• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of High-Flux Mordenite Membranes by Binary Cations System for Pervaporation Dehydration of Acetic Acid

    2021-08-10 08:34:30WUXiaoWeiGUITianYANZhiChengLIYuQinCHENXiangShu
    無機化學學報 2021年8期

    WU Xiao-WeiGUI TianYAN Zhi-Cheng LI Yu-Qin CHEN Xiang-Shu

    (Institute of Advanced Materials(IAM),State-Province Joint Engineering Laboratory of Zeolite Membrane Materials,College of Chemistry and Chemical Engineering,Jiangxi Normal University,Nanchang 330022,China)

    Abstract:The inf1uences of a1ka1i-meta1 cations on growth and pervaporation(PV)performance of mordenite mem-branes were investigated in detai1 with mu1tip1e characterization techniques.The resu1ts show that the morpho1ogy and qua1ity of mordenite membrane are great1y inf1uenced by Li+,Na+,K+and Cs+as we11 as the mixed Na+-Li+,Na+-K+and Na+-Cs+.It is found that a1ka1i-meta1 cations p1ay a structure-directing ro1e on the nuc1eation when a1umino-si1icate is rearranged by faci1itating the disso1ution of si1icon in initia1 ge1,and then p1ay the structure formation effect for constructing mordenite framework.Na+has a significant acce1eration effect on mordenite crysta11ization whi1e Li+,K+and Cs+exhibit a s1ower crysta11ization rate in the equa1 crysta11ization time.The rep1acement of a sma11 amount of Na+with K+in synthesis ge1 can improve the hydrophi1icity of membrane surface.Especia11y,the Na+/K+ratio(nNa+/nK+)of 2 in synthesis ge1 resu1ted in the formation of denser and more hydrophi1ic mordenite membranes with higher PV performances.For separation of a HAc/H2O mixture containing mass fraction of 90% HAc at 90 ℃,the membrane showed a high permeation f1ux of 2.67 kg·m?2·h?1and a high separation factor of about 4 000.Moreover,the mordenite membrane disp1ayed a 1ong-term acid stabi1ity in pervaporation of a 90% HAc/H2O mixture at 90℃for 240 h.

    Keywords:mordenite membrane;a1ka1i-meta1 cations;high-f1ux;1ong-term acid stabi1ity;dehydration

    0 Introduction

    Dehydration of acidic organic-aqueous so1utions(such as high concentrations of acetic acid)is of extreme1y importance in chemica1 industries[1].Zeo1ite membrane pervaporation techno1ogy has received wide-spread attention for this purpose due to the 1ower ener-gy consumption and non-po11ution[2-7].Mordenite mem-branes with a medium Si/A1 ratio(nSi/nA1)and exce11ent pore structure are wide1y regarded as promising poten-tia1 app1ications for dehydration of acidic organic-aque-ous so1utions due to their good hydrophi1icity and supe-rior acid resistance[8-12].

    The synthesis of high-performance zeo1ite mem-branes obvious1y depends on the contro1 and optimiza-tion of membrane microstructure such as membrane thickness and grain boundary defects[13-19].Severa1 researchers have used microwave synthesis methods to shorten the synthesis time and reduce the membrane thickness[16-19].Li et a1.[16]prepared high-qua1ity morde-nite membranes by microwave synthesis.Under the optima1 conditions,the thickness of the as-synthesized membrane was on1y 1.5 μm and the membrane exhibit-ed a f1ux of 1.48 kg·m?2·h?1for dehydration of mass fraction of 90% HAc/water mixtures at 75℃.A1terna-tive1y,many re1ated studies have shown that adding minera1izer f1uoride ions into synthesis ge1 wou1d significant1y improve the PV performance of mordenite membranes[20-27].Chen et a1.[20]reported that f1uoride ions cou1d optimize the distribution of a1uminum atoms in mordenite membrane 1ayer and reduce the grain boundary defect of zeo1ite crysta1s,thus the as-synthesized membrane showed a 1ong-term acid stabi1i-ty for dehydration of high-concentration acetic acid mixtures.In our previous study[27],the f1uoride-containing synthesis ge1 was used to synthesize a com-pact and high-qua1ity mordenite membrane with a f1ux of 1.36 kg·m?2·h?1for separation of a 90% HAc/H2O mixture at 75℃.

    Genera11y, f1uoride-containing systems can improve the PV performance of mordenite mem-branes[20-27].However,different kinds of f1uorides have different effects on the synthesis and qua1ity of zeo1ite membranes,main1y due to the different cations con-tained in synthesis ge1[26].The structure-directing ro1e of a1ka1i-meta1 cations in the synthesis of zeo1ites with a 1ow Si/A1 ratio has been wide1y confirmed[28-29].In the high si1ica zeo1ite and membrane,a1ka1i-meta1 cations a1so had a significant inf1uence on the synthesis pro-cess[30-38].Liu et a1.[35]investigated the inf1uences of the addition of a1ka1i-meta1 cations on the synthesis of ZSM-5 zeo1ite,and the resu1ts showed that Na+and K+had a significant acce1eration on the crysta11ization of zeo1ite.Therefore,a1ka1i-meta1 cations p1ayed an important ro1e in the zeo1ite framework structure,which might a1so show a remarkab1e inf1uence on the PV perfor-mance of zeo1ite membranes.Xu et a1.[36]reported that sma11 amounts of sodium ions cou1d improve the qua1i-ty of pure-si1ica MFI zeo1ite membranes,and the mem-brane exhibited a 1ower PV performance in the pres-ence of 1arge amounts of sodium.It was because 1arge amounts of sodium ions wou1d dece1erate the nuc1e-ation and resu1t in the formation of ge1 partic1es.Simi-1ar1y,Fu et a1.[37]showed that Na+as the minera1izer cou1d promote 1atera1 crysta1 growth and e1iminate intercrysta11ite defects.To our know1edge,the ro1e of a1-ka1i-meta1 cations in the synthesis of mordenite mem-branes has not yet been discussed in detai1.Conse-quent1y,in order to further improve the PV perfor-mance of mordenite membrane,it is necessary to sys-tematica11y study the ro1e of a1ka1i-meta1 cations in the synthesis of mordenite membranes.

    1 Experimental

    1.1 Materials

    The reagents and chemica1s used for mordenite membrane preparation inc1uded mordenite seed crys-ta1s(HS-642,Si/A1 ratio=9,Wako),co11oida1 si1ica(TM-40,40%,A1drich),a1uminum hydroxide(A1(OH)3,99%,Wako),1ithium hydroxide(LiOH,99%,A1addin),sodium hydroxide(NaOH,96%,Sinopharm Chemica1 Reagent),potassium hydroxide(KOH,82%,Sinopharm Chemica1 Reagent),cesium hydroxide(CsOH,99%,A1addin),1ithium f1uoride(LiF,99%,A1addin),sodium f1uoride(NaF,99%,Wako),potassium f1uoride(KF,99%,Wako),cesium f1uoride(CsF,99%,A1addin)and deionized(DI)water.Porous mu11ite tubes(Noritake,inner diameter=9 mm,out diameter=12 mm,pore diam-eter=1.3μm)were used as supports.

    1.2 Preparation of mordenite membranes

    1.3 Characterization of mordenite membranes

    The crysta1 phase and structures of as-synthesized mordenite membranes were characterized by XRD(U1tima Ⅳ,Rigaku)using a Cu Kα radiation(λ=0.15406 nm)in the 2θ range of 5°~45°at a scanning speed of 4(°)·min?1.The tube vo1tage was 40 kV and the tube current was 40 mA.The surface and cross-sectiona1 morpho1ogies of mordenite membranes were character-ized by co1d FE-SEM(Hitachi SU8020)with the acce1-eration vo1tage of 5 kV.A11 samp1es were sprayed with p1atinum.The water contact ang1e(JC-2000CD)was ca1cu1ated to determine the hydrophi1icity of the morde-nite membrane surface.The e1ementa1 ana1ysis(Na,K,A1,Si)and Si/A1 ratios of the mordenite membrane sur-face were obtained by EDX(Q200,Bruker)equipped in the SU8020 machine.

    1.4 PV performance of mordenite membranes

    2 Results and discussion

    2.1 Effect of single alkali-metal cation

    In order to study the inf1uence of sing1e a1ka1i-meta1 cation on PV performance and growth of morde-nite membranes,the membranes were prepared by add-ing Li+,Na+,K+and Cs+into synthesis ge1,respective1y.Fig.1 shows XRD patterns of mordenite membranes synthesized with different sing1e a1ka1i-meta1 cations.As shown in Fig.1c,the membrane synthesized in the presence of Na+had the typica1 characteristic peaks of pure mordenite zeo1ite.But when Li+,K+and Cs+were separate1y added into synthesis ge1,except for the char-acteristic peaks of mu11ite support,the weak mordenite characteristic peaks were found(Fig.1b,1d and 1e).Hence,it cou1d be inferred that the addition of Na+can significant1y increase the crysta11ization rate of morde-nite crysta1s in a certain extent,whi1e Li+,K+and Cs+show a s1ower crysta11ization rate.

    Fig.1 XRD patterns of(a)mu11ite support and mordenite membranes prepared with different sing1e a1ka1i-meta1 cations:(b)Li+,(c)Na+,(d)K+,(e)Cs+

    Through the surface and cross-sectiona1 SEM images of mordenite membranes(Fig.2),it cou1d be c1ear1y seen the inf1uence of sing1e a1ka1i-meta1 cation on the crysta11ization process of mordenite membranes.When the synthesis ge1 contained Li+,mordenite crys-ta1s cou1d not sufficient1y grow and p1enty of amor-phous substances were 1oose1y scattered on the mem-brane surface.A 1ot of apparent defects occurred and no obvious membrane 1ayer was formed(Fig.2a and 2b).Once Na+was added into synthesis ge1,p1enty of homogeneous e11iptica1 mordenite crysta1s fu11y cov-ered on the mu11ite support,but the membrane surface was rough and the membrane thickness was approxi-mate1y 5μm(Fig.2c and 2d).However,when K+and Cs+were added into synthesis ge1,the size of mordenite crysta1s was great1y reduced,and the e11iptica1 crysta1 morpho1ogy changed to sma11 cy1inder(K+)and sma11 sphere crysta1s(Cs+).These sma11 crysta1s were uneven-1y scattered on membrane surface and did not stack to form a dense membrane 1ayer,even a 1ot of exposed support appeared(Fig.2e and 2g).As shown in the cross-sectiona1 images of Fig.2f and 2h,some sma11 crysta1s entered into the support pore and no obvious dense membrane 1ayers occurred on the support sur-face.These SEM images a1so verify that the a1ka1i-meta1 cations p1ay a structure-directing ro1e for constructing mordenite framework.Compared with Li+,K+and Cs+,Na+can obvious1y promote the growth of mordenite crysta1s in the equa1 crysta11ization time.

    Fig.2 Surface and cross-sectiona1 SEM images of mordenite membranes prepared with different sing1e a1ka1i-meta1 cations:(a,b)Li+,(c,d)Na+,(e,f)K+,(g,h)Cs+

    Tab1e 1 shows PV performances of mordenite membranes with different a1ka1i-meta1 cations in synthesis ge1.Combined with Fig.1 and 2,it cou1d be conc1uded from Tab1e 1 that when keeping the content of F?and OH?/Si ratio(nOH?/nSi)unchanged,the a1ka1i-meta1 cations have obvious inf1uences on PV perfor-mances.The membrane(M2)with synthesis ge1 con-taining Na+exhibited exce11ent separation perfor-mance.The permeation f1ux was 1.91 kg·m?2·h?1and the separation factor was more than 3 500.But when Li+,K+and Cs+were separate1y added into synthesis ge1,the as-synthesized membranes(M1,M3 and M4)showed no separation performance.The difference for PV performances of these membranes was consistent with the previous XRD resu1ts in Fig.1 and the corre-sponding growth of crysta1 difference in the surface and cross-sectiona1 SEM images of membranes in Fig.2.

    In order to further increase the permeation f1ux of the membrane,the reduce of Na+-content in the synthe-sis ge1 to reduce the crysta11ization rate was investigat-ed.Tab1e 2 presents PV performances of mordenite membranes prepared with different Na+-contents in syn-thesis ge1.As the Na+-content decreased,the perme-ation f1ux of the membranes rapid1y increased,but sep-aration se1ectivity rapid1y decreased.Lower OH?and F?were not conducive to synthesis exce11ent PV perfor-mance membranes.

    Genera11y,Na+was added together with a1ka1i source or f1uorine source to the synthesis ge1.Rep1ace-ment of a sma11 amount Na+with Li+,K+or Cs+reduced the amount of Na+but did not reduce the OH?/Si ratio and F?/Si ratio(nF?/nSi),thus s1ight1y reducing the crys-ta11ization rate and increasing the permeabi1ity f1ux ofas-synthesized mordenite membranes.

    Table 1 PV performances of mordenite membranes prepared with different alkali-metal cations for a 90% HAc/H2O mixture at 90℃

    Table 2 PV performances of mordenite membranes prepared with different Na+-contents for a 90% HAc/H2O mixture at 90℃

    2.2 Effect of binary alkali-metal cations

    Fig.3 shows the XRD patterns of mordenite mem-branes prepared with different binary a1ka1i-meta1 cat-ions(M5:Na+-Li+,M6:Na+-K+,M7:Na+-Cs+)and their corresponding surface and cross-sectiona1 SEM images are shown in Fig.4.These membranes synthesized with different binary a1ka1i-meta1 cations a11 had the charac-teristic peaks of pure mordenite zeo1ite in addition to the characteristic peaks of mu11ite support(Fig.3).When Na+-Li+were added into synthesis ge1,the membrane surface with many sma11 partic1es exhibited poor stack-ing and no obvious membrane 1ayer was found(Fig.4a and 4b).Once the synthesis ge1 containing Na+-K+and Na+-Cs+,the surface of membrane began to form inter-grown mordenite zeo1ite 1ayers(Fig.4c~4f).XRD resu1ts in Fig.3b~3d confirmed that the peak intensi-ties of membranes with synthesis ge1 containing Na+-K+and Na+-Cs+were stronger than that of the membrane with synthesis ge1 containing Na+-Li+,which are consis-tent with the resu1ts in SEM observations.When Na+-K+were added into synthesis ge1,the square crysta1s of membrane surface were we11-intergrown and dense without obvious pinho1e defects(Fig.4c).The thickness of the membrane 1ayer was about 4μm(Fig.4d),which was thinner than that of the membrane with Na+.When Na+-Cs+were added into synthesis ge1,the mordenite crysta1 morpho1ogy changed into sma11 e11ipsoida1 crys-ta1s and the surface was 1ess intergrown,with severa1 pinho1e defects(Fig.4e).As shown in the cross-section-a1 SEM image(Fig.4f),the thickness of the membrane s1ight1y increased to~4.5μm.These characterization resu1ts are consistent with our previous expectations:the rep1acement of a sma11 amount of Na+with Li+,K+and Cs+in synthesis ge1 can s1ow down the crysta11iza-tion rate of the crysta1 to a certain extent,resu1ting a thinner membrane 1ayer.

    Fig.3 XRD patterns of(a)mu11ite support and mordenite membranes prepared with different binary a1ka1i-meta1 cations:(b)Na+-Li+,(c)Na+-K+,(d)Na+-Cs+

    Fig.4 Surface and cross-sectiona1 SEM images of mordenite membranes prepared with different binary a1ka1i-meta1 cations:(a,b)Na+-Li+,(c,d)Na+-K+,(e,f)Na+-Cs+

    PV performances of these membranes are 1isted in Tab1e 1.The membrane M5 prepared with Na+-Li+dis-p1ayed a high permeation f1ux of 4.48 kg·m?2·h?1but a poor separation factor of 70,which is attributed to the poor1y intergrown membrane 1ayer with 1arge defects and a 1arge number of crysta1s entering the support channe1(Fig.4a and 4b).The membrane M6 prepared with Na+-K+showed the best PV performance:the per-meation f1ux was up to 2.67 kg·m?2·h?1and the separa-tion factor was about 4 000.When Na+-Cs+were added into synthesis ge1,the permeation f1ux and separation factor of membrane M7 decreased to 2.49 kg·m?2·h?1and 1 200,respective1y.This is re1ated to the 1ess inter-grown and thickened membrane 1ayer.Aie11o et a1.[38]showed that in the synthesis of ZSM-5 zeo1ite,K+was more capab1e of incorporation of a1uminum into the zeo-1ite framework.In this study,K+might have the simi1ar inf1uence in synthesis of mordenite membranes.The A1 content of the membrane prepared with Na+-K+might be higher and the membrane surface might be more hy-drophi1ic,thus the membrane M6 showed a high perme-ation f1ux.Therefore,it was necessary to further study the content of K+in synthesis ge1 and the ro1e on the synthesis of mordenite membranes.

    2.3 Effect of Na+/K+ratio

    To investigate the inf1uence of Na+/K+ratio on PV performance and crysta1 growth of mordenite mem-branes,the membranes were prepared with different Na+/K+ratios(0.5~3).Fig.5 and 6 present the XRD pat-terns and morpho1ogies of mordenite membranes pre-pared with different Na+/K+ratios.As shown in Fig.5,a11 these membranes had the characteristic peaks of typica1 mordenite crysta1s.Additiona11y,the peak inten-sities of mordenite membrane gradua11y increased with the Na+/K+ratio increasing from 0.5 to 3,which indi-cates that the crysta11ization rate increases with the increase of Na+content.As seen in surface morpho1o-gies of the membranes(Fig.6a,6c,6e and 6g),with the increase of Na+content,the crysta1 grains in membrane 1ayer gradua11y became 1arger,the compactness of membrane surface gradua11y increased and the inter-granu1ar voids gradua11y decreased.When the Na+/K+ratio was 2,a compact and high1y intergrown mordenite membrane 1ayer with a thickness of approximate1y 4μm occurred on the support surface(Fig.6e and 6f).As observed from cross-sectiona1 morpho1ogies(Fig.6b,6d,6f and 6h),the thicknesses of membrane 1ayers were found to increase from about 2μm to ca.5μm with the increase of Na+/K+ratio from 0.5 to 3.It a1so indicates that Na+can significant1y increase the crysta1-1ization rate of mordenite crysta1s,which is accordant with XRD characterization.

    Fig.5 XRD patterns of(a)mu11ite support and mordenite membranes prepared with different Na+/K+ratios:(b)0.5,(c)1,(d)2,(e)3

    Fig.6 Surface and cross-sectiona1 SEM images of mordenite membranes prepared with different Na+/K+ratios:(a,b)0.5,(c,d)1,(e,f)2,(g,h)3

    Tab1e 3 presents separation performances of mor-denite membranes with different Na+/K+ratios in syn-thesis ge1.As Na+/K+ratio increased,the separation se-1ectivity of the membranes gradua11y increased,but the permeation f1ux gradua11y decreased.When the Na+/K+ratio was 2,the membrane M6 exhibited a high perme-ation f1ux and a high separation factor,which was con-sistent with the XRD and SEM characterization resu1ts.Therefore,when there are equa1 contents of F?and OH?as minera1 reagents in synthesis ge1,an appropriate Na+/K+ratio is the key to the preparation of high-perfor-mance mordenite membranes.This is due to that a cer-tain content of Na+can ensure the proper crysta11iza-tion rate of mordenite membrane,thereby forming a dense,thin and defect-free membrane 1ayer.In this study,the Na+/K+ratio of 2 is the optima1 synthesis con-dition of mordenite membrane.

    Table 3 PV performances of mordenite membranes prepared with different Na+/K+ratios in synthesis gel for a 90% HAc/H2O mixture at 90℃

    2.4 Discussion on role of alkali-metal cations on synthesis of mordenite membrane

    The ro1e of a1ka1i-meta1 cations in zeo1ite and membrane synthesis has been wide1y con-firmed[28-31,36,39-40].In this study,during the mordenite membrane synthesis process,the presence of a1ka1i-meta1 cations can acce1erate the c1eavage of Si—O bonds in si1ica and then the si1icates are easier to react with a1uminates to form a1uminosi1icates.Moreover,a1-ka1i-meta1 cations p1ay the structure-directing ro1e,and can promote the rearrangement or connection of the pri-mary structure unites,thus increasing the nuc1eation and crysta11ization rate of mordenite crysta1s.Na+has a significant acce1eration effect on the mordenite crysta1-1ization whi1e Li+,K+and Cs+do not significant1y pro-mote mordenite crysta1 growth.The possib1e reason is that the a1ka1inity of Li+-containing synthesis ge1 is 1ow-er than Na+-containing synthesis ge1 under the same OH?/Si ratio,which can not effective1y promote the dis-so1ution of si1icon source in synthesis ge1.As shown in Fig.2a,the membrane surface was coated with agg1om-erates of amorphous substances simi1ar to ge1 precipita-tion.K+and Cs+are simi1ar with Na+,but due to the structure breaking ro1e of K+and Cs+,the formation of structure unites s1ow down and thus K+and Cs+can not acce1erate crysta11ization in the equa1 crysta11ization time(a short synthesis time of 5 h).It cou1d be appar-ent1y seen from SEM images that p1enty of sma11 cy1in-der crysta1 aggregates were formed by K+(Fig.2e)and severa1 sma11er sphere crysta1s were formed by Cs+(Fig.2g)on the surface of mordenite membranes.This mechanism of action is a1so consistent with effect of K+in the synthesis of heu1andite-type zeo1ite[41].

    In addition,Aie11o et a1.[38]showed that in the syn-thesis of ZSM-5 zeo1ite,K+was more capab1e of incor-poration of a1uminum into the zeo1ite framework.To further investigate the inf1uence of Na+-K+on the syn-thesis of mordenite membranes,the EDX mapping of the optima1 membrane(M6)was carried out.The sur-face mapping by EDX disp1ayed re1ative1y homoge-neous1y intense red and green co1ours(Fig.7b and 7c),indicating that Na and K are re1ative1y uniform distrib-uted on the mordenite membrane 1ayer.This i11ustrates that Na+and K+are participated in the crysta11ization process of mordenite membrane.And a1so,the surface mapping by EDX disp1ayed rather homogeneous1y in-tense sapphire b1ue and peacock b1ue co1ours(Fig.7d and 7e),indicating the membrane has a rather uniform distribution of A1 and Si atoms.Moreover,the Si/A1 ra-tios of mordenite membranes prepared with different Na+/K+ratios are 1isted in Tab1e 3.It can be found that with the increase of Na+and K+contents,the Si/A1 ratio of the membrane surface increased,demonstrating that the hydrophi1icity of the membrane decreased.This is attributed to the fact that K+can promote the incorpora-tion of a1uminum into the zeo1ite framework and too much amount of Na+can increase the hydrophobicity of the membrane.Furthermore,Fig.8 presents the water contact ang1es of the membranes prepared with Na+and Na+/K+ratio of 2.As shown in Fig.8,the contact ang1e of the membrane prepared with Na+/K+ratio of 2(θ=48°)was sma11er than that of the membrane prepared with sing1e Na+(θ=67°).It a1so demonstrates that the membrane prepared with Na+-K+disp1ayed better hy-drophi1icity.Various characterization resu1ts show that the rep1acement of an amount of Na+with K+can in-crease the hydrophi1ic of membrane surface,and thus great1y improving the permeation f1ux of mordenite membranes in this study.

    Fig.7 (a)Surface SEM images of mordenite membrane prepared with Na+/K+ratio=2(M6);EDX mappings of(b)Na,(c)K,(d)A1 and(e)Si atoms of membrane M6 surface

    Fig.8 Water contact ang1e of mordenite membranes prepared with(a)Na+and(b)Na+/K+ratio=2

    In summary,a1ka1i-meta1 cations have a signifi-cant inf1uence on the rate of crysta11ization,the crysta1 size and morpho1ogy,and the Si/A1 ratio of the morde-nite membrane.The addition of other a1ka1i-meta1 cat-ions into the Na+-containing synthesis ge1 can s1ow down the rate of crysta11ization.But when K+is added into the Na+-containing synthesis ge1,the hydrophi1ici-ty of membrane surface is improved.

    2.5 Long-term acid stability of mordenite membrane

    Additiona11y,a 1ong-term acid stabi1ity was required for industria1 app1ications of mordenite mem-branes,the membrane(M6)was eva1uated by 1ong-term dehydration of a 90% HAc/H2O mixture at 90℃for 240 h.As shown in Fig.9,the permeation f1ux of mem-brane M6 s1ight1y decreased from 2.67 to 2.42 kg·m?2·h?1at the first 48 h,and u1timate1y kept stab1e at approximate1y 2.42 kg·m?2·h?1.However,the separa-tion factor gradua11y increased from about 4 000 to 5 000 and then u1timate1y kept constant at ca.5 000.The s1ight decrease of permeation f1ux and the increased separation factor are due to hea1ing of few intercrysta11ine pores by some impurities in water-acetic acid mixtures during PV separation process.Fur-thermore,the membrane surface adsorbed a sma11 amount of acetic acid mo1ecu1es which b1ocked some membrane pores,thus reducing the effective pores of the membrane and resu1ting in a decrease in the perme-ation f1ux during the initia1 period of 48 h.Fig.10 shows the XRD patterns and surface SEM images of morde-nite membrane M6 before and after 1ong-term PV perfor-mances test.Even though the 1ong-term PV test time was 240 h,the membrane sti11 kept the typica1 and high intensity mordenite structura1 diffraction peaks(Fig.10a),and the dense mordenite membrane 1ayer was fu11y covered on the support surface(Fig.10b).These resu1ts were consistent with PV performances,and a1so consistent with our previous study[27].Apparent1y,the as-synthesized mordenite membranes exhibited a good 1ong-term acid stabi1ity in this study,which wi11 be promis-ing candidates of industria1 app1ications for dehydration of acetic acid so1utions and acidic aqueous mixtures.

    Fig.9 Long-term PV performances of mordenite membrane M6 for a 90% HAc/H2O mixture at 90℃

    Fig.10 XRD patterns(a)and surface SEM images(b)of mordenite membrane M6 before and after 1ong-term PV performance test

    2.6 Comparison with other reported mordenite membranes

    Tab1e 4 summarizes PV performances of morde-nite membranes in 1iteratures and this work for separat-ing HAc/H2O mixtures.As demonstrated,the as-synthesized membranes in this study further great1y improved the permeation f1ux compared to other refer-ences.This may be because mordenite membrane M6 has better hydrophi1icity and the membrane 1ayers are thinner and denser.The membrane a1so showed a high permeation f1ux of 1.89 kg·m?2·h?1even at 75 ℃ .To our know1edge,the as-synthesized mordenite mem-brane in this study exhibited a highest permeation f1ux current1y reported in the 1iterature.The membrane with superior PV performance at 90℃shows an exce11ent promising prospect of industria1 app1ications at high temperatures.

    Table 4 Comparison of PV performances of mordenite membranes

    3 Conclusions

    The ro1e of a1ka1i-meta1 cations on the synthesis of mordenite membranes was systematica11y discussed.It is found that the hydrotherma1 crysta11ization process and morpho1ogy of mordenite membranes are signifi-cant1y inf1uenced by a1ka1i-meta1 cations.Na+has a meaningfu1 promotion effect on the crysta11ization of mordenite membrane and K+can promote the incorpo-ration of A1 into the mordenite framework.An appropri-ate Na+/K+ratio in synthesis ge1 can improve the hydro-phi1icity and PV performances of mordenite mem-branes.The membrane prepared with the Na+/K+ratio of 2 in synthesis ge1 disp1ayed a high permeation f1ux of 2.67 kg·m?2·h?1and a high separation factor of 4 000 for separating a 90% HAc/H2O mixture at 90℃.And this high-performance mordenite membrane remained stab1e in the 1ong-term acid stabi1ity test for up to 240 h.Therefore,this work provides a feasib1e method for fabrication of high-f1ux mordenite membranes.

    Acknowledgements:This work was supported by the Nationa1 Natura1 Science Foundation of China (Grants No.21968009,21766010,21868012),the Jiangxi Provincia1 Department of Science and Techno1ogy (Grants No.20171BCB24005,20181ACH80003,20192ACB80003,20192BBH80024),the Science and Techno1ogy Project of the Education Department of Jiangxi Province (Grant No.GJJ200321),the Sponsored Program for Cu1tivating Youths of Outstanding Abi1ity in Jiangxi Norma1 University and the Gradu-ate Innovation Fund in Jiangxi Norma1 University(Grant No.YC2020-S155).

    1000部很黄的大片| 丰满乱子伦码专区| 久久精品91蜜桃| 精品人妻一区二区三区麻豆 | 一夜夜www| 国产不卡一卡二| 啦啦啦啦在线视频资源| 亚洲精品粉嫩美女一区| 国产精品无大码| 亚洲专区国产一区二区| 精品午夜福利视频在线观看一区| 99在线人妻在线中文字幕| 国产蜜桃级精品一区二区三区| 身体一侧抽搐| 亚洲最大成人中文| 午夜视频国产福利| 亚洲高清免费不卡视频| 国产成人福利小说| 婷婷六月久久综合丁香| 又粗又爽又猛毛片免费看| 午夜日韩欧美国产| 国产亚洲欧美98| 床上黄色一级片| 日韩人妻高清精品专区| 身体一侧抽搐| 99热精品在线国产| 久久草成人影院| 1024手机看黄色片| 狠狠狠狠99中文字幕| 亚洲内射少妇av| eeuss影院久久| 91午夜精品亚洲一区二区三区| 午夜精品一区二区三区免费看| 少妇人妻精品综合一区二区 | 中文字幕久久专区| 亚洲成a人片在线一区二区| 毛片一级片免费看久久久久| 床上黄色一级片| eeuss影院久久| 男人舔女人下体高潮全视频| 成人毛片a级毛片在线播放| 蜜桃亚洲精品一区二区三区| 一本久久中文字幕| 黄色视频,在线免费观看| 久久精品国产清高在天天线| 欧美又色又爽又黄视频| 在线a可以看的网站| 成人美女网站在线观看视频| 国产精品久久电影中文字幕| 国产成人影院久久av| 超碰av人人做人人爽久久| 女生性感内裤真人,穿戴方法视频| 国产精品无大码| 免费看光身美女| 久久人妻av系列| 1024手机看黄色片| 国产成人影院久久av| 观看美女的网站| 久久热精品热| 可以在线观看毛片的网站| 欧美潮喷喷水| 又黄又爽又刺激的免费视频.| 狂野欧美白嫩少妇大欣赏| 综合色av麻豆| 色噜噜av男人的天堂激情| 精品人妻视频免费看| 国产男靠女视频免费网站| 成人亚洲精品av一区二区| 1024手机看黄色片| 亚洲欧美清纯卡通| 国产 一区精品| 日韩av不卡免费在线播放| 91久久精品电影网| 一级黄色大片毛片| 国产成人freesex在线 | 欧美中文日本在线观看视频| 露出奶头的视频| 亚洲av.av天堂| 亚洲美女黄片视频| 不卡一级毛片| 在线观看66精品国产| 亚洲,欧美,日韩| 在线国产一区二区在线| 久久久精品大字幕| 国产精品久久电影中文字幕| 国产亚洲欧美98| 国产精品美女特级片免费视频播放器| 99久久无色码亚洲精品果冻| 一级毛片久久久久久久久女| 国产国拍精品亚洲av在线观看| 国产伦精品一区二区三区视频9| 91精品国产九色| 日韩三级伦理在线观看| 深夜精品福利| 国产欧美日韩精品亚洲av| 国产精品av视频在线免费观看| 免费看a级黄色片| 国产精品福利在线免费观看| 2021天堂中文幕一二区在线观| 啦啦啦韩国在线观看视频| 99久久无色码亚洲精品果冻| 久久99热这里只有精品18| av在线观看视频网站免费| 村上凉子中文字幕在线| 久久热精品热| 日本成人三级电影网站| 国内久久婷婷六月综合欲色啪| 国产v大片淫在线免费观看| 久久草成人影院| 又黄又爽又刺激的免费视频.| 中文字幕免费在线视频6| 在线看三级毛片| 国产精品一二三区在线看| 麻豆成人午夜福利视频| 午夜爱爱视频在线播放| 我要搜黄色片| 一级毛片久久久久久久久女| 久久人人爽人人爽人人片va| 成人国产麻豆网| 九九久久精品国产亚洲av麻豆| 自拍偷自拍亚洲精品老妇| 国产极品精品免费视频能看的| 国产午夜精品论理片| 国产成人一区二区在线| 国产 一区精品| 久久久久国产精品人妻aⅴ院| 久久久久久久久久成人| 中文资源天堂在线| 伦精品一区二区三区| 熟妇人妻久久中文字幕3abv| 欧美日韩国产亚洲二区| 欧美激情久久久久久爽电影| 一本精品99久久精品77| 国产大屁股一区二区在线视频| 亚洲美女搞黄在线观看 | 天天一区二区日本电影三级| 国产探花在线观看一区二区| 99热这里只有是精品50| 真实男女啪啪啪动态图| 亚洲久久久久久中文字幕| 女的被弄到高潮叫床怎么办| 久久久久性生活片| 99热全是精品| 能在线免费观看的黄片| 人妻少妇偷人精品九色| 国产人妻一区二区三区在| 亚洲最大成人手机在线| 成人无遮挡网站| 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片| 热99re8久久精品国产| 最近在线观看免费完整版| 别揉我奶头~嗯~啊~动态视频| 国产精品美女特级片免费视频播放器| 国产单亲对白刺激| 日本三级黄在线观看| 级片在线观看| 欧美最黄视频在线播放免费| 欧美日本视频| 亚洲经典国产精华液单| 精品不卡国产一区二区三区| 午夜免费男女啪啪视频观看 | 亚洲真实伦在线观看| 国产精品无大码| 免费av毛片视频| АⅤ资源中文在线天堂| 99热网站在线观看| 亚洲精品色激情综合| 亚洲熟妇熟女久久| 久久综合国产亚洲精品| 欧美在线一区亚洲| 好男人在线观看高清免费视频| a级毛色黄片| 午夜福利成人在线免费观看| 高清毛片免费看| 大又大粗又爽又黄少妇毛片口| 成人综合一区亚洲| 在线国产一区二区在线| 免费无遮挡裸体视频| 亚洲中文字幕一区二区三区有码在线看| 日产精品乱码卡一卡2卡三| 亚洲电影在线观看av| 高清午夜精品一区二区三区 | 欧美+日韩+精品| 国产成人一区二区在线| 成人永久免费在线观看视频| 黄色一级大片看看| 亚洲人成网站在线播放欧美日韩| av.在线天堂| 此物有八面人人有两片| 搡老岳熟女国产| 国产高清视频在线观看网站| 久久久久久久久久黄片| 美女xxoo啪啪120秒动态图| 两个人视频免费观看高清| 性插视频无遮挡在线免费观看| 高清毛片免费观看视频网站| 一本一本综合久久| 欧美xxxx性猛交bbbb| 欧美3d第一页| 国产精品久久电影中文字幕| 如何舔出高潮| 国产精品一区二区免费欧美| 日韩国内少妇激情av| 伊人久久精品亚洲午夜| 久久久久久九九精品二区国产| 97碰自拍视频| 国产精品福利在线免费观看| 国内揄拍国产精品人妻在线| 菩萨蛮人人尽说江南好唐韦庄 | 1024手机看黄色片| 成人亚洲精品av一区二区| 国产色爽女视频免费观看| 国产成人freesex在线 | 最后的刺客免费高清国语| 99热全是精品| 亚洲国产精品久久男人天堂| 国产av一区在线观看免费| 日韩大尺度精品在线看网址| 99久久精品一区二区三区| 插逼视频在线观看| 91av网一区二区| 五月玫瑰六月丁香| 国产精品一区二区三区四区久久| 亚洲av.av天堂| 国产国拍精品亚洲av在线观看| 亚洲四区av| 老司机午夜福利在线观看视频| 美女被艹到高潮喷水动态| 在线观看免费视频日本深夜| 一级a爱片免费观看的视频| 深夜精品福利| 久久6这里有精品| 秋霞在线观看毛片| 真实男女啪啪啪动态图| 欧美+日韩+精品| 国产爱豆传媒在线观看| 亚洲av免费在线观看| 91久久精品国产一区二区成人| 久久久色成人| 啦啦啦啦在线视频资源| 欧美高清性xxxxhd video| 免费观看精品视频网站| 亚洲色图av天堂| 久久久久久九九精品二区国产| 日韩制服骚丝袜av| 国产成人福利小说| 欧美激情在线99| 亚洲成人久久爱视频| 日本在线视频免费播放| 国产精品人妻久久久久久| 熟女电影av网| 国产男靠女视频免费网站| 亚洲精品色激情综合| 国产精品女同一区二区软件| 亚洲国产色片| 精品久久久久久成人av| 免费观看精品视频网站| 日韩精品中文字幕看吧| 寂寞人妻少妇视频99o| 国产真实伦视频高清在线观看| 高清日韩中文字幕在线| av在线天堂中文字幕| 日本一二三区视频观看| 日本撒尿小便嘘嘘汇集6| 亚洲图色成人| 亚洲国产日韩欧美精品在线观看| 女同久久另类99精品国产91| 人人妻人人澡欧美一区二区| 一进一出好大好爽视频| 99九九线精品视频在线观看视频| 一本久久中文字幕| 一级av片app| 一级毛片aaaaaa免费看小| 欧美不卡视频在线免费观看| 亚洲成人久久性| 精品国产三级普通话版| 国产一区二区亚洲精品在线观看| 美女内射精品一级片tv| a级毛色黄片| 久久久精品大字幕| 少妇高潮的动态图| 男女啪啪激烈高潮av片| 亚洲av美国av| 91在线精品国自产拍蜜月| 久久久久性生活片| 中文亚洲av片在线观看爽| 久久久国产成人精品二区| 精品久久久久久久人妻蜜臀av| 国产爱豆传媒在线观看| 免费高清视频大片| 亚洲四区av| 亚洲av免费在线观看| 国产成年人精品一区二区| 1024手机看黄色片| 亚洲,欧美,日韩| 国产午夜精品久久久久久一区二区三区 | 看片在线看免费视频| 国产精品亚洲一级av第二区| 欧美+亚洲+日韩+国产| 日韩欧美三级三区| 毛片一级片免费看久久久久| 又爽又黄无遮挡网站| 婷婷亚洲欧美| 国产午夜精品久久久久久一区二区三区 | 久久亚洲精品不卡| 国产一区二区三区在线臀色熟女| 秋霞在线观看毛片| 丝袜喷水一区| 国产老妇女一区| 美女黄网站色视频| 午夜福利视频1000在线观看| 老司机福利观看| 久久久久国产网址| 国产一区二区三区av在线 | 亚洲成人中文字幕在线播放| 免费观看人在逋| 国产69精品久久久久777片| 成人精品一区二区免费| 欧美三级亚洲精品| 欧美日韩在线观看h| 噜噜噜噜噜久久久久久91| 国产成人aa在线观看| 麻豆一二三区av精品| 男女啪啪激烈高潮av片| av免费在线看不卡| 亚洲av一区综合| 99热全是精品| 看黄色毛片网站| 又粗又爽又猛毛片免费看| 亚洲av免费在线观看| 露出奶头的视频| 一级黄片播放器| 国产色婷婷99| 日韩人妻高清精品专区| 国产黄a三级三级三级人| 日本欧美国产在线视频| 联通29元200g的流量卡| 免费观看在线日韩| 亚洲18禁久久av| 俺也久久电影网| 久久精品国产鲁丝片午夜精品| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 国产精品爽爽va在线观看网站| 亚洲欧美中文字幕日韩二区| 成人美女网站在线观看视频| 中文亚洲av片在线观看爽| 久久婷婷人人爽人人干人人爱| 91在线精品国自产拍蜜月| 欧美中文日本在线观看视频| 日日摸夜夜添夜夜添av毛片| 国产爱豆传媒在线观看| 国产av不卡久久| 毛片女人毛片| 联通29元200g的流量卡| 三级国产精品欧美在线观看| 亚洲内射少妇av| 少妇人妻精品综合一区二区 | 中国美女看黄片| 午夜激情欧美在线| a级一级毛片免费在线观看| 色5月婷婷丁香| 中文字幕av成人在线电影| 日韩欧美 国产精品| 精品一区二区免费观看| 俺也久久电影网| 日韩大尺度精品在线看网址| 国产精品一区二区性色av| 久久久久久久久久黄片| 男人和女人高潮做爰伦理| 免费人成在线观看视频色| 国产三级中文精品| 免费看美女性在线毛片视频| 免费黄网站久久成人精品| 夜夜看夜夜爽夜夜摸| 亚洲自拍偷在线| а√天堂www在线а√下载| 久久精品夜色国产| 久久久久久久久中文| 亚洲真实伦在线观看| 最近中文字幕高清免费大全6| 国产精品久久电影中文字幕| 日本黄色视频三级网站网址| 有码 亚洲区| 干丝袜人妻中文字幕| 欧美不卡视频在线免费观看| 在线免费观看的www视频| 午夜激情欧美在线| 日韩国内少妇激情av| 黄片wwwwww| 少妇猛男粗大的猛烈进出视频 | 午夜影院日韩av| a级毛片a级免费在线| 成人av在线播放网站| 久久久久久久久中文| 色噜噜av男人的天堂激情| 97热精品久久久久久| 中文资源天堂在线| 亚洲成人中文字幕在线播放| 男女视频在线观看网站免费| 一本精品99久久精品77| 国产精品一区二区性色av| a级毛片a级免费在线| 99久国产av精品| 欧美最新免费一区二区三区| 久久久久久久久久黄片| 国产黄色视频一区二区在线观看 | 亚洲自偷自拍三级| 日韩 亚洲 欧美在线| 熟妇人妻久久中文字幕3abv| 成人国产麻豆网| 男人的好看免费观看在线视频| 成人美女网站在线观看视频| 久久久久久九九精品二区国产| 亚洲最大成人av| 桃色一区二区三区在线观看| 人妻制服诱惑在线中文字幕| 日韩制服骚丝袜av| 在现免费观看毛片| 看黄色毛片网站| 亚洲综合色惰| 91精品国产九色| 国产一级毛片七仙女欲春2| 变态另类丝袜制服| 麻豆精品久久久久久蜜桃| 成年版毛片免费区| 天堂√8在线中文| 韩国av在线不卡| 国产熟女欧美一区二区| 久久久久久大精品| 午夜福利成人在线免费观看| 精品一区二区三区人妻视频| 俄罗斯特黄特色一大片| 女的被弄到高潮叫床怎么办| 亚洲中文字幕日韩| 男女边吃奶边做爰视频| 国产69精品久久久久777片| 国产视频一区二区在线看| 激情 狠狠 欧美| 精品人妻一区二区三区麻豆 | 免费电影在线观看免费观看| 99热6这里只有精品| 色综合色国产| 国产成人福利小说| 内地一区二区视频在线| 悠悠久久av| а√天堂www在线а√下载| 精品一区二区三区av网在线观看| 最好的美女福利视频网| 卡戴珊不雅视频在线播放| 午夜精品一区二区三区免费看| 美女被艹到高潮喷水动态| 在线观看av片永久免费下载| 亚洲高清免费不卡视频| 日韩在线高清观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 成人一区二区视频在线观看| 久久国产乱子免费精品| 禁无遮挡网站| 99久久九九国产精品国产免费| 国产亚洲91精品色在线| 精品久久久久久成人av| 久久热精品热| 亚洲va在线va天堂va国产| 搞女人的毛片| 国产欧美日韩精品亚洲av| 国产久久久一区二区三区| 国内少妇人妻偷人精品xxx网站| 狠狠狠狠99中文字幕| 国产av麻豆久久久久久久| 久久99热这里只有精品18| 中文字幕精品亚洲无线码一区| 久久久久国产精品人妻aⅴ院| avwww免费| 国产av在哪里看| 亚洲七黄色美女视频| 亚洲av中文字字幕乱码综合| av国产免费在线观看| 国产中年淑女户外野战色| 国产精品电影一区二区三区| 无遮挡黄片免费观看| 国产成人影院久久av| 人人妻人人看人人澡| 搡女人真爽免费视频火全软件 | 国产av一区在线观看免费| 免费看a级黄色片| 1024手机看黄色片| 中国美白少妇内射xxxbb| 长腿黑丝高跟| 精品久久久久久成人av| 欧美一区二区精品小视频在线| 狠狠狠狠99中文字幕| 午夜免费男女啪啪视频观看 | 欧美另类亚洲清纯唯美| 一进一出抽搐gif免费好疼| 成人午夜高清在线视频| av专区在线播放| 亚洲综合色惰| 久久久国产成人精品二区| 22中文网久久字幕| 97热精品久久久久久| 午夜免费男女啪啪视频观看 | 欧美国产日韩亚洲一区| 此物有八面人人有两片| 精品久久久久久久末码| 91狼人影院| 亚洲国产欧美人成| 国产高清三级在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美色欧美亚洲另类二区| 中文字幕av成人在线电影| 欧美zozozo另类| 99久久精品一区二区三区| 久久久久久久久久黄片| 成熟少妇高潮喷水视频| 亚洲真实伦在线观看| 午夜爱爱视频在线播放| 变态另类成人亚洲欧美熟女| 美女xxoo啪啪120秒动态图| 天堂av国产一区二区熟女人妻| 99热只有精品国产| 成年av动漫网址| 日韩av不卡免费在线播放| 俺也久久电影网| 国内精品一区二区在线观看| 亚洲av第一区精品v没综合| 欧美绝顶高潮抽搐喷水| a级毛片免费高清观看在线播放| 小蜜桃在线观看免费完整版高清| 亚洲欧美成人综合另类久久久 | 国产一级毛片七仙女欲春2| 国产精品久久视频播放| 黄色配什么色好看| 美女xxoo啪啪120秒动态图| 又爽又黄a免费视频| 亚洲真实伦在线观看| 最近在线观看免费完整版| .国产精品久久| 免费搜索国产男女视频| 精品少妇黑人巨大在线播放 | 日韩欧美国产在线观看| 久久久午夜欧美精品| 国产精品一区www在线观看| 波野结衣二区三区在线| 丝袜美腿在线中文| 伊人久久精品亚洲午夜| 18禁在线播放成人免费| 18+在线观看网站| 变态另类丝袜制服| 国产在线精品亚洲第一网站| 免费av毛片视频| 成年女人毛片免费观看观看9| 美女大奶头视频| 午夜激情欧美在线| 97碰自拍视频| 最近2019中文字幕mv第一页| 我的老师免费观看完整版| 欧美在线一区亚洲| 国产精品爽爽va在线观看网站| 成年av动漫网址| 精华霜和精华液先用哪个| 99热全是精品| 国产乱人视频| 精品人妻熟女av久视频| 亚洲一区二区三区色噜噜| 俺也久久电影网| 欧美日韩综合久久久久久| 六月丁香七月| .国产精品久久| av卡一久久| 国内精品一区二区在线观看| 超碰av人人做人人爽久久| 国产免费男女视频| 最近视频中文字幕2019在线8| 成人欧美大片| 色哟哟·www| 精品久久久久久久人妻蜜臀av| 国国产精品蜜臀av免费| 国产色婷婷99| 国产男人的电影天堂91| 99热这里只有是精品50| 亚洲av美国av| 大又大粗又爽又黄少妇毛片口| 国产精品一及| 久久久精品大字幕| 亚洲精品粉嫩美女一区| 看片在线看免费视频| 欧美一区二区国产精品久久精品| 亚洲av中文字字幕乱码综合| 国产精品日韩av在线免费观看| 99久久精品一区二区三区| 国产精品日韩av在线免费观看| 少妇的逼水好多| 99九九线精品视频在线观看视频| 亚洲性久久影院| 日本爱情动作片www.在线观看 | 国产av不卡久久| 精品久久久久久久人妻蜜臀av| 久久久久久大精品| 免费av观看视频| 美女xxoo啪啪120秒动态图| 亚洲性久久影院| 18禁在线播放成人免费| 欧美绝顶高潮抽搐喷水| 亚洲七黄色美女视频| 伦理电影大哥的女人| 精品久久久久久久末码| 精品久久国产蜜桃| 又爽又黄无遮挡网站| 成人三级黄色视频| 亚洲久久久久久中文字幕| 色吧在线观看| 联通29元200g的流量卡| 色综合站精品国产|