• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance*

    2021-07-30 07:43:12HuiFangXu許會芳WenSun孫雯andNaWang王娜
    Chinese Physics B 2021年7期
    關(guān)鍵詞:王娜

    Hui-Fang Xu(許會芳), Wen Sun(孫雯), and Na Wang(王娜)

    Institute of Electrical and Electronic Engineering,Anhui Science and Technology University,Fengyang 233100,China

    Keywords: extended-source,broken gate,radio-frequency performances,tunnel field-effect transistor

    1. Introduction

    As the size of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales down continuously, the power dissipation, limitation of subthreshold swing (SS) of 60 mV/decade of current at room temperature, and significant increase of the off-state currentIoffhave become critical issues. However, in next-generation technology nodes,novel devices with low power, high on-chip packing density,and high speed are of great demands. Therefore,tunnel fieldeffect transistors(TFETs)have been proposed to replace conventional MOSFETs in order to overcome the shortcomings of MOSFETs. In contrast to the thermal injection of carriers for MOSFETs,the working mechanism of TFETs is bandto-band tunneling (BTBT).[1]The BTBT mechanism can reduce the values of SS, various researches have proved that SS is lower than 60 mV/decade at 300 K.[2-4]Moreover, the BTBT mechanism produces a large tunneling barrier for the current carriers when the device is operated in the off-state,which makesIoffsmaller. As a result, the power dissipation of TFETs is lower than that of MOSFETs. However,in spite of the above-mentioned advantages for TFETs, conventional TFETs suffer from ambipolar behavior and small on-state currentIon. Therefore,many papers have extensively boostedIonand reduced ambipolar behavior. For the purpose of suppressing ambipolar behavior, many technologies have been used, such as low doping levels in the drain region,[5]underlap and overlap of gate-drain.[6-8]Furthermore, in order to enhanceIon, many novel architectures of TFETs such as T-shape,[9,10]nanowire,[11,12]L-shape,[2,13]U-shape,[14]nanotube,[15,16]are proposed. Moreover, the materials with small energy bandgap,[17-19]high-kgate dielectrics,[20]high doping levels in the source region as well as abruptness at the source-channel tunnel junction are need to design. As is well known, the tunneling barrier decreases with the energy bandgap decreasing,so the tunneling rate increases,which results in a largeIon. Moreover,a sharp abrupt junction between the source region and channel region should be formed in order to increase the generation efficiency of BTBT as much as possible, and as a result,Ionis boosted. Thus, many researchers have concentrated on how to form an abrupt source-channel junction based on the process technology.

    Furthermore, for better applications from the perspective of low-power and analog/rf circuits, the performance parameters of TFETs such as low SS, small threshold voltageVth, high on-state current to off-state current ratioIon/Ioff,large transconductancegm, high cut-off frequencyfT, high gain bandwidth product (GBP), and large transconductance frequency product (TFP) should be obtained. Miscellaneous techniques have been reported in the literature to improve the dc and analog/rf performance parameters.[21-28]Pujaet al.reported a ferroelectric TFET with SS of 40 mV/decade,Ion/Ioffof 8.4×1011.[29]Tripureshet al.reported an extended-source double-gate TFET (ESDG TFET) withVthof 0.42 V, SS of 12.24 mV/decade,Ion/Ioffof 1012,fTof 37.7 GHz, GBP of 3.4 GHz.[30]Rounaket al.proposed a broken gate TFET(BG TEFT), which combines the advantages of the double gate TFET(DG TFET)and the L-shaped TFET(L TFET).[31]Moreover, superior characteristics such as small ambipolar current, low SS, and largeIonare achieved for BG TFET. In this paper,a novel TFET named as the ESBG TFET,which is an amalgamation between the ESDG TFET and the BG TFET in order to enhance the dc and analog/rf performance.

    2. Device structure

    The structure of the ESBG TFET is shown in Fig.1. The source region is extended into the channel for the purpose of enhancing the point and line tunneling probabilities at the tunneling junction.The gate dielectrics near the source region and near the drain region are hafnium dioxide(HfO2)and silicon dioxide (SiO2) in order to reduce ambipolarity. It should be noted that the device is called the ESBG TFET(HfO2)when the gate dielectrics near the source and drain regions are HfO2.Similarly,when the gate dielectrics are silicon dioxide(SiO2),the device is called the ESBG TFET (SiO2). The length and height of the p+source region isLsandTs,respectively. The silicon thicknesses near the gate and near the drain areT1andT2,respectively. The lengths of gate and gate 2 areL1andL3,respectively. The distance between gate and gate 2 isL2. The parameters for the ESBG TFET are listed in Table 1.

    Fig.1. Structure of the extended-source broken gate TFET.

    Table 1. Parameters of the ESBG TFET used in this paper.

    The performance parameters of the ESBG TFET are simulated using the silvaco atlas simulator,[32]and the nonlocal band-to-band tunneling(BTBT)model,the auger recombination model,the shockley-read-hall(SRH)model as well as the fermi-dirac statistics model are used. The material parameters such as tunneling mass of electron(me.tunnel)and tunneling mass of hole (mh.tunnel) are used in the nonlocal tunneling model. Moreover,the tunneling current of the TFET is exponentially related to the values of me.tunnel and mh.tunnel. In our simulations,the values of me.tunnel and mh.tunnel are set as 0.21 and 0.16 for the purpose of calibrating the simulation models with the experimental results.[30,32]It should be noted that the gates for the ESBG TFET are simultaneously provided with the same gate-source voltage for all the simulations and analysis presented in this paper.

    3. Results and discussions

    3.1. Direct-current analysis for the ESBG TFET

    Figure 2(a)shows the comparisons of transfer characteristics for the conventional dual material gate (DMG) TFET and the ESBG TFET with anLsof 25 nm. It is evident from Fig. 2(a) that the ESBG TFET shows an improvement in theIoffby seven orders in comparison to the DMG TFET.Moreover,Ionis also enhanced for the ESBG TFET due to increase of the line and point tunneling probabilities at the source-channel junction.IonandIoffdefined at gate-source voltage ofVgsfixed at 1 V and 0 V, respectively, have been calculated with the drain-source voltage ofVdsfixed at 0.5 V.Ion~3.26×10-5A/μm andIoff~1.84×10-18A/μm have been obtained for the ESBG TFET with anLsof 25 nm.Moreover,the transfer characteristic curves of the proposed device and the ESBG TFET (HfO2) are almost coincided, butIoffof the proposed device is less than that of the ESBG TFET(HfO2).However,Ionfor the ESBG TFET(SiO2)is very small because of the large tunneling width. Figure 2(b) shows the variation ofIdswithVdsfor the DMG TFET and the ESBG TFET. The curves depicts that with increase inVds,Idssaturates to a constant value as the barrier width becomes independent ofVds. Moreover, the ESBG TFET exhibits superior drain current in comparison with the other three devices.

    Fig. 2. (a) Transfer characteristics and (b) output characteristics comparison for the ESBG TFET and the DMG TFET.

    Figure 3(a)shows the variation in the electric field along the cutlineC1(as shown in Fig. 1). The peak electric field is lied at the corners due to the point tunneling in the device.The variation in the electric field is reflected in the energy band along the cutlineC1,as observed in Fig.4(a). It is obvious that the value of energy band range over which tunneling takes place and the value of the average tunneling width varies withLs,the higher the value of energy band range over which tunneling takes place, the lower the value of the average tunneling width,the higher the charge carrier transmission probability,and henceIonis enhanced. Moreover,it is obvious from Fig.3(b)that the peak electric field at the source corners along the cutlineC2(as shown in Fig.1)is higher,which infers the line tunneling in the ESBG TFET.Figure 4(b)shows the variation in the energy band at the source corners along the cutlineC2. More energy band bending at the source corners along the cutlineC2will result in a higherIon. However,the differences of electric field and energy band along the cutlineC2betweenLs=15 nm andLs=25 nm are not obvious.

    Fig.3. Electric field variation along the cutline(a)C1 and(b)C2 for the ESBG TFET with different Ls.

    Fig.4. Energy band variation along the cutline(a)C1 and(b)C2 for the ESBG TFET with different Ls.

    Figure 5(a)shows the effects ofLsonIonandIon/Iofffor the ESBG TFET. TheIonincreases with increase inLswhen the value ofLsis lower than 35 nm, butIondegrades afterLsof 35 nm. Moreover, theIon/Ioffdegrades rapidly whenLsis larger than 15 nm due to the increase inIoff. Therefore, in terms of enhancedIonandIon/Ioff,the optimum value ofLsis set to 25 nm for the ESBG TFET.Figure 5(b)shows the output characteristics for the ESBG TFET with four values ofLs.The ESBG TFET withLsof 35 nm exhibits improved drain current in comparison with other threeLsvalues.

    Fig.5.(a)Ion,Ion/Ioff and(b)output characteristics for the ESBG TFET with different Ls.

    3.2. Parasitic capacitance and radio-frequency performance for the ESBG TFET

    Parasitic capacitances impact the performances of TFET significantly at high frequency since they establish a feedback path between output and input, which leads to parasitic oscillations as well as signal distortion. These parasitic capacitances contain gate-to-source capacitanceCgs, gate-to-drain capacitanceCgd. The dependences ofCgs,Cgd, and transconductance(gm)onVgsfor the ESBG TFET with differentLsare illustrated in Fig. 6. It is obvious that for the ESBG TFET withLs= 15 nm,Cgsis lower thanCgdwhenVgsis larger than 0.3 V.Cgdincreases rapidly due to the fact that a large number of electrons are accumulated in the channel at the gate interface,whileCgsremains almost unaffected with rise inVgs.The gate capacitanceCggis the sum ofCgsandCgd. Therefore,the main component of the gate capacitanceCggisCgd. However, because of the increase of the overlap between the gate and the source regions for the ESBG TFET withLs=35 nm,Cgsis larger thanCgdwhenVgsis less than 1.3 V. Therefore,Cggis mainly determined byCgsfor most of theVgsrange at largerLs. However,Cgdis also the main component ofCggwhenVgsis larger than 1.3 V, which is due to the fact that the increase of the electron concentration in the channel leads toCgdincreasing rapidly withVgs. However, the values ofCgsandCgdare very large for the ESBG TFET withLs=40 nm whenVgsis larger than 1.3 V, which will deteriorate the high-frequency characteristics of TFET.Also,gmis an important parameter for analogue applications of the TFET which converts the gate-source voltage into the drain-source current. It is obvious from Fig. 6(c) thatgmfor the ESBG TFET withLs=35 nm is larger than that of the ESBG TFET withLs=15 nm, 25 nm and 40 nm. The higher thegmof the ESBG TFET, the better the sensitivity for the conversion of gate-source voltage into drain-source current,the better the linearity and high-frequency characteristics.

    Fig.6. (a)Cgs,(b)Cgd,and gm for the ESBG TFET with different Ls.

    The performance parameters of the ESBG TFET aboutIon/Ioff,gm,fTand GBP as compared with those of the recently reported TFET structures are given in Table 2. The proposed structure provides higherIon/Ioff,and largergmthan those of other reported TFET structures. Moreover,the ESBG TFET offers two times improvement infTand four times increase in GBP as compared to the recently reported ESDG TFET.

    Fig.7. Characteristics of(a) fT,(b)GBP,and TFP for the ESBG TFET with different Ls.

    Table 2. Comparison of performance parameters of the ESBG TFET with the recently reported TFETs.

    The variation of the second and third-order voltage intercept points(VIP2,VIP3),the third-order input interception point(IIP3), and the third-order intermodulation distortion (IMD3)withVgsfor the proposed device with differentLsare analyzed.The equations of these parameters can be written as follows:

    The second- and third-order harmonic distortions(HD2,HD3)are analyzed in order to understand the distortion characteristics of the device,and the equations about HD2and HD3can be written as

    Fig.8. (a)VIP2,(b)VIP3,(c)IIP3,and(d)IMD3 for the ESBG TFET with different Ls.

    Fig.9. (a)HD2 and(b)HD3 for the ESBG TFET with different Ls.

    whereVais the amplitude of the input signal, which is fixed at 50 mV.It is obvious that the proposed device withLsfixed at 15 nm provides less HD2and HD3than the device with the other length ofLs. Therefore,the noise in the proposed device withLsfixed at 15 nm will be less. Consequently, it can be concluded that the proposed device withLsfixed at 15 nm is more linear with higher reliability.

    4. Conclusions

    The dc characteristics,analog/rf parameters and linearity parameters for ESBG TFET are analyzed. The results shows that the ESBG TFET can achieve significant improvement in parameters likeIon/Ioff,gm,fT, GBP,and TFP.The length of the source region for ESBG TFET is optimized to increase the point and line tunneling at the tunneling junction. It can be concluded that the optimum value ofLsis set to 25 nm in terms of enhancedIonandIon/Ioffof 1013. However, the parameters such asgm,fT,GBP,and TFP are slightly enhanced whenLsis set to 35 nm. Moreover, the ESBG TFET offers two times improvement infTand four times increase in GBP as compared to the recently reported ESDG TFET, thus the ESBG TFET shows better analog/rf characteristics. Furthermore,the linearity distortion parameters in terms ofVIP2,VIP3,IIP3,IMD3, HD2, and HD3for the ESBG TFET with differentLsare analyzed in order to address the nonlinearity issue.

    猜你喜歡
    王娜
    Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    傳統(tǒng)連綴式四方連續(xù)紋樣參數(shù)化創(chuàng)新設(shè)計研究
    設(shè)計(2022年8期)2022-05-25 05:27:44
    王娜作品賞析
    美顏
    上海故事(2019年5期)2019-05-21 15:01:22
    An Analysis of George Orwell’s Anti—Utopian Elements in 1984
    適時的愛情
    新青年(2018年3期)2018-03-16 22:06:32
    王娜的變化
    喜劇世界(2016年9期)2016-11-26 13:41:07
    另一種保護
    一場被忽悠的鬧劇,“影帝”原來是真兇
    各得其所
    故事會(2013年2期)2013-05-14 15:24:04
    国产精品女同一区二区软件| 亚洲成人一二三区av| 午夜久久久久精精品| 亚洲人成网站在线观看播放| 日韩精品青青久久久久久| 色综合亚洲欧美另类图片| 69人妻影院| 日韩欧美精品免费久久| 午夜激情福利司机影院| 久久精品熟女亚洲av麻豆精品 | 精品熟女少妇av免费看| 七月丁香在线播放| 国产黄色小视频在线观看| 亚洲人与动物交配视频| 又爽又黄a免费视频| 国产亚洲精品av在线| 91久久精品电影网| 2018国产大陆天天弄谢| 久99久视频精品免费| 日本一本二区三区精品| 国产免费一级a男人的天堂| 男女下面进入的视频免费午夜| 深爱激情五月婷婷| 国产综合精华液| 免费观看的影片在线观看| 极品教师在线视频| 久久久久久久久久成人| 2022亚洲国产成人精品| 最近视频中文字幕2019在线8| 熟女人妻精品中文字幕| 欧美潮喷喷水| 成人亚洲欧美一区二区av| 男人舔女人下体高潮全视频| 18禁在线播放成人免费| 青春草国产在线视频| 日韩欧美一区视频在线观看 | 最近2019中文字幕mv第一页| 午夜免费男女啪啪视频观看| 亚洲真实伦在线观看| 国产精品日韩av在线免费观看| 高清欧美精品videossex| 国产在线一区二区三区精| 人妻制服诱惑在线中文字幕| 亚洲自拍偷在线| 九色成人免费人妻av| 午夜福利视频1000在线观看| 联通29元200g的流量卡| 欧美精品一区二区大全| 亚洲最大成人av| 美女cb高潮喷水在线观看| 午夜福利成人在线免费观看| 网址你懂的国产日韩在线| av播播在线观看一区| 乱人视频在线观看| 三级国产精品片| 看黄色毛片网站| 亚洲激情五月婷婷啪啪| 激情 狠狠 欧美| 国产黄色视频一区二区在线观看| 精品久久久久久久人妻蜜臀av| 日韩欧美 国产精品| 国产av不卡久久| 2021少妇久久久久久久久久久| 在线观看人妻少妇| 久久久久久九九精品二区国产| 免费不卡的大黄色大毛片视频在线观看 | 国产片特级美女逼逼视频| 国产精品麻豆人妻色哟哟久久 | 久久精品国产亚洲网站| 天堂av国产一区二区熟女人妻| 麻豆久久精品国产亚洲av| 亚洲国产精品专区欧美| 午夜免费激情av| 中文字幕人妻熟人妻熟丝袜美| 高清视频免费观看一区二区 | 亚洲av在线观看美女高潮| 亚洲色图av天堂| 日韩不卡一区二区三区视频在线| 午夜免费激情av| 亚洲人成网站高清观看| 亚洲精品aⅴ在线观看| 国产成人精品婷婷| 三级国产精品片| 欧美+日韩+精品| 午夜福利在线在线| 在线观看美女被高潮喷水网站| 免费黄色在线免费观看| 岛国毛片在线播放| 国产精品av视频在线免费观看| 亚洲高清免费不卡视频| 午夜精品一区二区三区免费看| 寂寞人妻少妇视频99o| 亚洲av免费在线观看| 亚洲精品影视一区二区三区av| 亚洲成人一二三区av| 国内精品一区二区在线观看| 日韩精品有码人妻一区| 18禁裸乳无遮挡免费网站照片| 国产综合懂色| 久久久久久九九精品二区国产| 一边亲一边摸免费视频| 女人被狂操c到高潮| 亚洲,欧美,日韩| 久久99精品国语久久久| 丝袜美腿在线中文| 极品少妇高潮喷水抽搐| 日本-黄色视频高清免费观看| 七月丁香在线播放| 亚洲国产色片| 国产亚洲精品av在线| 日本色播在线视频| 亚洲婷婷狠狠爱综合网| 日韩电影二区| av免费观看日本| 亚洲精品影视一区二区三区av| 色尼玛亚洲综合影院| 99视频精品全部免费 在线| 99热网站在线观看| 国产亚洲av嫩草精品影院| 乱码一卡2卡4卡精品| 十八禁网站网址无遮挡 | 乱人视频在线观看| 色视频www国产| 亚洲av中文字字幕乱码综合| 国产精品无大码| 亚洲精品国产成人久久av| 五月天丁香电影| 免费少妇av软件| 免费观看av网站的网址| 国产精品日韩av在线免费观看| 最近2019中文字幕mv第一页| 国产成人freesex在线| 亚洲自拍偷在线| 亚洲精品久久午夜乱码| 亚洲精品一区蜜桃| 欧美精品一区二区大全| 综合色丁香网| 亚洲精品乱码久久久v下载方式| 不卡视频在线观看欧美| 黄片wwwwww| 观看美女的网站| 国产精品国产三级国产专区5o| 免费看不卡的av| freevideosex欧美| 午夜亚洲福利在线播放| 亚洲精品国产av蜜桃| 国产毛片a区久久久久| 亚洲精品成人久久久久久| 久久97久久精品| 蜜桃久久精品国产亚洲av| 久久久久久久久久成人| 久久精品久久久久久噜噜老黄| 丰满少妇做爰视频| a级一级毛片免费在线观看| 两个人的视频大全免费| 狂野欧美激情性xxxx在线观看| 韩国av在线不卡| 91狼人影院| 91av网一区二区| 69av精品久久久久久| 99久久人妻综合| 国产一级毛片七仙女欲春2| 狂野欧美激情性xxxx在线观看| 成年免费大片在线观看| 夜夜看夜夜爽夜夜摸| 男女国产视频网站| 亚洲国产精品国产精品| 国产精品国产三级专区第一集| 91在线精品国自产拍蜜月| 亚洲图色成人| 亚洲精品aⅴ在线观看| 观看美女的网站| 内地一区二区视频在线| 国产av码专区亚洲av| 久久久久久国产a免费观看| 美女高潮的动态| 99久久九九国产精品国产免费| 亚洲伊人久久精品综合| 亚洲精品第二区| 免费无遮挡裸体视频| 久久久久久久久久黄片| 一级av片app| 免费无遮挡裸体视频| 天堂√8在线中文| 久久99热6这里只有精品| 国产成人freesex在线| 日韩欧美三级三区| 久久久久久久大尺度免费视频| 国产av码专区亚洲av| 亚洲最大成人av| 女的被弄到高潮叫床怎么办| 亚洲激情五月婷婷啪啪| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 日韩欧美精品v在线| 国模一区二区三区四区视频| 成人欧美大片| 少妇人妻一区二区三区视频| 日本欧美国产在线视频| 少妇熟女aⅴ在线视频| 国产欧美另类精品又又久久亚洲欧美| 免费看日本二区| 国产av码专区亚洲av| 日韩强制内射视频| 精品久久久精品久久久| 亚洲欧美成人精品一区二区| 久久精品久久久久久噜噜老黄| 男人爽女人下面视频在线观看| 麻豆成人av视频| 亚洲av成人精品一二三区| 精品人妻熟女av久视频| 国产伦理片在线播放av一区| 亚洲av福利一区| 极品教师在线视频| av在线蜜桃| 国产高清国产精品国产三级 | 亚洲精品中文字幕在线视频 | 色播亚洲综合网| 美女被艹到高潮喷水动态| av播播在线观看一区| 亚洲va在线va天堂va国产| 一级毛片aaaaaa免费看小| av国产免费在线观看| 中文乱码字字幕精品一区二区三区 | 国产精品国产三级国产av玫瑰| 能在线免费观看的黄片| 看免费成人av毛片| 少妇的逼好多水| 超碰97精品在线观看| 全区人妻精品视频| 久久6这里有精品| 免费少妇av软件| 日韩中字成人| 99热6这里只有精品| av福利片在线观看| 日韩成人av中文字幕在线观看| 高清在线视频一区二区三区| 日本色播在线视频| 最近2019中文字幕mv第一页| 国产成人精品久久久久久| 一区二区三区四区激情视频| 国产成人午夜福利电影在线观看| 午夜激情久久久久久久| 久久精品国产鲁丝片午夜精品| 亚洲精品自拍成人| 午夜精品在线福利| 国产精品1区2区在线观看.| or卡值多少钱| 啦啦啦韩国在线观看视频| 欧美bdsm另类| 简卡轻食公司| 三级男女做爰猛烈吃奶摸视频| 欧美性感艳星| 日韩视频在线欧美| 日韩大片免费观看网站| 99热这里只有精品一区| 亚洲精品自拍成人| 亚洲欧美清纯卡通| 日本熟妇午夜| 青春草亚洲视频在线观看| 国产高清三级在线| 国产不卡一卡二| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版 | 久久久久久久久中文| 亚洲av.av天堂| 亚洲精品第二区| 欧美三级亚洲精品| 两个人视频免费观看高清| 可以在线观看毛片的网站| 少妇丰满av| 国产精品美女特级片免费视频播放器| 国产熟女欧美一区二区| 美女xxoo啪啪120秒动态图| 午夜久久久久精精品| 亚洲熟女精品中文字幕| 成人性生交大片免费视频hd| 波野结衣二区三区在线| 日本av手机在线免费观看| 亚洲av中文字字幕乱码综合| 国产一区亚洲一区在线观看| 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 国产精品久久久久久久久免| 日韩一本色道免费dvd| 男女视频在线观看网站免费| 国产伦在线观看视频一区| 久久人人爽人人爽人人片va| 久久精品国产鲁丝片午夜精品| 久久国产乱子免费精品| 韩国av在线不卡| av.在线天堂| 啦啦啦中文免费视频观看日本| 国产激情偷乱视频一区二区| 天堂√8在线中文| 天堂影院成人在线观看| 国内揄拍国产精品人妻在线| 中文字幕亚洲精品专区| 少妇人妻一区二区三区视频| 欧美3d第一页| 免费高清在线观看视频在线观看| 国产成人aa在线观看| 欧美三级亚洲精品| 最后的刺客免费高清国语| 国产激情偷乱视频一区二区| 床上黄色一级片| 日韩欧美国产在线观看| 亚洲怡红院男人天堂| 免费少妇av软件| 国产成人91sexporn| 亚洲av电影不卡..在线观看| 亚洲国产精品sss在线观看| 免费黄色在线免费观看| 亚洲精品亚洲一区二区| 一本一本综合久久| 欧美日韩一区二区视频在线观看视频在线 | 午夜激情久久久久久久| 国产色婷婷99| 国产精品综合久久久久久久免费| 日本猛色少妇xxxxx猛交久久| av在线老鸭窝| 久久精品久久久久久噜噜老黄| 国产亚洲一区二区精品| 国产精品福利在线免费观看| 97精品久久久久久久久久精品| 亚洲欧美精品自产自拍| 婷婷色综合www| 国产高清不卡午夜福利| 91精品伊人久久大香线蕉| 国产精品99久久久久久久久| 国产亚洲最大av| 成人综合一区亚洲| 99久久中文字幕三级久久日本| 亚洲精品中文字幕在线视频 | 精品欧美国产一区二区三| 精品国产露脸久久av麻豆 | 国产精品99久久久久久久久| 国产精品日韩av在线免费观看| 中文字幕久久专区| 中文精品一卡2卡3卡4更新| 老师上课跳d突然被开到最大视频| 亚洲精品成人久久久久久| 一级黄片播放器| 夜夜看夜夜爽夜夜摸| 欧美xxxx黑人xx丫x性爽| 亚洲,欧美,日韩| 丰满乱子伦码专区| 精品国内亚洲2022精品成人| 一级片'在线观看视频| 成人美女网站在线观看视频| 一级毛片 在线播放| 久久精品国产鲁丝片午夜精品| 最新中文字幕久久久久| 国产v大片淫在线免费观看| 欧美日韩在线观看h| 亚洲精品成人av观看孕妇| 久久久久久九九精品二区国产| 97热精品久久久久久| 日韩国内少妇激情av| 视频中文字幕在线观看| 九草在线视频观看| 亚洲高清免费不卡视频| 波野结衣二区三区在线| 亚洲国产精品成人综合色| 国内精品一区二区在线观看| 国产精品久久久久久av不卡| 看十八女毛片水多多多| 嫩草影院精品99| 18+在线观看网站| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 一级毛片黄色毛片免费观看视频| 99久国产av精品国产电影| 亚洲经典国产精华液单| 六月丁香七月| 国产高清不卡午夜福利| or卡值多少钱| 成人美女网站在线观看视频| 我的女老师完整版在线观看| 中文字幕亚洲精品专区| 2022亚洲国产成人精品| 日韩亚洲欧美综合| 国内精品美女久久久久久| 亚洲va在线va天堂va国产| 亚洲成色77777| 91久久精品国产一区二区成人| 搞女人的毛片| 亚洲国产精品成人综合色| 女人久久www免费人成看片| 一个人观看的视频www高清免费观看| 国产成人一区二区在线| 99九九线精品视频在线观看视频| 欧美高清成人免费视频www| 成人特级av手机在线观看| 欧美潮喷喷水| 夫妻午夜视频| 欧美高清成人免费视频www| 乱人视频在线观看| 国产成人一区二区在线| 一个人免费在线观看电影| av在线亚洲专区| 男女国产视频网站| 麻豆成人av视频| 一夜夜www| 日本熟妇午夜| 精品久久久久久久末码| 全区人妻精品视频| 简卡轻食公司| 亚洲精品亚洲一区二区| 日韩一区二区三区影片| av国产免费在线观看| 99热这里只有精品一区| 国内揄拍国产精品人妻在线| 国产大屁股一区二区在线视频| 精品一区二区免费观看| 天堂影院成人在线观看| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| 中文精品一卡2卡3卡4更新| 久久精品熟女亚洲av麻豆精品 | 久久久久久久亚洲中文字幕| 日韩三级伦理在线观看| 成人午夜精彩视频在线观看| 欧美一区二区亚洲| 欧美激情国产日韩精品一区| 一区二区三区四区激情视频| 最近中文字幕2019免费版| 18禁裸乳无遮挡免费网站照片| 午夜福利在线观看免费完整高清在| 男人爽女人下面视频在线观看| 国产高潮美女av| 国产老妇伦熟女老妇高清| 中文天堂在线官网| 日本黄色片子视频| 五月伊人婷婷丁香| 午夜久久久久精精品| 亚洲熟妇中文字幕五十中出| 欧美高清成人免费视频www| 欧美日韩视频高清一区二区三区二| 一个人看视频在线观看www免费| 免费看美女性在线毛片视频| 欧美激情久久久久久爽电影| 丰满少妇做爰视频| 成人毛片a级毛片在线播放| 午夜精品在线福利| 国产精品国产三级专区第一集| 麻豆av噜噜一区二区三区| 深夜a级毛片| 极品教师在线视频| 国产伦精品一区二区三区视频9| av线在线观看网站| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 搡老妇女老女人老熟妇| 九草在线视频观看| 在线观看一区二区三区| 国产精品一二三区在线看| 亚洲欧美精品自产自拍| 天天躁日日操中文字幕| 男女那种视频在线观看| 日韩不卡一区二区三区视频在线| 三级国产精品片| 国产乱人视频| 日韩av在线大香蕉| 精品少妇黑人巨大在线播放| 中国国产av一级| 80岁老熟妇乱子伦牲交| 天堂√8在线中文| 国产色爽女视频免费观看| 日本色播在线视频| 最近的中文字幕免费完整| 我的老师免费观看完整版| 能在线免费看毛片的网站| 人妻制服诱惑在线中文字幕| 男女边吃奶边做爰视频| 日韩欧美国产在线观看| 日韩制服骚丝袜av| 亚洲久久久久久中文字幕| 国产精品国产三级专区第一集| 国产精品女同一区二区软件| 小蜜桃在线观看免费完整版高清| 亚洲综合色惰| 免费在线观看成人毛片| 永久免费av网站大全| 美女cb高潮喷水在线观看| 黄色日韩在线| 嫩草影院入口| 你懂的网址亚洲精品在线观看| 简卡轻食公司| 亚洲欧美精品专区久久| 国产在视频线在精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产日韩欧美精品在线观看| 国产黄片视频在线免费观看| av福利片在线观看| 国产美女午夜福利| 免费看a级黄色片| 高清毛片免费看| 天堂√8在线中文| 欧美+日韩+精品| 性插视频无遮挡在线免费观看| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| 久久精品夜夜夜夜夜久久蜜豆| 极品少妇高潮喷水抽搐| 日韩强制内射视频| 大香蕉久久网| 国产精品嫩草影院av在线观看| freevideosex欧美| 亚洲精品一区蜜桃| 亚洲精品国产成人久久av| 亚洲,欧美,日韩| 久久韩国三级中文字幕| 午夜福利网站1000一区二区三区| 国产精品久久久久久久久免| 菩萨蛮人人尽说江南好唐韦庄| 亚洲三级黄色毛片| 久久久精品欧美日韩精品| 伦理电影大哥的女人| 一区二区三区乱码不卡18| 天天躁夜夜躁狠狠久久av| 中文字幕制服av| 国产精品人妻久久久影院| 久久久欧美国产精品| 丝袜美腿在线中文| 肉色欧美久久久久久久蜜桃 | 久久久欧美国产精品| 男女视频在线观看网站免费| 三级国产精品欧美在线观看| 韩国高清视频一区二区三区| 丰满人妻一区二区三区视频av| 国产淫语在线视频| 两个人视频免费观看高清| 身体一侧抽搐| 亚洲精品中文字幕在线视频 | 亚洲美女搞黄在线观看| 国产成人福利小说| 伦精品一区二区三区| 国模一区二区三区四区视频| av网站免费在线观看视频 | 亚洲精品,欧美精品| 亚洲精品一区蜜桃| 最近视频中文字幕2019在线8| 最近中文字幕2019免费版| 免费在线观看成人毛片| 我的女老师完整版在线观看| 国产成人午夜福利电影在线观看| 97热精品久久久久久| 久久热精品热| 亚洲av电影不卡..在线观看| 夫妻午夜视频| av福利片在线观看| 国产精品国产三级国产专区5o| av免费在线看不卡| 欧美日本视频| 六月丁香七月| 国产精品国产三级专区第一集| 女的被弄到高潮叫床怎么办| 精品一区二区免费观看| 色尼玛亚洲综合影院| 国产视频首页在线观看| .国产精品久久| 插阴视频在线观看视频| 亚洲精品aⅴ在线观看| 免费在线观看成人毛片| 国产精品国产三级国产av玫瑰| 日韩在线高清观看一区二区三区| 成人无遮挡网站| 在线观看av片永久免费下载| 18禁动态无遮挡网站| 国产亚洲91精品色在线| 国产伦在线观看视频一区| 亚洲四区av| 日韩欧美精品v在线| 欧美97在线视频| 一区二区三区四区激情视频| 在线观看av片永久免费下载| 蜜桃久久精品国产亚洲av| 淫秽高清视频在线观看| 色网站视频免费| 久久精品久久久久久久性| 亚洲熟妇中文字幕五十中出| 白带黄色成豆腐渣| 少妇熟女欧美另类| 色吧在线观看| 国产成人一区二区在线| 禁无遮挡网站| 91av网一区二区| 成人综合一区亚洲| 69人妻影院| 成人亚洲欧美一区二区av| 欧美丝袜亚洲另类| eeuss影院久久| 免费人成在线观看视频色| 69av精品久久久久久| 精品人妻偷拍中文字幕| 中文字幕制服av| 综合色av麻豆| 波野结衣二区三区在线| 在线免费十八禁| 欧美日韩精品成人综合77777| 天堂网av新在线| 国产黄色小视频在线观看| 国产精品综合久久久久久久免费| 伊人久久国产一区二区| 国产黄色小视频在线观看| 国产乱人视频| 亚洲精品一区蜜桃| 观看美女的网站| 大话2 男鬼变身卡| 久久精品国产亚洲av天美| 欧美另类一区| 欧美三级亚洲精品| 熟妇人妻不卡中文字幕| 18禁在线播放成人免费|