• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance*

    2021-07-30 07:43:12HuiFangXu許會芳WenSun孫雯andNaWang王娜
    Chinese Physics B 2021年7期
    關(guān)鍵詞:王娜

    Hui-Fang Xu(許會芳), Wen Sun(孫雯), and Na Wang(王娜)

    Institute of Electrical and Electronic Engineering,Anhui Science and Technology University,Fengyang 233100,China

    Keywords: extended-source,broken gate,radio-frequency performances,tunnel field-effect transistor

    1. Introduction

    As the size of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales down continuously, the power dissipation, limitation of subthreshold swing (SS) of 60 mV/decade of current at room temperature, and significant increase of the off-state currentIoffhave become critical issues. However, in next-generation technology nodes,novel devices with low power, high on-chip packing density,and high speed are of great demands. Therefore,tunnel fieldeffect transistors(TFETs)have been proposed to replace conventional MOSFETs in order to overcome the shortcomings of MOSFETs. In contrast to the thermal injection of carriers for MOSFETs,the working mechanism of TFETs is bandto-band tunneling (BTBT).[1]The BTBT mechanism can reduce the values of SS, various researches have proved that SS is lower than 60 mV/decade at 300 K.[2-4]Moreover, the BTBT mechanism produces a large tunneling barrier for the current carriers when the device is operated in the off-state,which makesIoffsmaller. As a result, the power dissipation of TFETs is lower than that of MOSFETs. However,in spite of the above-mentioned advantages for TFETs, conventional TFETs suffer from ambipolar behavior and small on-state currentIon. Therefore,many papers have extensively boostedIonand reduced ambipolar behavior. For the purpose of suppressing ambipolar behavior, many technologies have been used, such as low doping levels in the drain region,[5]underlap and overlap of gate-drain.[6-8]Furthermore, in order to enhanceIon, many novel architectures of TFETs such as T-shape,[9,10]nanowire,[11,12]L-shape,[2,13]U-shape,[14]nanotube,[15,16]are proposed. Moreover, the materials with small energy bandgap,[17-19]high-kgate dielectrics,[20]high doping levels in the source region as well as abruptness at the source-channel tunnel junction are need to design. As is well known, the tunneling barrier decreases with the energy bandgap decreasing,so the tunneling rate increases,which results in a largeIon. Moreover,a sharp abrupt junction between the source region and channel region should be formed in order to increase the generation efficiency of BTBT as much as possible, and as a result,Ionis boosted. Thus, many researchers have concentrated on how to form an abrupt source-channel junction based on the process technology.

    Furthermore, for better applications from the perspective of low-power and analog/rf circuits, the performance parameters of TFETs such as low SS, small threshold voltageVth, high on-state current to off-state current ratioIon/Ioff,large transconductancegm, high cut-off frequencyfT, high gain bandwidth product (GBP), and large transconductance frequency product (TFP) should be obtained. Miscellaneous techniques have been reported in the literature to improve the dc and analog/rf performance parameters.[21-28]Pujaet al.reported a ferroelectric TFET with SS of 40 mV/decade,Ion/Ioffof 8.4×1011.[29]Tripureshet al.reported an extended-source double-gate TFET (ESDG TFET) withVthof 0.42 V, SS of 12.24 mV/decade,Ion/Ioffof 1012,fTof 37.7 GHz, GBP of 3.4 GHz.[30]Rounaket al.proposed a broken gate TFET(BG TEFT), which combines the advantages of the double gate TFET(DG TFET)and the L-shaped TFET(L TFET).[31]Moreover, superior characteristics such as small ambipolar current, low SS, and largeIonare achieved for BG TFET. In this paper,a novel TFET named as the ESBG TFET,which is an amalgamation between the ESDG TFET and the BG TFET in order to enhance the dc and analog/rf performance.

    2. Device structure

    The structure of the ESBG TFET is shown in Fig.1. The source region is extended into the channel for the purpose of enhancing the point and line tunneling probabilities at the tunneling junction.The gate dielectrics near the source region and near the drain region are hafnium dioxide(HfO2)and silicon dioxide (SiO2) in order to reduce ambipolarity. It should be noted that the device is called the ESBG TFET(HfO2)when the gate dielectrics near the source and drain regions are HfO2.Similarly,when the gate dielectrics are silicon dioxide(SiO2),the device is called the ESBG TFET (SiO2). The length and height of the p+source region isLsandTs,respectively. The silicon thicknesses near the gate and near the drain areT1andT2,respectively. The lengths of gate and gate 2 areL1andL3,respectively. The distance between gate and gate 2 isL2. The parameters for the ESBG TFET are listed in Table 1.

    Fig.1. Structure of the extended-source broken gate TFET.

    Table 1. Parameters of the ESBG TFET used in this paper.

    The performance parameters of the ESBG TFET are simulated using the silvaco atlas simulator,[32]and the nonlocal band-to-band tunneling(BTBT)model,the auger recombination model,the shockley-read-hall(SRH)model as well as the fermi-dirac statistics model are used. The material parameters such as tunneling mass of electron(me.tunnel)and tunneling mass of hole (mh.tunnel) are used in the nonlocal tunneling model. Moreover,the tunneling current of the TFET is exponentially related to the values of me.tunnel and mh.tunnel. In our simulations,the values of me.tunnel and mh.tunnel are set as 0.21 and 0.16 for the purpose of calibrating the simulation models with the experimental results.[30,32]It should be noted that the gates for the ESBG TFET are simultaneously provided with the same gate-source voltage for all the simulations and analysis presented in this paper.

    3. Results and discussions

    3.1. Direct-current analysis for the ESBG TFET

    Figure 2(a)shows the comparisons of transfer characteristics for the conventional dual material gate (DMG) TFET and the ESBG TFET with anLsof 25 nm. It is evident from Fig. 2(a) that the ESBG TFET shows an improvement in theIoffby seven orders in comparison to the DMG TFET.Moreover,Ionis also enhanced for the ESBG TFET due to increase of the line and point tunneling probabilities at the source-channel junction.IonandIoffdefined at gate-source voltage ofVgsfixed at 1 V and 0 V, respectively, have been calculated with the drain-source voltage ofVdsfixed at 0.5 V.Ion~3.26×10-5A/μm andIoff~1.84×10-18A/μm have been obtained for the ESBG TFET with anLsof 25 nm.Moreover,the transfer characteristic curves of the proposed device and the ESBG TFET (HfO2) are almost coincided, butIoffof the proposed device is less than that of the ESBG TFET(HfO2).However,Ionfor the ESBG TFET(SiO2)is very small because of the large tunneling width. Figure 2(b) shows the variation ofIdswithVdsfor the DMG TFET and the ESBG TFET. The curves depicts that with increase inVds,Idssaturates to a constant value as the barrier width becomes independent ofVds. Moreover, the ESBG TFET exhibits superior drain current in comparison with the other three devices.

    Fig. 2. (a) Transfer characteristics and (b) output characteristics comparison for the ESBG TFET and the DMG TFET.

    Figure 3(a)shows the variation in the electric field along the cutlineC1(as shown in Fig. 1). The peak electric field is lied at the corners due to the point tunneling in the device.The variation in the electric field is reflected in the energy band along the cutlineC1,as observed in Fig.4(a). It is obvious that the value of energy band range over which tunneling takes place and the value of the average tunneling width varies withLs,the higher the value of energy band range over which tunneling takes place, the lower the value of the average tunneling width,the higher the charge carrier transmission probability,and henceIonis enhanced. Moreover,it is obvious from Fig.3(b)that the peak electric field at the source corners along the cutlineC2(as shown in Fig.1)is higher,which infers the line tunneling in the ESBG TFET.Figure 4(b)shows the variation in the energy band at the source corners along the cutlineC2. More energy band bending at the source corners along the cutlineC2will result in a higherIon. However,the differences of electric field and energy band along the cutlineC2betweenLs=15 nm andLs=25 nm are not obvious.

    Fig.3. Electric field variation along the cutline(a)C1 and(b)C2 for the ESBG TFET with different Ls.

    Fig.4. Energy band variation along the cutline(a)C1 and(b)C2 for the ESBG TFET with different Ls.

    Figure 5(a)shows the effects ofLsonIonandIon/Iofffor the ESBG TFET. TheIonincreases with increase inLswhen the value ofLsis lower than 35 nm, butIondegrades afterLsof 35 nm. Moreover, theIon/Ioffdegrades rapidly whenLsis larger than 15 nm due to the increase inIoff. Therefore, in terms of enhancedIonandIon/Ioff,the optimum value ofLsis set to 25 nm for the ESBG TFET.Figure 5(b)shows the output characteristics for the ESBG TFET with four values ofLs.The ESBG TFET withLsof 35 nm exhibits improved drain current in comparison with other threeLsvalues.

    Fig.5.(a)Ion,Ion/Ioff and(b)output characteristics for the ESBG TFET with different Ls.

    3.2. Parasitic capacitance and radio-frequency performance for the ESBG TFET

    Parasitic capacitances impact the performances of TFET significantly at high frequency since they establish a feedback path between output and input, which leads to parasitic oscillations as well as signal distortion. These parasitic capacitances contain gate-to-source capacitanceCgs, gate-to-drain capacitanceCgd. The dependences ofCgs,Cgd, and transconductance(gm)onVgsfor the ESBG TFET with differentLsare illustrated in Fig. 6. It is obvious that for the ESBG TFET withLs= 15 nm,Cgsis lower thanCgdwhenVgsis larger than 0.3 V.Cgdincreases rapidly due to the fact that a large number of electrons are accumulated in the channel at the gate interface,whileCgsremains almost unaffected with rise inVgs.The gate capacitanceCggis the sum ofCgsandCgd. Therefore,the main component of the gate capacitanceCggisCgd. However, because of the increase of the overlap between the gate and the source regions for the ESBG TFET withLs=35 nm,Cgsis larger thanCgdwhenVgsis less than 1.3 V. Therefore,Cggis mainly determined byCgsfor most of theVgsrange at largerLs. However,Cgdis also the main component ofCggwhenVgsis larger than 1.3 V, which is due to the fact that the increase of the electron concentration in the channel leads toCgdincreasing rapidly withVgs. However, the values ofCgsandCgdare very large for the ESBG TFET withLs=40 nm whenVgsis larger than 1.3 V, which will deteriorate the high-frequency characteristics of TFET.Also,gmis an important parameter for analogue applications of the TFET which converts the gate-source voltage into the drain-source current. It is obvious from Fig. 6(c) thatgmfor the ESBG TFET withLs=35 nm is larger than that of the ESBG TFET withLs=15 nm, 25 nm and 40 nm. The higher thegmof the ESBG TFET, the better the sensitivity for the conversion of gate-source voltage into drain-source current,the better the linearity and high-frequency characteristics.

    Fig.6. (a)Cgs,(b)Cgd,and gm for the ESBG TFET with different Ls.

    The performance parameters of the ESBG TFET aboutIon/Ioff,gm,fTand GBP as compared with those of the recently reported TFET structures are given in Table 2. The proposed structure provides higherIon/Ioff,and largergmthan those of other reported TFET structures. Moreover,the ESBG TFET offers two times improvement infTand four times increase in GBP as compared to the recently reported ESDG TFET.

    Fig.7. Characteristics of(a) fT,(b)GBP,and TFP for the ESBG TFET with different Ls.

    Table 2. Comparison of performance parameters of the ESBG TFET with the recently reported TFETs.

    The variation of the second and third-order voltage intercept points(VIP2,VIP3),the third-order input interception point(IIP3), and the third-order intermodulation distortion (IMD3)withVgsfor the proposed device with differentLsare analyzed.The equations of these parameters can be written as follows:

    The second- and third-order harmonic distortions(HD2,HD3)are analyzed in order to understand the distortion characteristics of the device,and the equations about HD2and HD3can be written as

    Fig.8. (a)VIP2,(b)VIP3,(c)IIP3,and(d)IMD3 for the ESBG TFET with different Ls.

    Fig.9. (a)HD2 and(b)HD3 for the ESBG TFET with different Ls.

    whereVais the amplitude of the input signal, which is fixed at 50 mV.It is obvious that the proposed device withLsfixed at 15 nm provides less HD2and HD3than the device with the other length ofLs. Therefore,the noise in the proposed device withLsfixed at 15 nm will be less. Consequently, it can be concluded that the proposed device withLsfixed at 15 nm is more linear with higher reliability.

    4. Conclusions

    The dc characteristics,analog/rf parameters and linearity parameters for ESBG TFET are analyzed. The results shows that the ESBG TFET can achieve significant improvement in parameters likeIon/Ioff,gm,fT, GBP,and TFP.The length of the source region for ESBG TFET is optimized to increase the point and line tunneling at the tunneling junction. It can be concluded that the optimum value ofLsis set to 25 nm in terms of enhancedIonandIon/Ioffof 1013. However, the parameters such asgm,fT,GBP,and TFP are slightly enhanced whenLsis set to 35 nm. Moreover, the ESBG TFET offers two times improvement infTand four times increase in GBP as compared to the recently reported ESDG TFET, thus the ESBG TFET shows better analog/rf characteristics. Furthermore,the linearity distortion parameters in terms ofVIP2,VIP3,IIP3,IMD3, HD2, and HD3for the ESBG TFET with differentLsare analyzed in order to address the nonlinearity issue.

    猜你喜歡
    王娜
    Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    傳統(tǒng)連綴式四方連續(xù)紋樣參數(shù)化創(chuàng)新設(shè)計研究
    設(shè)計(2022年8期)2022-05-25 05:27:44
    王娜作品賞析
    美顏
    上海故事(2019年5期)2019-05-21 15:01:22
    An Analysis of George Orwell’s Anti—Utopian Elements in 1984
    適時的愛情
    新青年(2018年3期)2018-03-16 22:06:32
    王娜的變化
    喜劇世界(2016年9期)2016-11-26 13:41:07
    另一種保護
    一場被忽悠的鬧劇,“影帝”原來是真兇
    各得其所
    故事會(2013年2期)2013-05-14 15:24:04
    欧美黄色淫秽网站| 亚洲无线在线观看| 亚洲中文字幕日韩| 婷婷六月久久综合丁香| 老汉色∧v一级毛片| 好看av亚洲va欧美ⅴa在| 亚洲精品456在线播放app | 日本免费一区二区三区高清不卡| 亚洲男人的天堂狠狠| 午夜福利成人在线免费观看| 亚洲久久久久久中文字幕| 在线播放国产精品三级| 国产高清三级在线| 波多野结衣巨乳人妻| 国产伦在线观看视频一区| 亚洲国产欧美网| 亚洲国产欧美网| 久久久久免费精品人妻一区二区| av专区在线播放| 男女那种视频在线观看| 一级毛片高清免费大全| 小蜜桃在线观看免费完整版高清| 精品午夜福利视频在线观看一区| 亚洲欧美精品综合久久99| 非洲黑人性xxxx精品又粗又长| 偷拍熟女少妇极品色| 亚洲无线在线观看| 丰满乱子伦码专区| 欧美成人a在线观看| 亚洲最大成人手机在线| а√天堂www在线а√下载| 国产精品三级大全| 亚洲熟妇中文字幕五十中出| 欧美黑人欧美精品刺激| 亚洲精品色激情综合| 国产成人福利小说| 69人妻影院| 18禁裸乳无遮挡免费网站照片| 午夜精品在线福利| 一级黄片播放器| 国产精品亚洲av一区麻豆| 日本三级黄在线观看| 欧美大码av| 日韩欧美在线乱码| 国产精品亚洲美女久久久| 国产精品一区二区三区四区免费观看 | 一个人看视频在线观看www免费 | 一本一本综合久久| 亚洲无线在线观看| 深爱激情五月婷婷| 久久久久九九精品影院| 久久久国产成人免费| 18禁黄网站禁片午夜丰满| 嫁个100分男人电影在线观看| 免费人成视频x8x8入口观看| 99久久无色码亚洲精品果冻| 免费看美女性在线毛片视频| 一区二区三区免费毛片| 久久久国产成人免费| 日本黄色片子视频| 日韩欧美在线二视频| 一级毛片女人18水好多| 亚洲国产日韩欧美精品在线观看 | 天美传媒精品一区二区| 国产精品久久视频播放| 亚洲五月婷婷丁香| 国产高清videossex| 亚洲专区国产一区二区| 亚洲18禁久久av| 欧美乱妇无乱码| 亚洲av成人精品一区久久| 亚洲中文字幕一区二区三区有码在线看| 在线免费观看的www视频| 俺也久久电影网| 制服人妻中文乱码| 午夜福利高清视频| 制服丝袜大香蕉在线| 首页视频小说图片口味搜索| 欧美日韩瑟瑟在线播放| 宅男免费午夜| 亚洲人成电影免费在线| 欧美中文综合在线视频| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 熟女电影av网| 久久亚洲精品不卡| 久久久久久大精品| 色综合站精品国产| 欧美成人性av电影在线观看| 日韩有码中文字幕| 欧美日韩福利视频一区二区| 一本一本综合久久| 51国产日韩欧美| 精品熟女少妇八av免费久了| 欧美成人一区二区免费高清观看| 嫁个100分男人电影在线观看| 日本撒尿小便嘘嘘汇集6| 蜜桃久久精品国产亚洲av| 国产精品野战在线观看| 日韩欧美在线乱码| 女同久久另类99精品国产91| 成人国产一区最新在线观看| 97人妻精品一区二区三区麻豆| 丰满人妻一区二区三区视频av | 嫩草影院入口| 97超级碰碰碰精品色视频在线观看| 亚洲av不卡在线观看| 亚洲天堂国产精品一区在线| 国产精品综合久久久久久久免费| 两个人视频免费观看高清| 国产精品永久免费网站| ponron亚洲| 国产精品自产拍在线观看55亚洲| 少妇的丰满在线观看| 亚洲国产精品合色在线| 少妇的逼好多水| 51国产日韩欧美| 少妇的逼水好多| 亚洲成人免费电影在线观看| 网址你懂的国产日韩在线| 日本熟妇午夜| 久久精品91蜜桃| 国产高清激情床上av| 最近最新中文字幕大全免费视频| 亚洲国产色片| 久久亚洲真实| 岛国在线免费视频观看| 成人午夜高清在线视频| 真人一进一出gif抽搐免费| 国产美女午夜福利| 亚洲人成伊人成综合网2020| 婷婷丁香在线五月| 久久久久久久亚洲中文字幕 | 18+在线观看网站| 精品不卡国产一区二区三区| 国产男靠女视频免费网站| 男女下面进入的视频免费午夜| 久久香蕉国产精品| 男插女下体视频免费在线播放| 两个人看的免费小视频| 午夜福利18| 69av精品久久久久久| 精品人妻一区二区三区麻豆 | 亚洲精品影视一区二区三区av| 一本精品99久久精品77| av中文乱码字幕在线| 亚洲欧美日韩卡通动漫| tocl精华| 国产精华一区二区三区| 好男人电影高清在线观看| 国产主播在线观看一区二区| 国产高清视频在线观看网站| 91在线精品国自产拍蜜月 | 网址你懂的国产日韩在线| 午夜免费成人在线视频| av国产免费在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av免费高清在线观看| 日本三级黄在线观看| www日本在线高清视频| 男人舔奶头视频| 精品国产美女av久久久久小说| 啪啪无遮挡十八禁网站| 国产v大片淫在线免费观看| 欧美日韩综合久久久久久 | 精品人妻偷拍中文字幕| 我要搜黄色片| 亚洲在线观看片| 亚洲精品在线观看二区| 国产高清有码在线观看视频| 一级毛片女人18水好多| av中文乱码字幕在线| 亚洲aⅴ乱码一区二区在线播放| 国产又黄又爽又无遮挡在线| 亚洲自拍偷在线| 99riav亚洲国产免费| 午夜免费男女啪啪视频观看 | 一级毛片女人18水好多| 草草在线视频免费看| 免费在线观看成人毛片| 国产亚洲精品一区二区www| 热99在线观看视频| 国内精品久久久久久久电影| 国产精品久久久久久久电影 | 黄色日韩在线| 亚洲无线在线观看| 亚洲av成人精品一区久久| 亚洲 国产 在线| 91久久精品国产一区二区成人 | 国产私拍福利视频在线观看| aaaaa片日本免费| 成年版毛片免费区| or卡值多少钱| 国产在线精品亚洲第一网站| av中文乱码字幕在线| 一边摸一边抽搐一进一小说| 亚洲精品乱码久久久v下载方式 | 波多野结衣高清作品| 免费人成视频x8x8入口观看| 免费在线观看成人毛片| 欧美一级a爱片免费观看看| 欧美激情久久久久久爽电影| 亚洲 国产 在线| 亚洲性夜色夜夜综合| 亚洲人与动物交配视频| 日日夜夜操网爽| 亚洲一区二区三区色噜噜| 97超视频在线观看视频| 午夜免费激情av| 色尼玛亚洲综合影院| 色老头精品视频在线观看| 丁香欧美五月| 国产精品爽爽va在线观看网站| 亚洲成av人片免费观看| 91麻豆av在线| 午夜免费男女啪啪视频观看 | 91av网一区二区| 亚洲18禁久久av| 国产精品久久久久久人妻精品电影| 亚洲欧美日韩高清专用| 法律面前人人平等表现在哪些方面| 国产欧美日韩精品一区二区| 99视频精品全部免费 在线| 国产精品免费一区二区三区在线| 一边摸一边抽搐一进一小说| 色av中文字幕| 中文字幕高清在线视频| 99视频精品全部免费 在线| 一区福利在线观看| 午夜福利免费观看在线| 99久久无色码亚洲精品果冻| 亚洲久久久久久中文字幕| 欧美+日韩+精品| 好男人电影高清在线观看| 国产一区二区亚洲精品在线观看| 国产日本99.免费观看| 日韩欧美在线乱码| 日韩人妻高清精品专区| 天堂动漫精品| 亚洲国产色片| 国产欧美日韩精品一区二区| ponron亚洲| 久久久久久大精品| 国内精品久久久久久久电影| 亚洲国产欧美网| 国产成人系列免费观看| 麻豆国产av国片精品| 伊人久久精品亚洲午夜| 女生性感内裤真人,穿戴方法视频| 色av中文字幕| 精品久久久久久,| 午夜精品久久久久久毛片777| 成人高潮视频无遮挡免费网站| 国产精品一及| 色视频www国产| 人妻夜夜爽99麻豆av| 亚洲五月天丁香| 日韩欧美在线乱码| 亚洲精品国产精品久久久不卡| 在线播放国产精品三级| 亚洲国产精品sss在线观看| 亚洲av免费高清在线观看| 手机成人av网站| 九九热线精品视视频播放| 级片在线观看| 国内揄拍国产精品人妻在线| 特大巨黑吊av在线直播| 色在线成人网| 午夜激情福利司机影院| 中文亚洲av片在线观看爽| 欧美日韩乱码在线| 中文资源天堂在线| 久久久久久国产a免费观看| 最新美女视频免费是黄的| 久久精品国产自在天天线| 免费在线观看亚洲国产| 国产爱豆传媒在线观看| av女优亚洲男人天堂| 国产精品国产高清国产av| 高清日韩中文字幕在线| 岛国在线免费视频观看| 日韩有码中文字幕| 日日夜夜操网爽| 日韩人妻高清精品专区| 黄色视频,在线免费观看| 国产精品久久久久久久久免 | 亚洲国产中文字幕在线视频| 日韩中文字幕欧美一区二区| 国产成人福利小说| e午夜精品久久久久久久| 老司机在亚洲福利影院| 亚洲精品色激情综合| 免费在线观看亚洲国产| 色老头精品视频在线观看| 国产精品,欧美在线| 精品一区二区三区视频在线 | 天天添夜夜摸| 色综合婷婷激情| 国产精品免费一区二区三区在线| 国产高清videossex| 国产不卡一卡二| 成人性生交大片免费视频hd| 国产一区二区三区视频了| 母亲3免费完整高清在线观看| 欧美乱色亚洲激情| 最近视频中文字幕2019在线8| 夜夜躁狠狠躁天天躁| 一进一出好大好爽视频| 国产在视频线在精品| 国产成人系列免费观看| 久久草成人影院| 女人高潮潮喷娇喘18禁视频| xxxwww97欧美| 最好的美女福利视频网| 日本黄色片子视频| 无遮挡黄片免费观看| 一进一出抽搐动态| 亚洲精品亚洲一区二区| 中文字幕精品亚洲无线码一区| 免费在线观看影片大全网站| 亚洲最大成人手机在线| 不卡一级毛片| 国产亚洲av嫩草精品影院| 国产精品香港三级国产av潘金莲| 国产单亲对白刺激| 18禁黄网站禁片免费观看直播| 三级毛片av免费| 91久久精品电影网| 亚洲国产色片| 国产乱人视频| 很黄的视频免费| 国产乱人视频| 免费在线观看亚洲国产| 最好的美女福利视频网| 性欧美人与动物交配| 男人舔奶头视频| 国产麻豆成人av免费视频| 国产高潮美女av| 国产亚洲av嫩草精品影院| 国产老妇女一区| 欧美xxxx黑人xx丫x性爽| 老司机在亚洲福利影院| 亚洲五月天丁香| 免费无遮挡裸体视频| 男女之事视频高清在线观看| 又黄又爽又免费观看的视频| 欧美黑人巨大hd| 老司机在亚洲福利影院| 18美女黄网站色大片免费观看| 国产精品国产高清国产av| 狠狠狠狠99中文字幕| 香蕉久久夜色| 91在线精品国自产拍蜜月 | 成人无遮挡网站| 成人国产综合亚洲| 最近最新免费中文字幕在线| 九九在线视频观看精品| 黄片大片在线免费观看| 亚洲 欧美 日韩 在线 免费| 毛片女人毛片| 国产精品综合久久久久久久免费| 三级毛片av免费| 伊人久久大香线蕉亚洲五| 熟女人妻精品中文字幕| 99国产极品粉嫩在线观看| 一级黄片播放器| 亚洲精品在线观看二区| 国产成人欧美在线观看| 一a级毛片在线观看| 熟女少妇亚洲综合色aaa.| 男女下面进入的视频免费午夜| 色av中文字幕| 久久久成人免费电影| 高清在线国产一区| 亚洲精品色激情综合| 国产成人a区在线观看| 波多野结衣高清作品| 啦啦啦观看免费观看视频高清| 欧美黄色片欧美黄色片| 免费人成在线观看视频色| 亚洲内射少妇av| 啦啦啦韩国在线观看视频| www.999成人在线观看| 怎么达到女性高潮| 99在线人妻在线中文字幕| 成人一区二区视频在线观看| 琪琪午夜伦伦电影理论片6080| 窝窝影院91人妻| 欧美一区二区国产精品久久精品| 亚洲无线观看免费| 欧美成人性av电影在线观看| 变态另类成人亚洲欧美熟女| 欧美乱妇无乱码| 每晚都被弄得嗷嗷叫到高潮| 精品无人区乱码1区二区| 最好的美女福利视频网| 色av中文字幕| 国产91精品成人一区二区三区| 日韩欧美国产在线观看| 国产av不卡久久| 欧美最黄视频在线播放免费| 久久精品综合一区二区三区| 久久久久久久久中文| 90打野战视频偷拍视频| 一本综合久久免费| 最近最新中文字幕大全免费视频| 一级黄色大片毛片| 99在线视频只有这里精品首页| 国产乱人视频| 又爽又黄无遮挡网站| eeuss影院久久| 日本三级黄在线观看| 18禁国产床啪视频网站| 国产色婷婷99| 久久久国产精品麻豆| 亚洲无线观看免费| 色播亚洲综合网| 女同久久另类99精品国产91| 别揉我奶头~嗯~啊~动态视频| 成人国产一区最新在线观看| 成年女人毛片免费观看观看9| 欧美在线黄色| 中文在线观看免费www的网站| 美女黄网站色视频| 啦啦啦韩国在线观看视频| 国产精品爽爽va在线观看网站| 一本综合久久免费| 日本 欧美在线| 精品不卡国产一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久久亚洲av鲁大| www国产在线视频色| 国内揄拍国产精品人妻在线| 99热这里只有是精品50| 波多野结衣高清作品| 少妇的逼水好多| 日本免费a在线| 岛国在线观看网站| 午夜老司机福利剧场| 国产视频一区二区在线看| 一边摸一边抽搐一进一小说| 老汉色∧v一级毛片| 美女 人体艺术 gogo| 欧美av亚洲av综合av国产av| 日本三级黄在线观看| 亚洲精品色激情综合| 久久久精品大字幕| 亚洲内射少妇av| 精品久久久久久久人妻蜜臀av| 免费观看人在逋| 国产精品99久久99久久久不卡| 国产亚洲精品久久久com| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 亚洲精品日韩av片在线观看 | 97人妻精品一区二区三区麻豆| 亚洲不卡免费看| 97超视频在线观看视频| 免费av观看视频| 欧美zozozo另类| 久久国产精品影院| 女警被强在线播放| 国产一区二区在线观看日韩 | 国产成人av教育| 精品一区二区三区视频在线 | 中国美女看黄片| 成年版毛片免费区| 在线观看美女被高潮喷水网站 | 精品午夜福利视频在线观看一区| 午夜免费成人在线视频| 麻豆成人午夜福利视频| 在线观看66精品国产| 叶爱在线成人免费视频播放| 欧美最黄视频在线播放免费| 他把我摸到了高潮在线观看| 亚洲久久久久久中文字幕| 亚洲美女黄片视频| 狂野欧美白嫩少妇大欣赏| 精品国产超薄肉色丝袜足j| 69av精品久久久久久| 亚洲无线观看免费| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕久久专区| 亚洲激情在线av| 精品99又大又爽又粗少妇毛片 | 18禁黄网站禁片午夜丰满| 一本综合久久免费| 亚洲av美国av| 在线观看一区二区三区| 色视频www国产| 国产乱人视频| 可以在线观看的亚洲视频| 大型黄色视频在线免费观看| 国产淫片久久久久久久久 | 欧美日本视频| 国产一区二区三区在线臀色熟女| 精品一区二区三区av网在线观看| 久久久久久久久大av| 精品日产1卡2卡| 村上凉子中文字幕在线| 国产视频内射| 嫩草影视91久久| 黄色片一级片一级黄色片| 12—13女人毛片做爰片一| 给我免费播放毛片高清在线观看| 欧美日韩综合久久久久久 | 国产精品99久久久久久久久| 嫩草影院精品99| 搡老熟女国产l中国老女人| 我要搜黄色片| 欧美日韩精品网址| 中亚洲国语对白在线视频| 日本黄色视频三级网站网址| 毛片女人毛片| 久久久久久九九精品二区国产| 成年人黄色毛片网站| 久久香蕉精品热| 亚洲五月天丁香| 黄色日韩在线| 日本 欧美在线| 亚洲国产精品合色在线| 黄色视频,在线免费观看| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品| 国产激情欧美一区二区| 99热只有精品国产| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 久久伊人香网站| 男女下面进入的视频免费午夜| 欧美成人免费av一区二区三区| www日本黄色视频网| 国产精品久久久久久久久免 | 亚洲一区二区三区色噜噜| 精品无人区乱码1区二区| 国产免费av片在线观看野外av| 一区二区三区国产精品乱码| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人不卡在线观看播放网| www.熟女人妻精品国产| 丰满乱子伦码专区| 一个人看的www免费观看视频| bbb黄色大片| 国产免费av片在线观看野外av| 18+在线观看网站| 午夜老司机福利剧场| av中文乱码字幕在线| 国产 一区 欧美 日韩| 国产精品自产拍在线观看55亚洲| 全区人妻精品视频| 少妇的丰满在线观看| 欧美黄色片欧美黄色片| 亚洲va日本ⅴa欧美va伊人久久| 最近在线观看免费完整版| 欧美bdsm另类| 成人欧美大片| 一区二区三区免费毛片| 2021天堂中文幕一二区在线观| 国产高清videossex| 叶爱在线成人免费视频播放| 不卡一级毛片| 精品久久久久久成人av| 国产精品爽爽va在线观看网站| 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 97超视频在线观看视频| 亚洲欧美日韩东京热| 亚洲欧美日韩高清专用| 国内揄拍国产精品人妻在线| 亚洲国产欧美网| 日本一二三区视频观看| www日本黄色视频网| 国产伦精品一区二区三区四那| 久久天躁狠狠躁夜夜2o2o| 日本五十路高清| 国产成人a区在线观看| 女人十人毛片免费观看3o分钟| 91字幕亚洲| 欧美大码av| 日本a在线网址| 亚洲成人久久性| 欧美另类亚洲清纯唯美| 国产一区二区亚洲精品在线观看| 小说图片视频综合网站| 日本黄色片子视频| 哪里可以看免费的av片| 亚洲色图av天堂| 在线免费观看不下载黄p国产 | 国产真人三级小视频在线观看| 看片在线看免费视频| 俺也久久电影网| 精品久久久久久,| 美女被艹到高潮喷水动态| 国模一区二区三区四区视频| 国产真实伦视频高清在线观看 | 国产 一区 欧美 日韩| 亚洲七黄色美女视频| 久久久久久九九精品二区国产| 精品人妻一区二区三区麻豆 | 在线播放无遮挡| 久久久色成人| 99久久精品热视频| 熟妇人妻久久中文字幕3abv| 操出白浆在线播放| 国产精品,欧美在线| 又黄又爽又免费观看的视频| 亚洲人成伊人成综合网2020| 亚洲18禁久久av| 国产精品1区2区在线观看.| xxxwww97欧美| АⅤ资源中文在线天堂| 一个人看的www免费观看视频| 欧美丝袜亚洲另类 | 少妇丰满av| 欧美乱码精品一区二区三区|