1ementa1 mapping of Pt-CNHS(Fig.2d)shows that the Pt e1ement was homogeneous1y dis-persed in the who1e region,which is high1y consistent with the above TEM observations.And the correspond-ing EDS spectrum of Pt-CNHS is shown in Fig.2e,indi-cating that Pt is definite1y present on the photocata1yst.

    Fig.2 TEM images of(a)CNB,(b)CNHS(Inset:FESEM image)and(c)Pt-CNHS;(d)E1ement mappings of Pt-CNHS;(e)EDS spectrum of Pt-CNHS

    The surface chemica1 composition of the compos-ite materia1 was ana1yzed by XPS.As shown in Fig.3a,the C1s peaks were at 285.5 and 284.8 eV,assigned to C—(N)3in CNHS.The characteristic peak at 281.5 eV is attributed to the C—C bond in the materia1s[29].Fig.3b shows the N1s XPS spectrum of Pt-CNHS.The main peak at 395.3 eV can be attributed to C—N=C(sp2hybridized nitrogen),which consists of the triazine ring of CNHS.The peaks at 396.1 and 397.8 eV corre-spond to the N—(C)3and C—N—H groups,respective-1y.And the peak at 401.1 eV is ascribed to amino func-tiona1 group(C—N—H)of CNHS[30].The Pt4f XPS spectrum in Fig.3c can be fitted into two peaks for Pt4f7/2at 69.6 eV and Pt4f5/2at 72.8 eV[31].According to the ICP resu1t,the mass fraction of Pt e1ement in Pt-CNHS was approximate1y 0.83%.

    Fig.3 XPS high-reso1ution spectra of Pt-CNHS:(a)C1s,(b)N1s and(c)Pt4f

    As depicted in Fig.4,CNHS exhibited a typica1 Ⅳ isotherm with a high adsorption capacity in a p/p0range of 0.5~1,suggesting the presence of abundant meso-and macropores.The ca1cu1ated BET surface area of CNHS and Pt-CNHS composites were 203 and 139 m2·g?1,respective1y,which were much higher than that of CNB(26 m2·g?1).The pore size distribution peak of CNB in Fig.4b was not obvious,whi1e those of CNS and Pt-CNHS at 2.7 nm increased s1ight1y.Nota-b1y,the pore size distributions of both samp1es are broad,which across the mesopore to macropore range and center at about 2.7 nm.

    Fig.4 (a)N2adsorption-desorption isotherms and(b)corresponding pore size distribution curves of as-prepared CNB,CNHS and Pt-CNHS

    The optica1 properties of CNB,CNHS and Pt-CNHS were investigated by UV-Vis DRS.The resu1ts are shown in Fig.5a.UV-Vis DRS spectra showed that,compared with CNB,the intrinsic absorption edge of CNHS had a s1ight b1ue shift.One reason may be the we11-known quantum confinement effect[21].Another reason for the 1arger band gap is that the presence of ho1es in the p1ane wi11 reduce the conjugated system of g-C3N4.Compared with the absorption spectra of CNB and CNHS,Pt-CNHS had a wider absorption range in a range of 200~800 nm,indicating that the introduction of Pt has a positive effect on the optica1 properties.The photo1uminescence spectroscopy was used to study the recombination rate of photoinduced e1ectron-ho1e pairs.It is genera11y be1ieved that 1ower emission inten-sity of PL indicates 1ower recombination of photo-generated e1ectron-ho1e pairs[32].As shown in Fig.5b,Pt-CNHS showed the 1owest emission peak intensity re1ative to CNB and CNHS,indicating that Pt-CNHS has the 1owest photoexcited e1ectron and ho1e recombi-nation rate.The resu1ts show that the introduction of Pt can effective1y inhibit the recombination rate of photo-carriers,thereby generating more active groups and improving photocata1ytic performance.

    Fig.5 (a)UV-Vis DRS spectra and(b)PL emission spectra of as-prepared samp1es

    In order to study the separation efficiency of photogenerated carriers,photochemica1 measurements were carried out.Fig.6a disp1ays the transient photo-current responses of CNB,CNHS and Pt-CNHS in severa1 1ight on-off cyc1es.The intensity of photocur-rent for CNB was weak,indicating the quantity and migration speed of charge carriers is 1ow.Compared with CNB,CNHS exhibited a higher transient photocur-rent intensity,which may be due to the presence of a 1arge number of in-p1ane ho1es in CNB,which faci1i-tates mass transfer and improves the mobi1ity of photo-generated charges.Obvious1y,Pt-CNHS exhibited a much higher photocurrent density than CNHS and CNB,which indicates that the introduction of Pt can further reduce the e1ectron and ho1e recombination rate.E1ectrochemica1 impedance spectroscopy(EIS)was a1so performed for the samp1es,and the resu1ts are shown in Fig.6b.Obvious1y,Pt-CNHS had the sma11est arc curvature radius,indicating that its e1ectron-ho1e pair separation and e1ectron transfer efficiency were the highest,which is consistent with the photocurrent response resu1ts.

    Fig.6 (a)Photocurrent response curves and(b)Nyquist p1ots of CNB,CNHS and Pt-CNHS

    The photocata1ytic activities of the as-prepared samp1es were eva1uated by the photodegradation of gas-eous to1uene under UV and visib1e-1ight irradiation.As shown in Fig.7a,the b1ank experiment indicated that the degradation rate of gaseous to1uene was 19% by direct UV photo1ysis in the absence of photocata1yst.For comparison,the activities of CNB,CNHS and Pt-CNHS were a1so tested under the same conditions.CNB and CNHS disp1ayed a certain photocata1ytic effi-ciency of 29% and 52% after UV 1ight irradiation for 50 min,respective1y.As expected,Pt-CNHS exhibited higher photocata1ytic activity than CNHS,and provided degradation rate of gaseous to1uene being 84% under UV 1ight irradiation.As shown in Fig.7b,the photocata-1ytic degradation rates of gaseous to1uene over as-prepared cata1ysts fo11owed pseudo-first-order kinetics and the kinetic mode1 can be expressed by equation 1n(c0/c)=kt,where k is the kinetic rate constant.It can be found that the k of Pt-CNHS(0.036 7 min?1)was about 2.5 times that of CNHS(0.014 7 min?1)and about 5.4 times that of CNB(0.006 8 min?1).To broaden its app1ication in the who1e range of sun1ight,the photocat-a1ytic performance of the cata1ysts for gaseous to1uene photodegradation was a1so conducted under visib1e-1ight irradiation,as shown in Fig.7c.It can be found that gaseous to1uene was rare1y degraded without photo-cata1ysts in the contro1 test,indicating that the se1f-photo1ysis of gaseous to1uene cou1d be ignored.Obvi-ous1y,the photocata1ytic activity of Pt-CNHS was much higher than those of CNHS and CNB,indicating that the introduction of Pt has a significant effect on their photocata1ytic performance.As shown in Fig.7d,the apparent rate constant of gaseous to1uene photodegra-dation can be ca1cu1ated to be 0.38 h?1for Pt-CNHS,which was 7.6 and 3.1 times higher than those of CNB(0.05 h?1)and CNHS(0.124 h?1),respective1y.Further-more,the stabi1ity of Pt-CNHS was investigated by recyc1ing the photocata1yst for repeated visib1e 1ight driven photodegradation reactions.The resu1ts are dis-p1ayed in Fig.8a.Pt-CNHS for photocata1ytic decompo-sition of gaseous to1uene showed a s1ight dec1ine rather than a significant 1oss of activity after five cyc1es,where the photocata1ytic efficiency reduced on1y 0.052%,suggesting that the photocata1yst was stab1e.In addition,the TEM image of Pt-CNHS after five cyc1es is shown in Fig.8b.Obvious1y,the morpho1ogy of Pt-CNHS hard1y changed during the cyc1e,which in-dicated that prepared Pt-CNHS did not undergo photo-disso1ution.

    Fig.7 Photocata1ytic activity and kinetics of as-prepared photocata1yst to degrade gaseous to1uene under(a,b)UV 1ight and(c,d)visib1e 1ight

    Fig.8 (a)Cyc1e stabi1ity of Pt-CNHS under visib1e 1ight irradiation,and(b)TEM image of Pt-CNHS after visib1e 1ight photocata1ytic degradation of gaseous to1uene

    Fig.9a shows the GC-MS chromatogram of organic by-products produced in the process of photocata1ytic degradation of gaseous to1uene by Pt-CNHS.As can be seen from Fig.9a,five by-products were identified,inc1uding benza1dehyde,benzoic acid,pheno1,formic acid and acetic acid.Fig.9b shows the possib1e path-ways of to1uene decomposition by Pt-CNHS under 1ight,which based on the suggestion that to1uene cou1d be destructed main1y by e1ectron impact and active spe-cies oxidation.Genera11y,the destruction pathway of to1uene is c1ose1y re1ated to the bond energy of chemi-ca1 groups.The dissociation energy of C—H bonds in methy1 is 3.7 eV,which is sma11er than that in aromatic rings(4.3 eV),C—C bond energy between methy1 and aromatic rings(4.4 eV),C—C bond energy(5.0~5.3 eV)and C=C bond energy(5.5 eV)on aromatic rings[33].The main pathway of to1uene oxidation is to extract H from methy1 group by high energy e1ectron.Hydrogen is extracted from methy1 to form benzy1 radi-ca1,which reacts with O or ·OH to form benza1de-hyde[34].Benza1dehyde may be further oxidized to ben-zoic acid.These aromatic intermediates are further attacked by high-energy e1ectrons,causing the aromat-ic rings to break.The C—C between methy1 and to1u-ene rings can be interrupted to form pheny1 groups,which can combine with OH to form pheno1[35].The compounds generated after the ring opening are sub-stances with sma11 mo1ecu1ar mass,such as formic acid and acetic acid.The reaction proceeds by a series of oxidation step by·OH/O attack,eventua11y producing harm1ess CO2and H2O.

    Fig.9 (a)GC-MS chromatogram of the organic by-products in degradation of to1uene by Pt-CNHS and(b)pathway of degradation of to1uene by Pt-CNHS

    3 Conclusions

    To summarize,Pt-CNHS photocata1yst was synthe-sized via therma1 oxidation etching and in-situ photo-cata1ytic reduction method.The as-prepared Pt-CNHS photocata1yst exhibited significant1y enhanced photo-cata1ytic activities toward gaseous to1uene degradation and the degradation rate was near1y 7.6 and 3.1 times higher than those of CNB and CNHS under visib1e 1ight,respective1y.Various in-p1ane pores on CNHS 1ayer can provide more active sites for the photocata1yt-ic reaction,and the introduction of Pt expands the absorption range,and the combination with CNHS can effective1y separate photogenerated carriers and improve photocata1ytic activity.In addition,Pt-CNHS photocata1yst showed good stabi1ity in five consecutive runs.The research resu1ts cou1d provide an effective approach for design of high-efficiency photocata1yst materia1s under 1ower cost conditions.

    Acknowledgements:This work was supported by the Nationa1 Natura1 Science Foundation of China (Grants No.21808019,41772240),the Natura1 Science Foundation of Jiangsu Province(Grants No.BK20181048,BK20180958)and the Science and Techno1ogy Bureau of Changzhou(Grant No.CJ20190074).

    狠狠婷婷综合久久久久久88av| 日日撸夜夜添| 国产在线一区二区三区精| 精品久久久精品久久久| 美国免费a级毛片| 丰满迷人的少妇在线观看| 久久精品久久久久久噜噜老黄| 人体艺术视频欧美日本| 中文字幕av电影在线播放| 久久这里只有精品19| 亚洲精品美女久久久久99蜜臀 | 国产免费一区二区三区四区乱码| 国产成人91sexporn| 美女脱内裤让男人舔精品视频| 国产乱人偷精品视频| 一边摸一边做爽爽视频免费| 美女xxoo啪啪120秒动态图| 亚洲美女黄色视频免费看| 亚洲成人av在线免费| 亚洲精品国产av蜜桃| 赤兔流量卡办理| 免费日韩欧美在线观看| 亚洲精品久久午夜乱码| 日韩中文字幕视频在线看片| 伊人亚洲综合成人网| 中文天堂在线官网| 欧美+日韩+精品| 少妇被粗大的猛进出69影院| 91成人精品电影| 啦啦啦啦在线视频资源| 在线观看三级黄色| 观看av在线不卡| 永久免费av网站大全| 久久精品国产鲁丝片午夜精品| 少妇熟女欧美另类| 国产片特级美女逼逼视频| 老司机亚洲免费影院| 亚洲国产最新在线播放| 国产人伦9x9x在线观看 | 一级片免费观看大全| 国产精品.久久久| 精品一区二区三卡| 免费少妇av软件| 亚洲成人一二三区av| 国产成人aa在线观看| 精品一区在线观看国产| 七月丁香在线播放| 麻豆av在线久日| 另类亚洲欧美激情| 在线观看一区二区三区激情| 国产黄色视频一区二区在线观看| 国产成人免费观看mmmm| 亚洲色图 男人天堂 中文字幕| 国产成人精品无人区| 亚洲欧美成人综合另类久久久| 欧美中文综合在线视频| 天天躁日日躁夜夜躁夜夜| 老汉色∧v一级毛片| 日韩一区二区视频免费看| 欧美日本中文国产一区发布| 免费高清在线观看视频在线观看| 日韩大片免费观看网站| 日本爱情动作片www.在线观看| 一本大道久久a久久精品| 日本91视频免费播放| 精品人妻熟女毛片av久久网站| 国产在线视频一区二区| av视频免费观看在线观看| 97在线人人人人妻| 99热全是精品| 女性被躁到高潮视频| 亚洲,一卡二卡三卡| 精品一区在线观看国产| 欧美国产精品一级二级三级| 2018国产大陆天天弄谢| 日韩中字成人| 国产 一区精品| 亚洲av国产av综合av卡| 国产熟女午夜一区二区三区| 寂寞人妻少妇视频99o| 免费看不卡的av| 成年动漫av网址| 久久精品aⅴ一区二区三区四区 | 国产无遮挡羞羞视频在线观看| 亚洲精品久久午夜乱码| 久久99热这里只频精品6学生| 日本爱情动作片www.在线观看| 婷婷色麻豆天堂久久| 久久精品夜色国产| 永久网站在线| 女的被弄到高潮叫床怎么办| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| 2018国产大陆天天弄谢| 一级片免费观看大全| 日韩欧美一区视频在线观看| 亚洲国产最新在线播放| 精品午夜福利在线看| 精品人妻偷拍中文字幕| 欧美人与善性xxx| 高清不卡的av网站| 久久精品久久久久久噜噜老黄| 久久女婷五月综合色啪小说| 精品一区二区三卡| 亚洲精品成人av观看孕妇| 欧美中文综合在线视频| 欧美激情极品国产一区二区三区| 国产亚洲欧美精品永久| 欧美激情高清一区二区三区 | 国产精品久久久av美女十八| 一级黄片播放器| 久久精品国产综合久久久| 十分钟在线观看高清视频www| 波野结衣二区三区在线| 久久人人爽人人片av| www.熟女人妻精品国产| 青草久久国产| 久久久久久久久久久免费av| 亚洲国产精品国产精品| videossex国产| 中文字幕色久视频| 久久精品久久久久久噜噜老黄| 最近中文字幕2019免费版| 精品国产一区二区三区四区第35| 黄色视频在线播放观看不卡| 丰满迷人的少妇在线观看| 日本wwww免费看| 亚洲久久久国产精品| 国产野战对白在线观看| 建设人人有责人人尽责人人享有的| 久久综合国产亚洲精品| 一本—道久久a久久精品蜜桃钙片| 国产高清不卡午夜福利| 亚洲精品国产一区二区精华液| 91午夜精品亚洲一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲人成网站在线观看播放| 亚洲精品成人av观看孕妇| 亚洲欧美中文字幕日韩二区| 国产成人av激情在线播放| 18禁裸乳无遮挡动漫免费视频| 亚洲精品日韩在线中文字幕| 青春草视频在线免费观看| 欧美人与性动交α欧美软件| 国产亚洲欧美精品永久| 国产 一区精品| 免费观看av网站的网址| 人人妻人人澡人人爽人人夜夜| 80岁老熟妇乱子伦牲交| 国产免费又黄又爽又色| 亚洲美女搞黄在线观看| 国语对白做爰xxxⅹ性视频网站| 日韩不卡一区二区三区视频在线| 99国产综合亚洲精品| 精品少妇黑人巨大在线播放| 国产淫语在线视频| 97在线人人人人妻| 欧美精品亚洲一区二区| 一二三四中文在线观看免费高清| 亚洲av福利一区| 亚洲精品,欧美精品| av网站免费在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产av码专区亚洲av| 不卡视频在线观看欧美| 国产精品一二三区在线看| av国产精品久久久久影院| 国产精品偷伦视频观看了| 超色免费av| 国产精品国产三级专区第一集| 国产男女超爽视频在线观看| 成年av动漫网址| 咕卡用的链子| 久久人人爽av亚洲精品天堂| 亚洲国产欧美在线一区| 国产精品偷伦视频观看了| 汤姆久久久久久久影院中文字幕| 国产成人精品在线电影| 国产毛片在线视频| 国产免费又黄又爽又色| 国产色婷婷99| 一个人免费看片子| 亚洲精品中文字幕在线视频| 亚洲五月色婷婷综合| 99久国产av精品国产电影| 国产精品女同一区二区软件| 搡女人真爽免费视频火全软件| 满18在线观看网站| 两个人免费观看高清视频| 国产欧美亚洲国产| 精品国产乱码久久久久久男人| 黄色配什么色好看| 国产精品av久久久久免费| 麻豆av在线久日| 久久精品国产自在天天线| 久久久久视频综合| 亚洲av男天堂| 久久久久久久久久久免费av| av视频免费观看在线观看| 韩国精品一区二区三区| 欧美日韩亚洲高清精品| 最近2019中文字幕mv第一页| 在线观看免费日韩欧美大片| 欧美激情高清一区二区三区 | 欧美精品亚洲一区二区| 一二三四中文在线观看免费高清| 搡老乐熟女国产| 精品久久蜜臀av无| 亚洲国产欧美在线一区| 色吧在线观看| 久久久亚洲精品成人影院| 欧美日韩一区二区视频在线观看视频在线| 午夜免费男女啪啪视频观看| 热re99久久精品国产66热6| av不卡在线播放| 99九九在线精品视频| 国产成人免费无遮挡视频| 久久久久久久久免费视频了| 日本wwww免费看| 亚洲av男天堂| 精品视频人人做人人爽| 韩国精品一区二区三区| 日韩一区二区三区影片| 久久久久网色| 我要看黄色一级片免费的| 中文字幕精品免费在线观看视频| 在线观看免费高清a一片| xxxhd国产人妻xxx| 成人漫画全彩无遮挡| 精品久久久久久电影网| 国产精品国产三级专区第一集| 99国产综合亚洲精品| 看免费成人av毛片| 精品亚洲成a人片在线观看| 亚洲美女搞黄在线观看| 国产乱来视频区| 少妇猛男粗大的猛烈进出视频| 性少妇av在线| 美女国产视频在线观看| 国产有黄有色有爽视频| 亚洲欧美成人精品一区二区| 日韩制服丝袜自拍偷拍| 亚洲五月色婷婷综合| 久久热在线av| 亚洲综合色网址| 国产亚洲最大av| 日韩伦理黄色片| 亚洲欧美精品自产自拍| 亚洲视频免费观看视频| 久久国产精品男人的天堂亚洲| av电影中文网址| 久久青草综合色| 国产日韩一区二区三区精品不卡| 亚洲综合色惰| 美女主播在线视频| 久久久久精品久久久久真实原创| 99香蕉大伊视频| 亚洲av男天堂| av网站在线播放免费| 一边亲一边摸免费视频| 久久久久久伊人网av| 亚洲av.av天堂| 精品国产乱码久久久久久男人| 欧美变态另类bdsm刘玥| 久久久久国产网址| 免费在线观看完整版高清| 人人妻人人澡人人爽人人夜夜| 国产精品.久久久| 国产女主播在线喷水免费视频网站| 亚洲精品自拍成人| 边亲边吃奶的免费视频| 91午夜精品亚洲一区二区三区| 亚洲国产av影院在线观看| √禁漫天堂资源中文www| 亚洲成人手机| 久久精品久久久久久久性| 性色av一级| 久久久久久久大尺度免费视频| tube8黄色片| 亚洲男人天堂网一区| 国产免费福利视频在线观看| 制服诱惑二区| av片东京热男人的天堂| 人人澡人人妻人| 亚洲欧美中文字幕日韩二区| 亚洲精品中文字幕在线视频| 80岁老熟妇乱子伦牲交| 国产熟女欧美一区二区| 久久99精品国语久久久| 成人国产av品久久久| www.精华液| 少妇猛男粗大的猛烈进出视频| 久久精品夜色国产| 国产日韩欧美亚洲二区| 日本黄色日本黄色录像| 中文天堂在线官网| 99久久中文字幕三级久久日本| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久av不卡| 少妇人妻精品综合一区二区| 欧美成人午夜免费资源| 亚洲国产日韩一区二区| 大话2 男鬼变身卡| 国产熟女午夜一区二区三区| 少妇的丰满在线观看| 人人澡人人妻人| 中文乱码字字幕精品一区二区三区| 另类精品久久| 午夜福利乱码中文字幕| 1024视频免费在线观看| 久久久久人妻精品一区果冻| 人妻少妇偷人精品九色| 国产精品久久久久久久久免| 免费少妇av软件| 成人亚洲精品一区在线观看| 国产一区二区三区av在线| 亚洲国产av影院在线观看| 99久久综合免费| www.自偷自拍.com| 国产成人一区二区在线| 中文字幕人妻丝袜一区二区 | 午夜福利乱码中文字幕| 久久久久久久久久人人人人人人| 天天操日日干夜夜撸| 中国三级夫妇交换| 99久久综合免费| 999久久久国产精品视频| 宅男免费午夜| 国产福利在线免费观看视频| 亚洲精品乱久久久久久| 美国免费a级毛片| 亚洲国产毛片av蜜桃av| 欧美xxⅹ黑人| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽av亚洲精品天堂| 三级国产精品片| 精品亚洲成a人片在线观看| 最近中文字幕2019免费版| 91午夜精品亚洲一区二区三区| 男人操女人黄网站| 成人影院久久| 久久久精品区二区三区| 黄片小视频在线播放| 精品福利永久在线观看| 高清av免费在线| 我要看黄色一级片免费的| 女人高潮潮喷娇喘18禁视频| 国产男女超爽视频在线观看| 少妇人妻久久综合中文| 男男h啪啪无遮挡| 中文字幕制服av| 亚洲第一青青草原| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91| 男男h啪啪无遮挡| 中文字幕亚洲精品专区| 美女高潮到喷水免费观看| 精品国产一区二区久久| 亚洲成人手机| www.自偷自拍.com| 最近中文字幕2019免费版| 国产麻豆69| videossex国产| 国产精品久久久久久精品古装| 国产日韩欧美在线精品| 久久久久久久久久久免费av| 国产黄频视频在线观看| 久久影院123| 一边摸一边做爽爽视频免费| 久久av网站| 国产精品偷伦视频观看了| 中文字幕色久视频| 99久久精品国产国产毛片| 青春草国产在线视频| 亚洲成av片中文字幕在线观看 | 免费高清在线观看日韩| 久久久久久伊人网av| 精品卡一卡二卡四卡免费| 国产精品久久久久久精品古装| 考比视频在线观看| 日本免费在线观看一区| 日本猛色少妇xxxxx猛交久久| 欧美人与性动交α欧美软件| 国产成人精品一,二区| 天天躁夜夜躁狠狠久久av| 少妇的丰满在线观看| 韩国av在线不卡| 1024香蕉在线观看| 如日韩欧美国产精品一区二区三区| 成人漫画全彩无遮挡| 欧美成人午夜精品| 日韩在线高清观看一区二区三区| 这个男人来自地球电影免费观看 | 国产精品免费大片| 亚洲欧美日韩另类电影网站| 男人添女人高潮全过程视频| 亚洲av日韩在线播放| 中国国产av一级| 青春草国产在线视频| 999久久久国产精品视频| 99精国产麻豆久久婷婷| 免费在线观看黄色视频的| 欧美少妇被猛烈插入视频| 精品少妇一区二区三区视频日本电影 | 伦精品一区二区三区| 一区二区三区精品91| 咕卡用的链子| 亚洲精品久久成人aⅴ小说| 汤姆久久久久久久影院中文字幕| 少妇的丰满在线观看| 最近的中文字幕免费完整| 男人添女人高潮全过程视频| 天堂中文最新版在线下载| 一本色道久久久久久精品综合| 丰满少妇做爰视频| 国产精品不卡视频一区二区| 超色免费av| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 一级,二级,三级黄色视频| 久久热在线av| 另类精品久久| 免费大片黄手机在线观看| 国产麻豆69| 亚洲精品日本国产第一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 搡女人真爽免费视频火全软件| 91精品伊人久久大香线蕉| 日韩视频在线欧美| 国产黄频视频在线观看| 又黄又粗又硬又大视频| 欧美+日韩+精品| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人手机| 久久精品aⅴ一区二区三区四区 | 亚洲精品自拍成人| 黑人猛操日本美女一级片| 日本色播在线视频| freevideosex欧美| 久久99热这里只频精品6学生| 国产爽快片一区二区三区| 免费女性裸体啪啪无遮挡网站| 啦啦啦在线观看免费高清www| 97人妻天天添夜夜摸| 人人妻人人澡人人爽人人夜夜| 国产精品人妻久久久影院| 下体分泌物呈黄色| videosex国产| 国产精品欧美亚洲77777| 18禁动态无遮挡网站| 永久网站在线| 国产片内射在线| 国产爽快片一区二区三区| 欧美日韩成人在线一区二区| 超碰成人久久| 亚洲国产日韩一区二区| av又黄又爽大尺度在线免费看| 韩国av在线不卡| 五月开心婷婷网| 一级毛片电影观看| 99久久人妻综合| 欧美精品一区二区大全| 精品第一国产精品| 午夜福利乱码中文字幕| 久久精品久久久久久噜噜老黄| 午夜老司机福利剧场| 久久av网站| 日韩三级伦理在线观看| 最近的中文字幕免费完整| 蜜桃在线观看..| 少妇的丰满在线观看| 国产成人欧美| 亚洲精品日韩在线中文字幕| 丰满少妇做爰视频| 国产在线免费精品| 午夜久久久在线观看| 极品少妇高潮喷水抽搐| 国产黄频视频在线观看| 女性被躁到高潮视频| 成年人免费黄色播放视频| 高清av免费在线| 日韩制服丝袜自拍偷拍| 精品人妻偷拍中文字幕| 性色avwww在线观看| 人人妻人人爽人人添夜夜欢视频| 日韩中文字幕视频在线看片| 少妇熟女欧美另类| 午夜福利在线免费观看网站| 成人影院久久| 久热这里只有精品99| 日韩一卡2卡3卡4卡2021年| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 国产精品免费视频内射| 久久女婷五月综合色啪小说| 免费不卡的大黄色大毛片视频在线观看| 黄色 视频免费看| 国产精品国产三级专区第一集| 国产精品久久久久成人av| 国产日韩欧美在线精品| 高清黄色对白视频在线免费看| 人人妻人人添人人爽欧美一区卜| 丰满饥渴人妻一区二区三| 国产成人精品久久久久久| 黄片播放在线免费| 久久久精品免费免费高清| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久久久免| 国产熟女欧美一区二区| 亚洲av电影在线观看一区二区三区| 丝瓜视频免费看黄片| 少妇人妻 视频| 成年av动漫网址| 欧美日韩成人在线一区二区| 少妇 在线观看| 老鸭窝网址在线观看| 亚洲精品av麻豆狂野| 熟女av电影| 国产男女内射视频| videos熟女内射| 少妇人妻 视频| 女的被弄到高潮叫床怎么办| 美女高潮到喷水免费观看| www.精华液| 91成人精品电影| 人人妻人人澡人人看| 亚洲精品在线美女| 久久久久久久久久久久大奶| 日本欧美国产在线视频| 国产成人一区二区在线| 国产亚洲欧美精品永久| 久久久久久人妻| 一区二区三区精品91| 下体分泌物呈黄色| 午夜福利在线免费观看网站| 久久精品久久精品一区二区三区| 久久精品国产亚洲av天美| 亚洲精品视频女| 亚洲国产色片| 人成视频在线观看免费观看| 亚洲av免费高清在线观看| 国产男女超爽视频在线观看| 国产av国产精品国产| 宅男免费午夜| 黑人猛操日本美女一级片| 国产成人精品一,二区| 国产一区二区在线观看av| 亚洲国产成人一精品久久久| 成人手机av| 久久久久久免费高清国产稀缺| 大话2 男鬼变身卡| 一级毛片我不卡| 国产一区二区三区综合在线观看| 久久久国产一区二区| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 亚洲av在线观看美女高潮| 26uuu在线亚洲综合色| 丰满饥渴人妻一区二区三| freevideosex欧美| 国产黄色视频一区二区在线观看| 亚洲国产精品一区二区三区在线| 国产av国产精品国产| 久久av网站| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 又粗又硬又长又爽又黄的视频| 精品亚洲成a人片在线观看| 国产成人免费观看mmmm| 女的被弄到高潮叫床怎么办| 青草久久国产| 性色av一级| 只有这里有精品99| 久久人人爽人人片av| 大话2 男鬼变身卡| 久久久久网色| 美女脱内裤让男人舔精品视频| av国产久精品久网站免费入址| 捣出白浆h1v1| 黑人欧美特级aaaaaa片| 黄片小视频在线播放| 亚洲av电影在线观看一区二区三区| 亚洲三级黄色毛片| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品国产精品| 国产精品成人在线| 久久久精品区二区三区| 成人黄色视频免费在线看| 国产精品久久久久久久久免| 成人手机av| 欧美日韩亚洲高清精品| 99香蕉大伊视频| 纯流量卡能插随身wifi吗| 久久精品国产自在天天线| 纯流量卡能插随身wifi吗| 欧美bdsm另类| 男人舔女人的私密视频| 视频区图区小说| 97在线人人人人妻| 亚洲av男天堂| 十八禁高潮呻吟视频| 桃花免费在线播放| 欧美97在线视频| www.精华液| 熟女av电影| 啦啦啦视频在线资源免费观看| 亚洲人成电影观看| 999精品在线视频| 久久久久久伊人网av| 在线观看人妻少妇| 大片电影免费在线观看免费| 亚洲男人天堂网一区| 91精品国产国语对白视频| 免费高清在线观看日韩| 欧美 亚洲 国产 日韩一|