• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine learning application to predict the electron temperature on the J-TEXT tokamak

    2021-08-05 08:29:22JiaolongDONG董蛟龍JianchaoLI李建超YonghuaDING丁永華XiaoqingZHANG張曉卿NengchaoWANG王能超DaLI李達(dá)WeiYAN嚴(yán)偉ChengshuoSHEN沈呈碩YingHE何瑩XiehangREN任頡頏DonghuiXIA夏冬輝andtheTEXTTeam
    Plasma Science and Technology 2021年8期
    關(guān)鍵詞:李達(dá)永華蛟龍

    Jiaolong DONG(董蛟龍),Jianchao LI(李建超),Yonghua DING (丁永華),?,Xiaoqing ZHANG (張曉卿), Nengchao WANG (王能超), Da LI (李達(dá)),Wei YAN (嚴(yán)偉), Chengshuo SHEN (沈呈碩), Ying HE (何瑩),Xiehang REN (任頡頏), Donghui XIA (夏冬輝) and the J-TEXT Team,3

    1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

    2 Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology,Wuhan 430205, People’s Republic of China

    Abstract The reliability of diagnostic systems in tokamak plasma is of great significance for physics researches or fusion reactor.When some diagnostics fail to detect information about the plasma status,such as electron temperature,they can also be obtained by another method:fitted by other diagnostic signals through machine learning.The paper herein is based on a machine learning method to predict electron temperature, in case the diagnostic systems fail to detect plasma temperature.The fully-connected neural network, utilizing back propagation with two hidden layers, is utilized to estimate plasma electron temperature approximately on the J-TEXT.The input parameters consist of soft x-ray emission intensity, electron density, plasma current, loop voltage, and toroidal magnetic field, while the targets are signals of electron temperature from electron cyclotron emission and x-ray imaging crystal spectrometer.Therefore, the temperature profile is reconstructed by other diagnostic signals, and the average errors are within 5%.In addition, generalized regression neural network can also achieve this function to estimate the temperature profile with similar accuracy.Predicting electron temperature by neural network reveals that machine learning can be used as backup means for plasma information so as to enhance the reliability of diagnostics.

    Keywords: neural network, plasma, electron temperature, J-TEXT tokamak

    1.Introduction

    Machine learning has been widely used in fusion research,such as plasma disruption prediction [1–3], fast magnetic equilibrium reconstruction [4], fast spectroscopic analysis [5],feature extraction [6], Non-power law scaling [7] and ideal stability properties prediction [8].In addition, it also has been used in plasma diagnostics for data processing[9],optimization[10] and temperature measurements.On W7-X, a neural network is utilized to approximate the full model Bayesian inference of plasma profiles from x-ray imaging diagnostic measurements [11].On the JET, plasma temperature can be predicted mainly by empirical transport models based on assumptions on the other profiles and plasma parameters [12]though they adopt neural networks to emulate the results of first-principle-based turbulent transport (QLKNN-4Dkin).

    Besides the application of diagnostics and simulation,the neural network can fit the relation between different variables,namely, diagnostic signals on plasma information.For instance, soft x-ray emission intensityIsxrin plasma core is related with plasma parameters (effective ion chargeZeff, electron densityneand electron temperatureTe),indicating certain relation betweenTeand other signals likeIsxrandne.It can be expected that neural network could be able to make a fitting to estimate electron temperature by other signals, and then the fitting can predict electron temperature when no measurements ofTe.Based on above conjecture, different types of neural networks are utilized to reconstruct the relation betweenTeand other signals to predictTeon the J-TEXT tokamak [13, 14].On the J-TEXT, electron temperature is measured by the electron cyclotron emission (ECE) [15, 16] with high time resolution and by the tangential x-ray imaging crystal spectrometer(XICS)[17,18]with a time resolution of a few milliseconds.TheseTemeasurements might be unavailable occasionally.For example, XICS does not work routinely, and ECE is not operated for lacking protection from the electron cyclotron resonance heating(ECRH)system until shot#1065900 when the 105 GHz notching filter is well installed in the ECE system.In that case,the electron temperature predicted by neural networks may be beneficial to physics researches to some extent.

    Table 1.Parameter list for input of neural networks.

    In this paper, the machine learning methods and data preprocessing methods are introduced in section 2.Section 3 introduces the establishment of a single-channel temperature prediction model, and presents the results that two machine learning methods can predict electron temperature profile on ECE radiometer and XICS.Section 4 is the conclusion.

    2.Algorithm model and data processing

    In this paper, two types of neural network are employed for comparison, i.e.error back propagation neural network(BPNN) [19] and generalized regression neural network(GRNN) [20].They are based on the toolbox of machine learning in MATLAB 2017a.Training targets of both types are signals of electron temperature,Te, measured by the 24-channel ECE radiometer and XICS.Ruck sensitivity analysis method [21] is employed for analysis of the model parameters.This sensitivity coefficientsican reveal the degree of influence of input parametersxion output parametersy, i.e.If the sensitivity coefficient of certain parameter is small enough,this parameter has weak relation with the targetTe,and should be discarded from input parameters.Five input parameters and their sensitivity coefficients are listed in table 1.These 5 parameters are relevant toTe, and then selected as input parameters: plasma currentIp, toroidal magnetic fieldBt, soft x-ray emission intensityIsxr[22], lineintegrated electron densityne[23] from the polarimeter interferometer, and loop voltageVloop,as shown in table 1.It should be noted that when the input parameter Isxrcontains the values ofIsxr(tk) signal (r=0) at 9 time points

    Figure 1.Schematic of the application of single-channel neural network.

    The time interval between two adjacent points is 0.1 ms, and hence the size of the time window is 0.8 ms.The time window can better predict electron temperature and related physical phenomena probably because it likely relates to the time scale of instability.Isxr, including multipleIsxr(tk) signals at different times,contains equilibrium and perturbations caused by plasma activities and hence the electron temperature including perturbation caused by plasma activities like sawtooth oscillations can be accurately predicted;otherwise,with theIsxrat one time pointtkas input parameter, only the equilibrium temperature can be obtained while perturbations caused by plasma activities cannot be accurately predicted.

    In order to demonstrate that BPNN and GRNN can be used to predictTemeasured by either ECE or XICS, two databases are established using the experimental data in J-TEXT campaign 2019 autumn: database A for the prediction of ECE signals employs data in shots #1066606?1066648, while database B for the prediction of XICS signals in shots #1064944?1065791.The sampling frequency of all signals is 100 kHz by down sampling and all samples are selected from signals during theIpflattop stage from 0.28 to 0.53 s.All the samples are normalized to the region of [0, 1].There are 1.7 million and 5.2 million data point samples in databases A and B respectively for predicting the ECE and XICS signals.It should be noted that the application shots of the network in section 3 are all excluded from the databases A and B.

    Figure 2.The detecting radii of ECE,SXR and polarimeter interferometer.The X axis is the position of the minor radius or chord radius of line-integrated signals.The radii of ECE are determined with Bt=1.8 T and marked by red crosses.Each dashed box marks one set of ne and Isxr as input parameters, and ECE signals as target.

    In this work,BP neural network employs fully-connected neural network with two hidden layers,which have 15 and 10 neurons respectively,as shown in figure 1.We have tuned the parameters multiple times and it is found that these values can balance time and accuracy of training networks.The activation function isTan-Sigmoid,The target error is described by the mean square error(MSE).The MSE and mean absolute error (MAE) can depict the difference between fitting electron temperatureTeBPand normalized ECE signalsrevealing fitting accuracy of the network, and they can be determined by

    The process of training would end when the MSE value reaches the setting values(0.002 in this paper)or converges to the larger value.

    The BP neural network is trained by functionfeedforwardnetin the toolbox of MATLAB.During training network,the Levenberg–Marquardt algorithm,as one method on solving extremum values of functions fast and accurately by iterative method, is employed in the functionfeedforwardnet.The algorithm combines fast convergence of gradient descent algorithm for slow descent and accurate convergence of Newton method for quick descent.In order to ensure the reliability and generalization performance of the model, the samples are divided into three parts: 70% of samplings for training, used to fit the parameters of the model; 15% for validation, used to tune the parameters; 15% for testing the generalization of the fully specified model.In this work,much effort has been made to avoid the occurrence of overfitting,like validation and testing of networks, reducing the numbers of neurons and the hidden layers,adjusting target error and so on.

    The GRNN in this paper consists of two hidden layers,the radial base layer and summation layer.The radial base layer employs Gaussian function as kernel function for strong local fitting ability.The number of neurons in the hidden layer is equal to that of training samples,while the summation layer contains two neurons to calculate the algebraic sum and weighted sum of the output of the hidden layer neurons.The GRNN, trained by thenewgrnnfunction in MATLAB, has only one hyperparameter:Spread, which represents the spreading speed of the radial basis function.The smaller theSpreadvalue is, the more accurate the training sample point is.However, if the value is too small, overfitting will occur,thereby reducing the ability of model promotion.It is 0.004 for satisfying fitting in this paper.

    3.Electron temperature prediction

    On the J-TEXT, soft x-ray array system and polarimeter interferometer can provide the profiles of line-integratedIsxrandne, and their impact radii are shown by the blue circles and yellow diamonds respectively in figure 2.To preferably predict localTeat certain point, it is better to employ plasma information nearly this radial location to reconstruct their relation by neural networks.Therefore, 14 neural networks for predicting different positions were built.For instance,one neural network(net7 in figure 2)can reconstructTein plasma core byneandIsxrin plasma, while analogouslyTeat any other point can be reconstructed byne,Isxrand other parameters near this point.This section presents the training and application of neural networks (net7 and net12) in plasma core, and the prediction ofTeprofile by 14 neural networks marked by rectangular boxes in figure 2.

    In database A, two typical shots with different MHD activities (sawtooth oscillations and tearing mode in shots#1066607 and 1066633, respectively) are selected for application of the networks, while the others are divided into training, validation and test samples to train the neural network to predict the ECE signals.The hyperparameters have been described in section 2.

    Figure 3.Predicted relative electron temperature corresponding to normalized ECE signals in (a) training sample, (b) validation sample, (c) test sample and in (d) all sample. R is the correlation coefficient.

    When training net7 to predict ECE signals atr~ 0,after 222 epochs the MSE reaches the least value of 0.0023, andTeBPis highly linear toTeECEwith correlation coefficient of above 0.975 in train sample, validation sample, test sample and in all sample, simultaneously, as shown in figure 3.The MSE in the process of training is shown in figure 4.In this figure, the MSE values of validation (the green line) and test(the red dotted line) samples are similar to those of training(the blue circle) sample in all epochs.The model works well on training sample, and it also works well on test sample,reflecting no overfitting of this model.

    The neural network net7 is applied to predict the ECE signals atr~ 0.The predicted signalsTeBPand ECE signalsTeECEare shown in figure 5(a),and their absolute difference is less than 0.04 (figure 5(b)).Figure 5(c) gives the detailed prediction, indicating thatTeBPcan followTeECEincluding perturbations caused by sawtooth oscillations.Another typical prediction ofTeECEatr~ 12 in shot #1066633 by net12(marked by red and dashed boxes in figure 2) is shown in figure 5(d).The large tearing mode decays gradually(figure 5(f)) and sawtooth oscillations emerge (figure 5(d)).As shown in figure 5(e), in the whole process, the MSE is 0.008, and the average error is 0.0695.Without the tearing mode (0.28–0.4 s), the MSE is 0.0045 while during the tearing mode,the MSE increases to 0.0114.The difference in MSE may be attributed to fewer samples with the tearing mode in the training set.

    Figure 4.In the training sample,validation sample, and test sample,the changes of MSE in the iterative process.The yellow dotted line is the target MSE bar, and intersection of the red solid lines is the minimum MSE point.The smallest MSE is 0.0023 at epoch 222.Epoch is a training process in which a neural network performs a forward calculation and a backward error correction of weight coefficient through all training samples.

    Figure 5.Predicted result of ECE relative electron temperature at r=0:(a)the relative electron temperature at r=0 and its prediction by BP NNs,(b)their absolute errors,(c)in the zoomed signals during 0.36–0.39 s in shot#1066607,(d)predicted result of ECE relative electron temperature at r=12 cm and (f) Mirnov signal in shot #1066633.

    Analogously, the ECE signals at different radii can be also predicted by different BP networks.In these networks,the hyperparameters such as the number of hidden layers and neurons,and activation functions,are the same while theIsxr,neand output targets are taken from signals at different positions and the connection weights of neurons are also different in the 14 networks.Hence multiple networks can predictTeprofile.Figure 6(a) shows the prediction ofTeprofile by 14 BP networks in shot#1066607.The signals are selected from the averages during 0.4–0.42 s to balance perturbations due to MHD activities.The error of reconstructedTeprofile by BP networks is less than 5%.As a comparison,in another shot #1066616,Teprofile can be also well predicted, as shown in figure 6(b), which verifies that the BP networks are able to predict the electron temperature profile.

    Besides the BP network, GRNN is also able to predict electron temperature profile.GRNN has fast convergence speed and strong nonlinear approximation performance.However, with higher space complexity, the GRNN needs larger computing space than BP neural network.To reduce computing burden to acceptable level, the sampling rate of GRNN’s training set data reduces to 1 kHz.GRNN only needs 7.63 s to calculate single-channel temperature information at the sampling rate of 1 kHz, while BP neural network needs 18.72 s for the same sampling rate (JAVA heap memory in MATLAB 2017a is set to 4056 MB).Figure 7 shows a comparison of the results predicted by BP NNs (red circles) and GRNN(green circles)methods.The errors of both methods are less than 5%.It is noted that with this low sampling rate at 1 kHz,the GRNN is unable to predict the perturbations caused by MHD activities, like sawtooth oscillations.

    Figure 6.Prediction of average relative electron temperature profiles by different test sets, in shot (a) #1066607 and (b) #1066616.

    Figure 7.Comparison by two networks of BP NNs(red circles)and GRNN (green circles) to predict Te profile in shot #1066607.

    Figure 8.Prediction of core electron temperature obtained by XICS in shots (a) #1065611, (b) #1064961 and (c) their absolute errors.

    On the J-TEXT,XICS measures the core absolute electron temperature,andcan also be predicted as similarly as the ECE signals.In the new model,the input parameters and hyperparameters are the same as those for the prediction ofwhileneandIsxrsignals in plasma core are used as input parameters, andas the training target (output parameters).All samples are from database B.Figure 8 shows the prediction of core absolute electron temperature in two shots without/with ECRH.In shot #1064961,Tejumps up during 0.32–0.49 s when the ECRH system turns on(figure 8(b)).The average errors without/with ECRH heating are less than 3%and 5%,respectively.The network can reproduce a significant increase ofTeto ~1.3 keV after the application of ECRH,and the recovery ofTeback to 0.8 keV at 0.53 s after removing ECRH.In addition to the steady stateTeprediction, the difference betweenandis larger during the transient state, i.e.during the increase (or decrease) ofTeat around 0.295 s(or 0.495 s).This might be due to the feature of XICS,which integrates the x-ray spectra for a few milliseconds and hence provides a time averagedTe(10 ms average in this shot).Future study using ECE as the target might reveal the fast variation ofTeduring the application of ECRH.

    4.Summary and discussion

    Electron temperature and its profile have been predicted by BP network and GRNN on the J-TEXT, based on basic plasma parameters, including plasma current, toroidal magnetic field,soft x-ray emission, electron density and loop voltage.The average error of the predictedTeis less than 5%, and MHD activities like sawtooth oscillations can be reproduced in the prediction.The network predicts electron temperature properly because it can fit the relation betweenTeand other signals.

    This method can reduce the high reliability requirements of such diagnostic devices.The electron temperature may be predicted by sufficient diagnostic signals in real-time via adaptive neural network when there are enough diagnostic signals, if measurements ofTewas missing or lacked due to malfunction.In the future, the model ofTeprofile prediction will be improved from the current 14 networks to a single network, which although might increase computing power.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Science Program (Nos.2018YFE0301104 and 2018YFE0301100), State Key Laboratory of Advanced Electromagnetic Engineering and Technology (No.AEET2020KF001) and National Natural Science Foundation of China (Nos.12075096 and 51821005).

    猜你喜歡
    李達(dá)永華蛟龍
    在武漢大學(xué)拜謁李達(dá)塑像
    李達(dá)與黨的基礎(chǔ)理論建設(shè)
    蛟龍出海
    寶藏(2021年10期)2021-11-22 07:30:24
    海底蛟龍093A暢想
    How To Get Along With Your Friends Better
    李達(dá):為武大建設(shè)殫精竭慮
    李達(dá)與毛澤東哲學(xué)思想的體系化闡釋
    Club Recruitment
    蛟龍,蛟龍!勇者無敵
    蛟龍出海
    寶藏(2018年1期)2018-04-18 07:39:30
    中文字幕人妻丝袜一区二区| 日韩人妻高清精品专区| 一级黄色大片毛片| 中文字幕人妻丝袜一区二区| 变态另类成人亚洲欧美熟女| 亚洲av成人精品一区久久| 一级作爱视频免费观看| 国产午夜福利久久久久久| 国产精品一区二区免费欧美| 一个人免费在线观看的高清视频| 久久亚洲精品不卡| 少妇丰满av| 久久精品人妻少妇| 日韩欧美三级三区| 亚洲精品久久国产高清桃花| 色综合欧美亚洲国产小说| 男女那种视频在线观看| 成年女人看的毛片在线观看| 亚洲国产精品sss在线观看| 成在线人永久免费视频| 欧美色欧美亚洲另类二区| 免费观看精品视频网站| 亚洲欧美精品综合一区二区三区| 欧美最黄视频在线播放免费| 丁香六月欧美| 日本 欧美在线| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 久久这里只有精品19| 精品一区二区三区视频在线 | 99热6这里只有精品| 最新美女视频免费是黄的| 亚洲av五月六月丁香网| 免费av毛片视频| 久久亚洲真实| 成人亚洲精品av一区二区| 夜夜躁狠狠躁天天躁| 天堂av国产一区二区熟女人妻| 国产黄片美女视频| 男人舔女人的私密视频| 国产成人福利小说| 老司机午夜十八禁免费视频| 国产伦在线观看视频一区| 日韩欧美国产一区二区入口| 免费观看人在逋| 美女高潮的动态| 国产亚洲精品av在线| 夜夜看夜夜爽夜夜摸| 一进一出好大好爽视频| 欧美乱妇无乱码| 中文在线观看免费www的网站| 一个人看的www免费观看视频| 午夜福利欧美成人| 欧美xxxx黑人xx丫x性爽| www.精华液| 国内精品一区二区在线观看| 亚洲成人中文字幕在线播放| 中亚洲国语对白在线视频| 精品99又大又爽又粗少妇毛片 | 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 精品免费久久久久久久清纯| 久久午夜亚洲精品久久| 一级毛片高清免费大全| 欧美又色又爽又黄视频| 成在线人永久免费视频| 热99re8久久精品国产| 两性夫妻黄色片| 亚洲人成网站在线播放欧美日韩| 国产精品98久久久久久宅男小说| 午夜日韩欧美国产| 欧美一级a爱片免费观看看| 99久久综合精品五月天人人| 日日摸夜夜添夜夜添小说| 色av中文字幕| 狂野欧美白嫩少妇大欣赏| 免费看日本二区| 小蜜桃在线观看免费完整版高清| 97碰自拍视频| 制服丝袜大香蕉在线| 国产精品亚洲av一区麻豆| 国产午夜精品论理片| 亚洲美女黄片视频| 男女视频在线观看网站免费| 国内久久婷婷六月综合欲色啪| 久久国产精品影院| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区精品| 国产午夜精品论理片| 搡老岳熟女国产| 亚洲av熟女| 精品久久久久久成人av| 日韩中文字幕欧美一区二区| АⅤ资源中文在线天堂| 麻豆成人午夜福利视频| 精品久久久久久久人妻蜜臀av| 欧美+亚洲+日韩+国产| 舔av片在线| 美女高潮的动态| 日韩精品中文字幕看吧| 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 国产午夜精品论理片| av国产免费在线观看| 啪啪无遮挡十八禁网站| 亚洲人成网站高清观看| 亚洲精品在线观看二区| 免费搜索国产男女视频| 一级毛片精品| 成人三级黄色视频| 久久性视频一级片| 亚洲av成人一区二区三| 久久精品夜夜夜夜夜久久蜜豆| 最近最新免费中文字幕在线| 久久久精品大字幕| 精品久久久久久,| 国产高清有码在线观看视频| 久久热在线av| 久久欧美精品欧美久久欧美| 免费人成视频x8x8入口观看| 国产又黄又爽又无遮挡在线| 欧美+亚洲+日韩+国产| 免费观看人在逋| 亚洲国产精品久久男人天堂| 久久久久久人人人人人| 免费观看人在逋| 亚洲国产中文字幕在线视频| 我的老师免费观看完整版| 精品久久久久久久毛片微露脸| 桃色一区二区三区在线观看| 成人精品一区二区免费| 日韩欧美在线乱码| 精品久久久久久,| 亚洲国产欧美一区二区综合| 99精品在免费线老司机午夜| 99国产极品粉嫩在线观看| 淫秽高清视频在线观看| 亚洲精品乱码久久久v下载方式 | 久久久久免费精品人妻一区二区| 色综合婷婷激情| 黑人操中国人逼视频| av天堂中文字幕网| 亚洲成人精品中文字幕电影| 国产精品久久久av美女十八| 黄片小视频在线播放| 久久久久久大精品| x7x7x7水蜜桃| 在线a可以看的网站| 亚洲精品色激情综合| 可以在线观看的亚洲视频| 天堂网av新在线| 黄色丝袜av网址大全| 黄片小视频在线播放| 国产91精品成人一区二区三区| 日韩av在线大香蕉| 三级毛片av免费| 啦啦啦观看免费观看视频高清| 国产精品1区2区在线观看.| 成人高潮视频无遮挡免费网站| 国产精品乱码一区二三区的特点| 中文字幕人妻丝袜一区二区| 成人亚洲精品av一区二区| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩精品亚洲av| 国产成人精品久久二区二区91| 观看美女的网站| 少妇裸体淫交视频免费看高清| 精品久久久久久久毛片微露脸| 欧美极品一区二区三区四区| 麻豆久久精品国产亚洲av| 综合色av麻豆| 久久久久精品国产欧美久久久| av在线蜜桃| 日韩 欧美 亚洲 中文字幕| 男女下面进入的视频免费午夜| 国产欧美日韩一区二区三| 日韩欧美免费精品| 麻豆av在线久日| 免费观看的影片在线观看| 中亚洲国语对白在线视频| 成人av在线播放网站| 亚洲av片天天在线观看| 久久天堂一区二区三区四区| 国产成人欧美在线观看| 三级国产精品欧美在线观看 | 男人舔奶头视频| 丰满的人妻完整版| 三级毛片av免费| 757午夜福利合集在线观看| 黄片小视频在线播放| 黄色片一级片一级黄色片| 日本熟妇午夜| a级毛片a级免费在线| 久久久久国内视频| 国产成人aa在线观看| 首页视频小说图片口味搜索| 国内久久婷婷六月综合欲色啪| 国产一区二区三区视频了| 露出奶头的视频| 欧美3d第一页| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 欧美一级毛片孕妇| 国产午夜精品论理片| 一区二区三区激情视频| 午夜福利在线观看免费完整高清在 | 免费av毛片视频| 国产麻豆成人av免费视频| 欧美绝顶高潮抽搐喷水| 国产午夜精品久久久久久| 中出人妻视频一区二区| 此物有八面人人有两片| 嫁个100分男人电影在线观看| 久久久久久久久中文| 国产不卡一卡二| 99精品久久久久人妻精品| 国产伦一二天堂av在线观看| 97人妻精品一区二区三区麻豆| 99riav亚洲国产免费| 少妇的逼水好多| 一a级毛片在线观看| 欧美日韩一级在线毛片| 女同久久另类99精品国产91| 免费看美女性在线毛片视频| 日日夜夜操网爽| 国产又色又爽无遮挡免费看| 无人区码免费观看不卡| 国产乱人伦免费视频| 变态另类丝袜制服| 国产综合懂色| 18禁黄网站禁片免费观看直播| 一本一本综合久久| 国产精品一区二区三区四区免费观看 | 90打野战视频偷拍视频| 国产真实乱freesex| 国产免费av片在线观看野外av| 99在线人妻在线中文字幕| 神马国产精品三级电影在线观看| 色综合亚洲欧美另类图片| 亚洲一区二区三区色噜噜| 国产视频一区二区在线看| 丁香欧美五月| avwww免费| 午夜精品久久久久久毛片777| 国产精品永久免费网站| 男人舔奶头视频| 久久天躁狠狠躁夜夜2o2o| 中文字幕高清在线视频| 欧美在线黄色| 色综合站精品国产| 久久国产精品影院| 日韩欧美在线乱码| 人妻久久中文字幕网| 88av欧美| 成人性生交大片免费视频hd| 精品久久久久久久久久免费视频| 一进一出抽搐gif免费好疼| 听说在线观看完整版免费高清| 女人被狂操c到高潮| 日韩国内少妇激情av| 宅男免费午夜| 国产真实乱freesex| 精品久久久久久久人妻蜜臀av| 悠悠久久av| 亚洲av日韩精品久久久久久密| 99久久国产精品久久久| 黄色丝袜av网址大全| 亚洲 国产 在线| av视频在线观看入口| 91老司机精品| 久久久久亚洲av毛片大全| 制服丝袜大香蕉在线| svipshipincom国产片| 国产亚洲精品久久久久久毛片| 天堂动漫精品| 亚洲成人久久爱视频| 中文字幕av在线有码专区| 国产高清视频在线播放一区| 国产av不卡久久| x7x7x7水蜜桃| 超碰成人久久| 色综合站精品国产| 免费av毛片视频| 日本 av在线| 国产精品影院久久| 哪里可以看免费的av片| 午夜福利视频1000在线观看| 久久人妻av系列| 少妇人妻一区二区三区视频| 亚洲成人久久爱视频| 在线观看免费视频日本深夜| 少妇裸体淫交视频免费看高清| 看免费av毛片| 精品国产美女av久久久久小说| xxxwww97欧美| 大型黄色视频在线免费观看| 欧美乱妇无乱码| 欧美日韩精品网址| 一夜夜www| 99热精品在线国产| 97超视频在线观看视频| 亚洲国产精品久久男人天堂| 最新中文字幕久久久久 | 美女被艹到高潮喷水动态| 他把我摸到了高潮在线观看| 99久国产av精品| 久久久久精品国产欧美久久久| 日韩成人在线观看一区二区三区| 美女 人体艺术 gogo| 全区人妻精品视频| 日本免费a在线| 精品久久久久久久久久免费视频| 国产精品久久久久久精品电影| 成年免费大片在线观看| 日本五十路高清| 精品欧美国产一区二区三| 免费av不卡在线播放| 欧美日韩乱码在线| 国产伦一二天堂av在线观看| 国产精品自产拍在线观看55亚洲| 亚洲人成网站高清观看| 深夜精品福利| 国产高清三级在线| 黄片小视频在线播放| 久久伊人香网站| 巨乳人妻的诱惑在线观看| 在线看三级毛片| 久久精品人妻少妇| 精品一区二区三区四区五区乱码| 午夜免费成人在线视频| 欧美丝袜亚洲另类 | 国产精品亚洲av一区麻豆| 日韩欧美国产一区二区入口| aaaaa片日本免费| 嫩草影视91久久| 欧美日韩福利视频一区二区| 欧美+亚洲+日韩+国产| 99在线视频只有这里精品首页| 亚洲电影在线观看av| 国产成人影院久久av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩东京热| 精品久久久久久久毛片微露脸| 日本在线视频免费播放| www.自偷自拍.com| 黄片大片在线免费观看| 熟妇人妻久久中文字幕3abv| 五月玫瑰六月丁香| 欧美丝袜亚洲另类 | cao死你这个sao货| 国产伦精品一区二区三区四那| 少妇人妻一区二区三区视频| 麻豆国产av国片精品| 国产毛片a区久久久久| 国产三级黄色录像| 色av中文字幕| 大型黄色视频在线免费观看| 免费看十八禁软件| www日本在线高清视频| 午夜福利免费观看在线| 成年女人毛片免费观看观看9| 午夜福利在线观看免费完整高清在 | 在线观看日韩欧美| 搞女人的毛片| 黄色女人牲交| 狂野欧美激情性xxxx| 亚洲 国产 在线| 久久九九热精品免费| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 一本一本综合久久| 日韩国内少妇激情av| 麻豆国产97在线/欧美| www国产在线视频色| 黑人巨大精品欧美一区二区mp4| 淫秽高清视频在线观看| 日韩欧美在线二视频| 男人舔奶头视频| 国产成人影院久久av| 中文亚洲av片在线观看爽| 国产成人精品久久二区二区91| 国产精品一区二区三区四区免费观看 | 丝袜人妻中文字幕| 动漫黄色视频在线观看| 好男人在线观看高清免费视频| 三级国产精品欧美在线观看 | 18禁黄网站禁片免费观看直播| 首页视频小说图片口味搜索| 色噜噜av男人的天堂激情| 亚洲国产中文字幕在线视频| 18禁国产床啪视频网站| 天堂网av新在线| 日韩三级视频一区二区三区| 天堂av国产一区二区熟女人妻| 综合色av麻豆| 国产精品乱码一区二三区的特点| 亚洲黑人精品在线| 在线观看免费视频日本深夜| 国产精华一区二区三区| 我的老师免费观看完整版| 久久久国产成人免费| 999久久久国产精品视频| 国产美女午夜福利| 伊人久久大香线蕉亚洲五| 在线看三级毛片| 在线视频色国产色| 国内久久婷婷六月综合欲色啪| 18禁国产床啪视频网站| 可以在线观看毛片的网站| 国产一区二区激情短视频| 精品国内亚洲2022精品成人| 亚洲无线在线观看| 老司机深夜福利视频在线观看| 性色av乱码一区二区三区2| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区黑人| 日本成人三级电影网站| 一本一本综合久久| 午夜免费成人在线视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲激情在线av| 久久热在线av| 九九热线精品视视频播放| 日韩欧美在线乱码| 99国产精品一区二区蜜桃av| 夜夜看夜夜爽夜夜摸| 一级作爱视频免费观看| 午夜免费成人在线视频| 熟女少妇亚洲综合色aaa.| 久久婷婷人人爽人人干人人爱| 国产高清videossex| 波多野结衣高清作品| 国产激情欧美一区二区| 免费观看人在逋| 免费无遮挡裸体视频| 99riav亚洲国产免费| 老汉色∧v一级毛片| 三级毛片av免费| 亚洲国产精品999在线| 国产久久久一区二区三区| 久久久久久久久久黄片| 亚洲av片天天在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区精品| 国产野战对白在线观看| 18禁美女被吸乳视频| 亚洲国产欧美网| 欧美成人性av电影在线观看| 成人特级黄色片久久久久久久| 麻豆成人午夜福利视频| 日韩欧美精品v在线| 国产精品 欧美亚洲| 在线免费观看的www视频| 国产精品野战在线观看| 俄罗斯特黄特色一大片| av天堂中文字幕网| 久99久视频精品免费| 久久久国产欧美日韩av| 久久久久精品国产欧美久久久| 国产欧美日韩精品亚洲av| 久久精品国产综合久久久| 日本免费a在线| 久久国产精品影院| 国产美女午夜福利| 午夜福利欧美成人| 欧美一级a爱片免费观看看| 国产一区二区三区在线臀色熟女| 亚洲av五月六月丁香网| 久9热在线精品视频| 亚洲真实伦在线观看| 法律面前人人平等表现在哪些方面| 亚洲 欧美 日韩 在线 免费| 黄频高清免费视频| 欧美一级毛片孕妇| 亚洲精品一区av在线观看| 久99久视频精品免费| 999精品在线视频| 在线观看午夜福利视频| 网址你懂的国产日韩在线| 国产成年人精品一区二区| 黄色丝袜av网址大全| 久久婷婷人人爽人人干人人爱| 特大巨黑吊av在线直播| 亚洲成人精品中文字幕电影| 桃色一区二区三区在线观看| 草草在线视频免费看| 日本一本二区三区精品| 久久中文字幕人妻熟女| 少妇熟女aⅴ在线视频| 在线观看美女被高潮喷水网站 | 黄色日韩在线| 国产精品久久视频播放| 在线观看免费视频日本深夜| 午夜免费激情av| 亚洲成人久久性| 中文字幕精品亚洲无线码一区| 波多野结衣高清无吗| 久久久久性生活片| 国产三级中文精品| 亚洲成a人片在线一区二区| 欧美av亚洲av综合av国产av| 亚洲第一欧美日韩一区二区三区| 亚洲国产精品999在线| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 久久热在线av| 老汉色av国产亚洲站长工具| 国产av麻豆久久久久久久| 九色成人免费人妻av| 亚洲av中文字字幕乱码综合| 国产三级黄色录像| 麻豆一二三区av精品| 偷拍熟女少妇极品色| 亚洲无线观看免费| 舔av片在线| 一本综合久久免费| or卡值多少钱| 精品久久久久久久人妻蜜臀av| 哪里可以看免费的av片| 精品国产乱子伦一区二区三区| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 男女床上黄色一级片免费看| 亚洲在线自拍视频| 亚洲国产欧洲综合997久久,| 脱女人内裤的视频| 九九热线精品视视频播放| 国语自产精品视频在线第100页| 精品熟女少妇八av免费久了| 国内揄拍国产精品人妻在线| 麻豆一二三区av精品| 天天躁日日操中文字幕| 久久欧美精品欧美久久欧美| 级片在线观看| 国内毛片毛片毛片毛片毛片| 精品一区二区三区视频在线观看免费| 97超级碰碰碰精品色视频在线观看| 国产精品一及| 特级一级黄色大片| 最近在线观看免费完整版| 国产一区在线观看成人免费| 免费观看精品视频网站| 免费人成视频x8x8入口观看| 好男人电影高清在线观看| 亚洲第一电影网av| 亚洲无线在线观看| 女同久久另类99精品国产91| 日本黄色片子视频| 国产精品一区二区三区四区久久| 搞女人的毛片| 别揉我奶头~嗯~啊~动态视频| 搡老岳熟女国产| 99精品在免费线老司机午夜| 亚洲国产精品成人综合色| 日韩欧美 国产精品| 色av中文字幕| 综合色av麻豆| 亚洲 欧美 日韩 在线 免费| 精品久久蜜臀av无| 十八禁网站免费在线| 天天一区二区日本电影三级| 欧美日韩福利视频一区二区| 国产免费av片在线观看野外av| 久久久久久久久中文| 这个男人来自地球电影免费观看| 午夜影院日韩av| 人妻丰满熟妇av一区二区三区| 18禁美女被吸乳视频| 久久久久久人人人人人| www.熟女人妻精品国产| 国内毛片毛片毛片毛片毛片| 三级国产精品欧美在线观看 | 88av欧美| 日韩精品中文字幕看吧| 在线免费观看不下载黄p国产 | 9191精品国产免费久久| 午夜福利视频1000在线观看| 啦啦啦免费观看视频1| 精品久久久久久久人妻蜜臀av| 亚洲精品久久国产高清桃花| 天天躁狠狠躁夜夜躁狠狠躁| 可以在线观看毛片的网站| 中亚洲国语对白在线视频| 国产三级在线视频| 脱女人内裤的视频| 国产精品久久视频播放| 日韩欧美精品v在线| 窝窝影院91人妻| 国产精品 国内视频| 国产三级在线视频| 99精品在免费线老司机午夜| 麻豆av在线久日| 亚洲欧美日韩无卡精品| 99久久精品一区二区三区| 国产精品久久视频播放| 少妇人妻一区二区三区视频| 国产激情偷乱视频一区二区| 国产精品久久视频播放| 成人三级黄色视频| 小蜜桃在线观看免费完整版高清| 亚洲五月婷婷丁香| www日本黄色视频网| 看片在线看免费视频| 男人的好看免费观看在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 免费一级毛片在线播放高清视频| 嫩草影院入口| 国产三级在线视频| 免费人成视频x8x8入口观看| 亚洲精品一区av在线观看| 99热精品在线国产| 丝袜人妻中文字幕| 欧美在线黄色|