• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics of plasma bullets by nanosecond pulsed micro-hollow cathode discharge within air

    2021-08-05 08:29:34PeizhenLI李佩貞ZhengchaoDUAN段正超TianliangZHANG張?zhí)炝?/span>FengHE何鋒RuoyuHAN韓若愚andJitingOUYANG歐陽吉庭
    Plasma Science and Technology 2021年8期
    關(guān)鍵詞:天亮歐陽

    Peizhen LI(李佩貞),Zhengchao DUAN(段正超),Tianliang ZHANG(張?zhí)炝?,Feng HE (何鋒), Ruoyu HAN (韓若愚) and Jiting OUYANG (歐陽吉庭)

    School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China

    Abstract In this paper, the air plasma jet produced by micro-hollow cathode discharge (MHCD) is investigated.The discharge is powered by a positive nanosecond pulse high voltage supply.The waveforms of the discharge, the images of the jet, the evolution of the plasma bullet and the reactive species are obtained to analyze the characteristics of the MHCD plasma jet.It is found that the length of the plasma jet is almost proportional to the air flow rate of 2–6 slm.Two plasma bullets appear one after another during a single period of the voltage waveform,and both of the two plasma bullets are formed during the positive pulse voltage off.The propagation velocity of the two plasma bullets is on the order of several hundred m/s,which is approximate to that of the air flow.These results indicate that the gas flow has an important influence on the formation of this MHCD plasma jet.

    Keywords: air plasma jet, plasma bullets, micro-hollow cathode discharge, nanosecond pulse

    1.Introduction

    The atmospheric pressure plasma jets (APPJs) are generated in an open environment rather than in an air tight vessel [1].In APPJs, a low-temperature, non-equilibrium plasma with abundant reactive nitrogen species (RNS) and reactive oxygen species(ROS)can be transferred away from the discharge region, which is suitable for the application in surface modification [2–4], biomedical engineering [5–8], nanomaterial preparation [9, 10] and many other fields.During last two decades, APPJs became a hot topic of low-temperature plasma, and attracted more and more attentions.

    Various electrode structures are developed to produce APPJs.One kind of APPJ structure is based on dielectric barrier discharge (DBD) [11–17].In DBD jets, at least one electrode is covered by a dielectric layer, and the alternating current (AC) or pulsed power supply can drive the discharge of DBD jets.Another kind of APPJ structure consists of electrode without dielectric layer covering.This APPJ structure includes single needle[18,19],needle-hole[20–24],and micro-hollow cathode[25–27],which can be driven by direct current (DC), AC or pulsed power supply.

    Figure 1.(a) Cross-sectional scheme of the micro-hollow cathode structure and (b) diagram of the experimental system.

    Many works have been devoted to study the characteristics of APPJs,especially about the development mechanism of the plasma jet generated by AC or pulsed power supply.In many researches, a moving light emission blob, which corresponds to the ‘plasma bullet’ of APPJs [15], was observed during the jet development.The movement of the light emission blob represents the development of APPJs.With various structures and power supplies, the phenomena of the plasma jet propagation are quite different.Luet al[14, 15]and Hofmanset al[16]drove DBD jets using nanosecond and microsecond pulsed power supply respectively.Zhuet alconducted the DBD jet experiment with kHz AC power supply [17].Their results show that the development of the DBD plasma jet occurs within the current pulse of the discharge, and the peak velocity of jet propagation is about tens of km s?1to hundreds of km s?1.Xionget alalso showed that the plasma jet of single needle structure driven by nanosecond power supplies is formed during the discharge, and the development of the plasma bullet can be on the order of 100 km s?1[19].However, in the self-pulse discharge of needle-hole structure, Xianet alshowed that the plasma jet can be formed after the discharge, and the velocity of the plasma bullet is only about hundreds of ms?1[20, 21].Leiet alobtained similar velocity about the jet propagation [22].DBD jets with the high velocity are operated with noble gas,and the jet is considered as a result of discharge development in the noble gas channel surrounded by air.It is believed that the local electric field in the plasma bullet played an important role in the propagation of the plasma jet.For the jet of slow velocity, air or nitrogen is used as working gas in the experiments.Some research groups considered that the dynamics of the jet depends on the gas flow [21].While Walshet al[23] presented a high velocity air jet with a needle-hole device,which is not consistent with the results of references [20–22].More efforts should be made to understand the propagation mechanism of APPJs under different operating conditions.

    Although the MHCD became a promising device to generate APPJ, most of the works concentrate on the temperature of MHCD jet[25,26],the effects of jet treatment[27],etc.Recently, Duanet alpresent some results about the propagation of MHCD jet with helium [28].However,MHCD jet with air is more helpful to obtain RNS and ROS.In this work, an air plasma jet produced by nanosecond pulsed discharge in micro-hollow cathode device is investigated.The characteristics and the propagation of the air plasma jet are studied, and the reactive species generated in the plasma jet are analyzed.

    2.Experimental setup

    Figure 1(a) shows the structure of the micro-hollow cathode used in this experiment.The structure consists of three parts:a PTFE(Poly tetra fluoroethylene)tube,a ceramic disk and two copper wafers.The two copper wafers are placed in the two grooves of the ceramic disk, forming a typical ‘sandwich’structure of metal-dielectric-metal.The diameter of the two copper wafers is 15 mm and the thickness is 0.8 mm.The diameter of the ceramic disk is 25 mm, and the thickness between the two grooves is 0.8 mm.One of the copper electrodes is grounded through a metal annulus.The thickness of the metal annulus is 1 mm.The two copper wafers are perforated centrally,and the diameter of the hole is 0.6 mm.A hole with diameter of 1.0 mm is drilled through the ceramic disk.This geometry of the discharge device is similar to that used in the reference [28].Figure 1(b) shows the system of the experimental apparatus.The above-mentioned microhollow cathode discharge structure is embedded in the PTFE tube.One side of the PTFE tube is connected to an air pipe and an air compressor.The air compressor provides compressed air for the micro-hollow cathode device, and the gas flow meter controls the air flow rateQ.The copper wafer at the upstream of the air flow is the power electrode, and the copper wafer at the downstream of the air flow is the ground electrode.The power electrode is connected to a positive nanosecond pulsed high voltage supply via a 1.5 kΩ current limiting resistor.The nanosecond pulsed high voltage supply(HVP-15, Xi’an Smart Maple Electronic Technology Co.,Ltd.) can output an adjustable square waveform with the voltage of 0–15 kV, the frequency of 0–100 kHz, and the pulse width of ?1 ms.The applied voltage on the power electrode is monitored by a high voltage probe(Tek P6015A).The current is monitored by a current probe (Pearson 2877,Pearson Electronics).The voltage and current waveforms are storaged by a digital oscilloscope (DPO 4034B, Tektronix).Both of time-integrated and time-resolved images of the plasma jet are acquired by an intensified charge-coupled device(ICCD)camera(iStar DH334T,Andor)with real time mode and kinetic series mode respectively.In real time acquisition mode, the images acquired with ICCD are only determined by the optical signal input during the exposure time of CCD.In kinetic series acquisition mode, the images acquired with ICCD are controlled by the gate width of electronic gater and the exposure time of CCD.The ICCD camera is triggered by the discharge current.A fiber is placed about 2 mm away from the orifice of the metal annulus and perpendicular to the jet to guide the light into a spectrometer(Avaspec-ULS3648, Avantes).The optical emission spectra(OES) is measured using the spectrometer which has four gratings (200–315 nm, UE-2400 lines mm?1; 315–365 nm,UF-3600 lines mm?1; 365–460 nm, VE-2400 lines mm?1;460–1000 nm, NB-600 lines mm?1).The resolutions of the four channels are 0.07–0.09 nm,0.05–0.06 nm,0.07–0.09 nm and 0.3–0.369 nm, respectively.The focal length is 75 mm.

    Figure 2.(a) The voltage and current waveforms, the asterisks on the current waveform correspond to the moments at which the images in figure 4(a) are captured, (b) waveforms during the voltage pulse. Vamp=6700 V, f=2 kHz, tw=300 ns, Q=3 slm.

    3.Results and discussion

    3.1.Characteristics of the nanosecond pulsed discharge

    Figure 2 presents the typical current and voltage waveforms of the micro-hollow cathode discharge.The waveform magnified during the pulse of the applied voltage is shown in figure 2(b).The pulse widthtwand frequencyfof the pulse voltage are 300 ns and 2 kHz respectively.The air flow rateQis 3 slm.Figure 2(b)indicates that the maximum value of the pulse voltage is about 6700 V and the rising edge of the pulse voltage is about 100 ns.Compared with the rising edge of the pulse voltage, the rising edge of the current has a delay time of about 130 ns.After breakdown occurs in the electrode gap,the current rises rapidly to 12 A in about 9 ns;meanwhile,the voltage on the power electrode drops towards 0 kV.The duration of the first pulse current is about 20 ns, then the current oscillates around 3 A until the falling edge of the pulse voltage.The low voltage and large discharge current between the electrodes indicate that the discharge turns into arc regime after it is ignited.

    3.2.Length of the plasma jet

    Using this micro-hollow cathode discharge, an air plasma jet is generated.Figure 3(a) presents the luminous images of the plasma jets at different air flow rates.The images are captured by ICCD camera in real time mode, and the CCD exposure time of the ICCD camera is set to be 0.1 s.Therefore the figure 3(a) illustrates the time-integrated images of the MHCD jet.The gray blocks with label ‘C’ in figure 3(a)indicate the position of grounded electrode.The figure 3(b)provides the length of the plasma jet versus the air flow rate.The lengths of the plasma jet are measured from the time integral images taken by the ICCD camera.Figure 3(a)shows that the length of the plasma jet increases with the increase of the air flow rate.When the air flow rate is 2 slm,the length of the plasma jet is about 1.2 mm.When the air flow rate is increased to 6 slm, the length of the plasma jet can reach 3.7 mm.The curve in figure 3(b)shows that,the length of the plasma jet increases almost linearly with the increase of air flow rate.Figure 3(a)also presents that the luminous intensity of the plasma jet becomes stronger at a higher air flow rate.The peak intensity is increased by about 2 times.These results indicate that the air flow rate has an effect on the plasma jet.

    During the voltage pulse, the discharge is ignited in the gap between two electrodes, and a plasma blob is generated.After the falling edge of the short voltage pulse,due to airflow the plasma blob travels out of the gap to form the plasma jet.The recombination and radiative transition occur in the plasma blob,so the plasma density in the plasma jet decreases and the luminosity finally disappears.However,at higher gas flow rate, more particles will be driven out of the electrode gap and travel longer distance.Therefore, the length and the intensity of the plasma jet increase with the air flow rate.

    3.3.Propagation of the plasma jet

    Although the effect of the gas flow on the jet length is similar to that of DBD or other structures, the jet propagation of this MHCD has some different characteristics.The propagation of MHCD jet is represented by the time-resolved optical images of the plasma jet.The ICCD is triggered by the signal converted from the discharge current at 8.5 A.Therefore,the start timet0=0 for all the time-resolved images is the moment when the current reaches 8.5 A.In order to observe the image before the discharge,a delay of 499 μs is applied to the gater of ICCD.The frequencyfof the power supply is 2 kHz,so the period is 500 μs.It means that the acquisition of each timeresolved image is postponed to the next discharge pulse.The gate width and the exposure time of ICCD are set to be 1 μs and 0.1 s,respectively.Each image is the accumulation of the light signal in 10 discharge pulses with the same delay time and same gate width.The parameters of the pulse voltage are the same as in section 3.2.Figure 4(a) shows the timeresolved optical images of the plasma jets at the air flow rateQ=3 slm.The time point recording each image is labeled by an asterisk ‘★’ in figure 2(a).Figure 4(a) shows that at 507.3 μs,a very faint luminous region appears at the orifice of the micro-hollow cathode.After 5 μs, the light-emitting region propagates about 0.6 mm along the axis, forming a‘bullet-like’ jet.During this time, the light-emitting region becomes larger and the luminous intensity becomes stronger.The images of 515.3 μs and 519.3 μs show that the lightemitting region moves forward further and the luminous intensity becomes weak.Although the intensity decreases,this plasma bullet can be observed until 524.3 μs.

    Figure 3.(a) The luminous images of the plasma jets.(b) The curve of the jet length versus the air flow rate. Vamp=6700 V, f=2 kHz,tw=300 ns.

    Figure 4.Propagation images of the plasma jets.(a) 3 slm, (b) 6 slm. Vamp=6700 V, f=2 kHz, tw=300 ns.

    Figure 5.Appearance time of the plasma bullet versus air flow rate.Vamp=6700 V, f=2 kHz, tw=300 ns.

    It can be found that att=519.3 μs, a new light-emitting region appears near the cathode orifice.This region reflects another plasma bullet of the MHCD jet.The second plasma bullet can be observed more clearly from the images of 524.3–566.3 μs.During this period, the second plasma bullet becomes larger and brighter gradually, while the first plasma bullet almost disappears at 528.3 μs.The second plasma bullet continues to propagate forward until 566.3 μs.

    The phenomena of two jet bullets have been observed at different air flow rates.The time-resolved images of 6 slm are shown in figure 4(b).The development process of the jet bullets in figure 4(b) is similar to that of 3 slm.Comparing the figures 4(a)and(b),it can be found that as the increase of the air flow rate,the luminous intensity becomes stronger and the plasma bullets develop farther along the axis.While the duration of the plasma jet becomes shorter as the air flow rate increases.The air flow rate increases from 3 to 6 slm, but the duration of the plasma jet decreases from 59 to 31 μs.Figure 5 shows the appearance times of the first and second bullets versus the air flow rate.It can be seen that the appearance time of the plasma jet is advanced with the increase of the air flow rate.When the air flow rate is 3 slm,the first and second plasma bullets appear at 507.3 μs and 519.3 μs, respectively.Compared with the results of 3 slm,the appearance time of the first and second plasma bullets at 6 slm is advanced by about 4 μs and 11 μs respectively.The trends of appearance time of the two plasma bullets with the air flow rate are almost similar.

    3.4.Velocities of the plasma bullets

    Figure 6.Velocity of the plasma jet versus time.(a)3 slm,(b)6 slm.Vamp=6700 V, f=2 kHz, tw=300 ns.

    Based on the time-resolved images,the propagation velocities of the two plasma bullets are estimated from the front of the bullet at different times.The velocity of the bullet versus time is shown in figure 6.The result shows that the velocity of the first plasma bullet is higher than that of the second bullet,but both velocities of the two bullets increase with the air flow rate.When the air flow rate is 3 slm, the velocity of the first bullet is about 150 m s?1,and the velocity of the second bullet is about 70 m s?1.When the air flow rate is 6 slm,the velocity of the first bullet increases to approximately 330 m s?1, and the velocity of the second bullet increases to 250 m s?1.Considering that the jet will pass through the metal annulus of 1 mm thickness, relative to the voltage pulse, the appearance time of the first plasma bullet atQ=3 slm and 6 slm is delayed about 7 μs and 3 μs, respectively.This is consistent with the results of figure 5.

    The gas velocity of air flowvis estimated according to the formulav=4Q/(π·d2),whereQis the air flow rate,dis the diameter of the center hole of the copper wafer(d=0.6 mm in our experiment).When the air flow rates are 3 slm and 6 slm,the air flow velocities are approximately 177 and 354 m s?1.From the curves in figure 6,it can be seen that the propagation velocity of the first plasma bullet is close to the value of the air flow velocity.The propagation and velocity of the plasma bullet further confirmed that the gas flow has an important influence on the dynamics of the microhollow cathode plasma jet.

    Figure 7.Emission spectrum of the plasma jet outside the cathode hole. Vamp=6700 V, f=2 kHz, tw=300 ns.The air flow rate is 6 slm.

    3.5.Development of the reactive species

    In this experiment, the optical emission spectrum is used to identify the reactive species generated in the plasma jet.The emission spectrum of the plasma jet outside the cathode hole is shown in figure 7.The spectral lines mainly locate in 700–900 nm,and indicate that the dominating reactive species in the plasma jet are oxygen atoms and nitrogen atoms.The maximum intensity is emitted by oxygen at 777.2 nm.

    The propagation of reactive species during the development of the plasma jet is also investigated.Figure 8 shows the time-resolved images of 777.2 nm and 844.5 nm lines taken by ICCD camera with filters.The full width at half maximum of the filters is 10 nm.Each image is obtained by the ICCD camera accumulated 100 times at the same delay time with 1500 ns gate width.The air flow rate is 6 slm.

    From the images in figure 8, it can be seen that the appearance time of the two reactive species at the orifice is 503.3 μs,which exactly corresponds to that of the first plasma bullet in figure 4(b).The excited oxygen atoms of 777.2 and 844.5 nm are long-lived particles whose lifetime is about a few tens of microseconds in non-thermal plasma[29].During 503–508 μs, the reactive species move forward, just like the propagation of the first plasmas bullet shown in figure 4(b).Then more reactive species emerge again at the orifice of the electrode hole.The movement of these reactive species corresponds to the second bullet.

    3.6.Discussion

    The experimental results mentioned above show that two plasma bullets of the MHCD air jet are observed during one cycle of the voltage waveform, and the images of the two plasma bullets are captured after the discharge.It has been noted in section 3.1 that the discharge of this MHCD transfers into arc regime.During the pulse current, the voltage drop between the plasma and the grounded electrode is too small to sustain a discharge out of the grounded electrode.The width of pulse voltage is only 300 ns.The falling edge of the pulse voltage, also the falling edge of the pulse current, locate at around 500.3 μs.The voltage drop should be zero during the development of the plasma bullets after 500.3 μs.Therefore,the plasma bullets of MHCD do not propagate during the pulse of discharge current with a large voltage drop.This is very different from the jets of DBD [15, 17] or needle-hole glow jet [23].Furthermore, the velocity of the two plasma bullets is close to that of air flow, which is about two orders lower than the propagation velocity of DBD jets[15,17],and the air flow rate has a great influence on the appearance time of the plasma bullets.In the OES, the spectral lines of,which are usually found in air discharge [24], were not observed in our experiments.All the results show that, it is not the electric field but the air flow plays an crucial role in the development of the two plasma bullets.Produced by the discharge, the long-lived particles moving with the airflow form the MHCD jet.

    According to the appearance time shown in figure 5, it can be considered that the first plasma bullet is generated by the particles moving with the air flow after the discharge plasma reaches the cathode.The arc discharge forms a narrow plasma channel, which causes lots of long-lived species confined in this channel.The input power during the discharge is rather high with a peak value of 50 kW.The gas temperature increases dramatically, which causes the gas plasma to expand towards both downstream and upstream.The gas plasma towards downstream forms the first jet bullet.The gas plasma towards upstream will flow out of the gap after a time interval, which forms the second jet bullet.This time interval also depends on the gas flow rate.Therefore,the second jet atQ=6 slm appears earlier than atQ=3 slm, as shown in figure 4.

    4.Conclusion

    In this work, the characteristics of plasma jet are studied experimentally.Using air as working gas, the MHCD driven by a nanosecond pulse supply generates plasma jets.The discharge waveforms,the jet length,and the OES are obtained and analyzed.It is found that during the development of the plasma jet,two plasma bullets are observed during one period of the voltage waveform.Both of the two plasma bullets are formed after the falling edge of the positive pulse voltage.The appearance time of the plasma bullets advances with the increase of air flow.The velocity of the two bullets is very close to that of the air flow.The development of reactive species in the plasma jet also corresponds to the propagation of the two bullets.These results indicate that the gas flow has a crucial influence on propagation of this MHCD plasma jet.

    Figure 8.Time-resolved images of reactive species.(a) 777.2 nm, (b) 844.5 nm. Vamp=6700 V, f=2 kHz, tw=300 ns.The air flow rate is 6 slm.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (No.11 475 019).

    ORCID iDs

    猜你喜歡
    天亮歐陽
    金雞報(bào)曉
    動(dòng)物怎樣聽和看?
    我家的健忘老媽
    歐陽彥等
    依依送別歐陽鶴先生
    中華詩詞(2019年9期)2019-05-21 03:05:18
    白鷺飛
    歌海(2017年2期)2017-05-30 22:22:10
    眠空
    青春(2017年5期)2017-05-22 11:53:46
    天亮了嗎
    歐陽麗作品
    《云端三公尺》:下一個(gè)天亮,誰在等你
    小說月刊(2014年9期)2014-11-18 12:45:38
    黄色怎么调成土黄色| 天美传媒精品一区二区| 视频区图区小说| 在线天堂最新版资源| 国产精品不卡视频一区二区| 高清在线视频一区二区三区| 日本黄色片子视频| 久热久热在线精品观看| 国产v大片淫在线免费观看| 精品一区二区三卡| 色网站视频免费| 国产午夜精品久久久久久一区二区三区| 国产极品天堂在线| 99久久中文字幕三级久久日本| 深爱激情五月婷婷| 五月天丁香电影| 国产日韩欧美亚洲二区| 亚洲成人av在线免费| 亚洲成人中文字幕在线播放| 免费大片18禁| 日本黄色片子视频| 亚洲久久久国产精品| 日产精品乱码卡一卡2卡三| 国产男女内射视频| 欧美日韩国产mv在线观看视频 | 国产精品.久久久| 免费观看在线日韩| 国产黄频视频在线观看| 日日撸夜夜添| 亚洲高清免费不卡视频| 蜜桃久久精品国产亚洲av| 国产精品99久久久久久久久| 精品人妻视频免费看| 久久久精品94久久精品| 亚洲欧美中文字幕日韩二区| tube8黄色片| h日本视频在线播放| 99热国产这里只有精品6| 观看美女的网站| 国产精品av视频在线免费观看| 三级国产精品欧美在线观看| 成人毛片60女人毛片免费| 寂寞人妻少妇视频99o| 人人妻人人看人人澡| 黄色欧美视频在线观看| 丝袜喷水一区| 日韩欧美一区视频在线观看 | 亚洲美女搞黄在线观看| 国产爽快片一区二区三区| 亚洲人成网站高清观看| 国产又色又爽无遮挡免| 九草在线视频观看| 全区人妻精品视频| 男女啪啪激烈高潮av片| 又大又黄又爽视频免费| 国产男人的电影天堂91| 乱系列少妇在线播放| h视频一区二区三区| 国产免费一级a男人的天堂| 大码成人一级视频| 乱系列少妇在线播放| 日韩欧美一区视频在线观看 | av又黄又爽大尺度在线免费看| 男男h啪啪无遮挡| 内地一区二区视频在线| 亚洲av二区三区四区| 国内揄拍国产精品人妻在线| 成人无遮挡网站| 又爽又黄a免费视频| 色网站视频免费| 最近最新中文字幕免费大全7| 校园人妻丝袜中文字幕| 在线亚洲精品国产二区图片欧美 | 国产 一区 欧美 日韩| av天堂中文字幕网| 搡女人真爽免费视频火全软件| 久久99热这里只频精品6学生| 国产中年淑女户外野战色| 国产在线男女| 亚洲欧美日韩无卡精品| 国产av国产精品国产| 国产91av在线免费观看| 三级经典国产精品| 一本—道久久a久久精品蜜桃钙片| 女人十人毛片免费观看3o分钟| 啦啦啦啦在线视频资源| 99re6热这里在线精品视频| 日本色播在线视频| 美女福利国产在线 | 国产爱豆传媒在线观看| 国产高清国产精品国产三级 | 少妇丰满av| 久久韩国三级中文字幕| 直男gayav资源| 精品国产一区二区三区久久久樱花 | 免费观看a级毛片全部| 超碰av人人做人人爽久久| 国产精品国产三级国产专区5o| 国产淫语在线视频| 亚洲精品久久久久久婷婷小说| 精品一区在线观看国产| 亚洲精品中文字幕在线视频 | 亚洲最大成人中文| 日韩不卡一区二区三区视频在线| 亚洲婷婷狠狠爱综合网| 熟女av电影| 男女啪啪激烈高潮av片| 超碰av人人做人人爽久久| 中文字幕制服av| 免费av不卡在线播放| 七月丁香在线播放| 亚洲国产色片| 人人妻人人爽人人添夜夜欢视频 | 少妇丰满av| av国产久精品久网站免费入址| 国产久久久一区二区三区| 最近最新中文字幕大全电影3| 熟女电影av网| 精品久久久久久久久av| 日韩一区二区三区影片| 一个人免费看片子| 99久国产av精品国产电影| 中文精品一卡2卡3卡4更新| 免费久久久久久久精品成人欧美视频 | 亚洲av在线观看美女高潮| 国产精品不卡视频一区二区| 夜夜看夜夜爽夜夜摸| 爱豆传媒免费全集在线观看| 国产亚洲91精品色在线| 色视频在线一区二区三区| 一区二区三区乱码不卡18| 久久久久久久大尺度免费视频| 精品人妻一区二区三区麻豆| 秋霞伦理黄片| 最近最新中文字幕大全电影3| 色5月婷婷丁香| 99视频精品全部免费 在线| 久久久久久九九精品二区国产| 久久人妻熟女aⅴ| 草草在线视频免费看| 亚洲精品国产色婷婷电影| 日韩三级伦理在线观看| 18禁在线无遮挡免费观看视频| 最后的刺客免费高清国语| 久久精品国产亚洲网站| 精品亚洲乱码少妇综合久久| 熟女av电影| 精品人妻视频免费看| 午夜激情久久久久久久| 国产精品久久久久久av不卡| 欧美xxxx性猛交bbbb| 国产av一区二区精品久久 | 亚洲精品日韩av片在线观看| 国产亚洲91精品色在线| 少妇猛男粗大的猛烈进出视频| 久久久久网色| 亚洲精品乱码久久久v下载方式| av在线老鸭窝| 黄色日韩在线| 久久精品国产自在天天线| 有码 亚洲区| 国产乱来视频区| 亚洲国产精品国产精品| 在线精品无人区一区二区三 | 精品久久久精品久久久| 美女视频免费永久观看网站| av视频免费观看在线观看| 亚洲欧美一区二区三区黑人 | 嫩草影院入口| 91久久精品国产一区二区三区| 精品久久久久久久久av| 日本欧美国产在线视频| 中文在线观看免费www的网站| 久热这里只有精品99| 全区人妻精品视频| 在线观看av片永久免费下载| 丰满迷人的少妇在线观看| 久久人人爽人人片av| 黄色欧美视频在线观看| av视频免费观看在线观看| 老司机影院毛片| 国产亚洲5aaaaa淫片| 国产亚洲91精品色在线| 中文字幕精品免费在线观看视频 | 赤兔流量卡办理| 精品熟女少妇av免费看| 在线观看一区二区三区| 欧美国产精品一级二级三级 | 黄色视频在线播放观看不卡| 老师上课跳d突然被开到最大视频| 国产欧美亚洲国产| 亚洲综合色惰| 毛片一级片免费看久久久久| 在线观看免费视频网站a站| 美女主播在线视频| 亚洲四区av| 久久av网站| 亚洲综合色惰| 色视频www国产| 夫妻性生交免费视频一级片| 国产精品一区二区在线不卡| 中文在线观看免费www的网站| 一个人看的www免费观看视频| 蜜臀久久99精品久久宅男| 国产黄色免费在线视频| 啦啦啦啦在线视频资源| 99国产精品免费福利视频| 黄色配什么色好看| 日本av免费视频播放| 日本av手机在线免费观看| 人妻系列 视频| 日韩电影二区| 国产乱人视频| 一级毛片 在线播放| 丝袜脚勾引网站| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 国国产精品蜜臀av免费| 少妇熟女欧美另类| 国产高清不卡午夜福利| 久久久久人妻精品一区果冻| 久久久久久久亚洲中文字幕| 亚洲欧美日韩无卡精品| 99久久精品国产国产毛片| 国产成人午夜福利电影在线观看| 亚洲精品日韩在线中文字幕| 99久久综合免费| 国产日韩欧美亚洲二区| 99热这里只有是精品50| 久久综合国产亚洲精品| 男男h啪啪无遮挡| 亚洲国产精品成人久久小说| 亚洲精华国产精华液的使用体验| 国产av精品麻豆| 免费不卡的大黄色大毛片视频在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品自拍成人| 高清在线视频一区二区三区| 国产高清不卡午夜福利| 777米奇影视久久| a 毛片基地| 久久这里有精品视频免费| 男人舔奶头视频| av在线播放精品| 麻豆精品久久久久久蜜桃| 另类亚洲欧美激情| 午夜福利高清视频| 国精品久久久久久国模美| 国产伦精品一区二区三区四那| av国产免费在线观看| 成年人午夜在线观看视频| 精品酒店卫生间| 精品一区在线观看国产| 欧美97在线视频| 精品国产乱码久久久久久小说| 能在线免费看毛片的网站| 国产伦理片在线播放av一区| 有码 亚洲区| av线在线观看网站| 少妇人妻一区二区三区视频| 亚洲精品成人av观看孕妇| 你懂的网址亚洲精品在线观看| 亚洲一级一片aⅴ在线观看| 婷婷色综合www| 成人高潮视频无遮挡免费网站| 久久99蜜桃精品久久| 免费观看无遮挡的男女| 另类亚洲欧美激情| 欧美精品国产亚洲| av黄色大香蕉| 日韩伦理黄色片| 国产中年淑女户外野战色| 日本-黄色视频高清免费观看| 97在线视频观看| 狠狠精品人妻久久久久久综合| 欧美精品一区二区大全| 婷婷色综合www| 亚洲中文av在线| 我要看日韩黄色一级片| 赤兔流量卡办理| 国产一区亚洲一区在线观看| 国产乱人偷精品视频| 亚洲精品日韩av片在线观看| 国产亚洲一区二区精品| 日韩一本色道免费dvd| 精品久久久精品久久久| 亚洲av二区三区四区| 一级毛片久久久久久久久女| 人妻 亚洲 视频| av免费在线看不卡| 久久精品国产a三级三级三级| 天天躁夜夜躁狠狠久久av| 久久青草综合色| 18+在线观看网站| 中文精品一卡2卡3卡4更新| 日日啪夜夜爽| 日韩不卡一区二区三区视频在线| 国产黄色视频一区二区在线观看| 久久久久久久久久久免费av| 一二三四中文在线观看免费高清| 中文资源天堂在线| 一级片'在线观看视频| 亚洲国产精品国产精品| 亚洲欧美成人综合另类久久久| 亚洲精品成人av观看孕妇| 两个人的视频大全免费| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 国国产精品蜜臀av免费| 国产淫语在线视频| 免费不卡的大黄色大毛片视频在线观看| 久热久热在线精品观看| 亚洲天堂av无毛| 狂野欧美激情性bbbbbb| 男的添女的下面高潮视频| 亚洲va在线va天堂va国产| 性高湖久久久久久久久免费观看| 丰满乱子伦码专区| 日韩欧美一区视频在线观看 | 男女边吃奶边做爰视频| 在线观看免费视频网站a站| 美女主播在线视频| 国产精品国产三级国产av玫瑰| 亚洲电影在线观看av| 大码成人一级视频| 成年免费大片在线观看| 日韩成人伦理影院| 少妇人妻一区二区三区视频| 18禁在线无遮挡免费观看视频| 新久久久久国产一级毛片| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 国产亚洲av片在线观看秒播厂| 日本-黄色视频高清免费观看| 男女边吃奶边做爰视频| 美女视频免费永久观看网站| 欧美区成人在线视频| 夫妻午夜视频| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 久久综合国产亚洲精品| 又黄又爽又刺激的免费视频.| 日韩欧美 国产精品| 免费av中文字幕在线| 18禁动态无遮挡网站| 久久女婷五月综合色啪小说| 中国三级夫妇交换| 下体分泌物呈黄色| 国产毛片在线视频| 男女下面进入的视频免费午夜| 久久 成人 亚洲| 国产色婷婷99| 中文欧美无线码| 夜夜骑夜夜射夜夜干| 中国美白少妇内射xxxbb| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久| 一级黄片播放器| 五月开心婷婷网| 99热网站在线观看| 成年人午夜在线观看视频| 日本黄色日本黄色录像| 国产成人精品婷婷| 久久精品久久久久久久性| 五月开心婷婷网| 麻豆国产97在线/欧美| 亚洲av不卡在线观看| 寂寞人妻少妇视频99o| 最近中文字幕高清免费大全6| 熟妇人妻不卡中文字幕| 成人毛片a级毛片在线播放| 91久久精品国产一区二区成人| 老女人水多毛片| 2022亚洲国产成人精品| 国产免费一区二区三区四区乱码| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 久久青草综合色| 青春草视频在线免费观看| 成人国产麻豆网| 秋霞在线观看毛片| 国产有黄有色有爽视频| 天堂8中文在线网| 99热这里只有是精品50| 中国三级夫妇交换| 老女人水多毛片| 亚洲国产精品专区欧美| 亚洲人成网站高清观看| 2018国产大陆天天弄谢| 国产无遮挡羞羞视频在线观看| 国产毛片在线视频| 九九久久精品国产亚洲av麻豆| 狂野欧美激情性bbbbbb| 亚洲精品乱码久久久久久按摩| 女性被躁到高潮视频| 内射极品少妇av片p| 亚洲精品乱久久久久久| 精品人妻熟女av久视频| 99视频精品全部免费 在线| 午夜老司机福利剧场| 99精国产麻豆久久婷婷| 在线 av 中文字幕| 久久热精品热| 啦啦啦啦在线视频资源| 男女下面进入的视频免费午夜| 一级av片app| 亚洲精品日韩av片在线观看| 成年av动漫网址| 久久久成人免费电影| 精品人妻一区二区三区麻豆| 五月玫瑰六月丁香| 成人午夜精彩视频在线观看| 少妇裸体淫交视频免费看高清| 成人午夜精彩视频在线观看| 国产综合精华液| 不卡视频在线观看欧美| 国产免费一区二区三区四区乱码| av天堂中文字幕网| 高清欧美精品videossex| 大码成人一级视频| 老师上课跳d突然被开到最大视频| 亚洲欧洲国产日韩| 精品人妻一区二区三区麻豆| 大片电影免费在线观看免费| 欧美高清成人免费视频www| 日本猛色少妇xxxxx猛交久久| 精品久久久噜噜| 日本猛色少妇xxxxx猛交久久| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 中国国产av一级| 老熟女久久久| 免费高清在线观看视频在线观看| 亚洲欧美日韩卡通动漫| 18+在线观看网站| 亚洲内射少妇av| 中文在线观看免费www的网站| 免费人妻精品一区二区三区视频| 97热精品久久久久久| 欧美日韩综合久久久久久| 99久国产av精品国产电影| 中文字幕av成人在线电影| 建设人人有责人人尽责人人享有的 | 十八禁网站网址无遮挡 | 久久久久久久久大av| 国产精品99久久99久久久不卡 | 亚洲av成人精品一区久久| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看 | 亚洲精品第二区| 国产午夜精品久久久久久一区二区三区| 欧美日韩在线观看h| 18禁在线无遮挡免费观看视频| 国产高清三级在线| av国产免费在线观看| 丝瓜视频免费看黄片| 亚州av有码| 精品久久久噜噜| 亚洲国产欧美人成| 伊人久久精品亚洲午夜| 国语对白做爰xxxⅹ性视频网站| 国产欧美亚洲国产| 一级毛片我不卡| 交换朋友夫妻互换小说| 少妇熟女欧美另类| 视频区图区小说| 在线观看一区二区三区激情| a级毛片免费高清观看在线播放| 国产午夜精品一二区理论片| 美女xxoo啪啪120秒动态图| 成人综合一区亚洲| 色婷婷av一区二区三区视频| 国产一级毛片在线| 男女啪啪激烈高潮av片| 亚洲成人一二三区av| 亚洲欧美成人综合另类久久久| 国产深夜福利视频在线观看| 国产精品免费大片| 伊人久久精品亚洲午夜| 午夜福利影视在线免费观看| 日韩欧美 国产精品| 久久久久性生活片| 亚洲怡红院男人天堂| 精品一区二区三卡| 少妇裸体淫交视频免费看高清| 国产一区二区三区综合在线观看 | 亚洲成色77777| 久久国内精品自在自线图片| 国产黄色免费在线视频| 国产欧美日韩一区二区三区在线 | 边亲边吃奶的免费视频| 韩国高清视频一区二区三区| 亚洲av成人精品一二三区| 男人添女人高潮全过程视频| 视频中文字幕在线观看| 成人亚洲欧美一区二区av| 水蜜桃什么品种好| 精品国产乱码久久久久久小说| av线在线观看网站| 2018国产大陆天天弄谢| 人妻制服诱惑在线中文字幕| 夜夜骑夜夜射夜夜干| 汤姆久久久久久久影院中文字幕| 日本黄色片子视频| 亚洲av.av天堂| 秋霞伦理黄片| 免费观看无遮挡的男女| 国产女主播在线喷水免费视频网站| 熟女人妻精品中文字幕| 亚洲精品日韩av片在线观看| 亚洲国产毛片av蜜桃av| 超碰av人人做人人爽久久| 一个人看的www免费观看视频| 最近手机中文字幕大全| 亚洲精品自拍成人| 久久精品国产亚洲av天美| 国产亚洲午夜精品一区二区久久| 国产成人精品一,二区| 免费播放大片免费观看视频在线观看| 99久国产av精品国产电影| 国产免费福利视频在线观看| 天堂俺去俺来也www色官网| 少妇猛男粗大的猛烈进出视频| 国产黄片美女视频| 国产美女午夜福利| 黄片无遮挡物在线观看| tube8黄色片| 欧美性感艳星| 全区人妻精品视频| 青春草国产在线视频| 亚洲美女视频黄频| 久久毛片免费看一区二区三区| 中国国产av一级| 久久女婷五月综合色啪小说| 五月天丁香电影| 国产精品国产三级专区第一集| 欧美成人精品欧美一级黄| 久久久久视频综合| 人妻一区二区av| 春色校园在线视频观看| 这个男人来自地球电影免费观看 | 亚洲欧美一区二区三区国产| 成人国产麻豆网| 日本欧美视频一区| 少妇的逼好多水| 人妻制服诱惑在线中文字幕| 亚洲国产色片| 最新中文字幕久久久久| 国产伦精品一区二区三区四那| 成人18禁高潮啪啪吃奶动态图 | 嘟嘟电影网在线观看| 色婷婷av一区二区三区视频| 99久久精品一区二区三区| 午夜福利视频精品| 国产永久视频网站| 特大巨黑吊av在线直播| 国国产精品蜜臀av免费| 亚洲色图av天堂| 在线免费观看不下载黄p国产| 精品国产乱码久久久久久小说| av在线app专区| 成人18禁高潮啪啪吃奶动态图 | 精品99又大又爽又粗少妇毛片| 最近最新中文字幕免费大全7| 成人午夜精彩视频在线观看| 美女福利国产在线 | 毛片一级片免费看久久久久| 亚洲精品乱码久久久久久按摩| 久久久久久久国产电影| a级毛片免费高清观看在线播放| 伦精品一区二区三区| 我要看黄色一级片免费的| 黄片无遮挡物在线观看| 国产 一区 欧美 日韩| 人人妻人人添人人爽欧美一区卜 | 亚洲,一卡二卡三卡| 大话2 男鬼变身卡| 亚洲av不卡在线观看| 大片电影免费在线观看免费| 国产白丝娇喘喷水9色精品| 乱系列少妇在线播放| 亚洲伊人久久精品综合| 赤兔流量卡办理| 亚洲综合精品二区| 欧美精品一区二区免费开放| 男人添女人高潮全过程视频| 高清不卡的av网站| 久久久午夜欧美精品| 精品人妻一区二区三区麻豆| 在线观看美女被高潮喷水网站| av福利片在线观看| 人妻系列 视频| 亚洲av福利一区| 国产精品.久久久| 麻豆乱淫一区二区| 亚洲一级一片aⅴ在线观看| 成人高潮视频无遮挡免费网站| 国产在视频线精品| 观看av在线不卡| 久久久精品免费免费高清| 一级毛片我不卡| 日本午夜av视频| 欧美97在线视频| 欧美xxxx黑人xx丫x性爽| 亚洲激情五月婷婷啪啪| 少妇精品久久久久久久| 免费观看性生交大片5| 男的添女的下面高潮视频| av在线app专区| 亚洲精品久久午夜乱码| 日韩av在线免费看完整版不卡| 在线亚洲精品国产二区图片欧美 | 日韩中字成人| 亚洲av中文字字幕乱码综合| 日韩免费高清中文字幕av|