• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trigger mechanism of PDSOI NMOS devices for ESD protection operating under elevated temperatures*

    2021-07-30 07:43:06JiaXinWang王加鑫XiaoJingLi李曉靜FaZhanZhao趙發(fā)展ChuanBinZeng曾傳濱DuoLiLi李多力LinChunGao高林春JiangJiangLi李江江BoLi李博ZhengShengHan韓鄭生andJiaJunLuo羅家俊
    Chinese Physics B 2021年7期
    關(guān)鍵詞:李博羅家發(fā)展

    Jia-Xin Wang(王加鑫) Xiao-Jing Li(李曉靜) Fa-Zhan Zhao(趙發(fā)展)Chuan-Bin Zeng(曾傳濱) Duo-Li Li(李多力) Lin-Chun Gao(高林春) Jiang-Jiang Li(李江江)Bo Li(李博) Zheng-Sheng Han(韓鄭生) and Jia-Jun Luo(羅家俊)

    1Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    2Key Laboratory of Science and Technology on Silicon Devices,Chinese Academy of Sciences,Beijing 100029,China

    3University of Chinese Academy of Sciences,Beijing 100029,China

    Keywords: ESD,trigger voltage,temperature,GGNMOS,GTNMOS,TCAD

    1. Introduction

    Electrostatic discharge (ESD) has been a threat to reliability in the semiconductor industry for decades. Novel ESD protecting devices are frequently designed to mitigate such concerns.[1-4]Meanwhile, high temperature is a typical environment for integrated circuits.[5,6]The assembly and operation of integrated circuits in some cases take place at elevated temperatures. Hence, The ESD protecting designs become more complicated due to the thermally-induced variations of ESD parameters,and it is necessary to systematically and comprehensively analyze the characteristics of ESD protecting devices to ensure that they are suitable for operating under elevated temperatures.Kooet al.[7]reported the features of the high holding voltage of the new silicon controlled rectifier (SCR) ESD protecting device at different temperatures and improved the stability in a temperature range of 25°C-225°C and made a detailed analysis. Meneghessoet al.[8]introduced a new type of SCR, the low-voltage-trigger SCR ESD protecting structure, and obtained a high holding voltage, and performed two-dimensional (2D) device simulation(DESSIS Synopsys)to obtain the temperature dependence of the holding voltage at 25°C-125°C.Lianget al.[9]introduced the temperature dependence of the critical parameters of a variety of typical SCR and diode structures at a temperature of 225°C. Liet al.[10]introduced the temperature dependence of diode and GGNMOS(grounded-gate NMOS)in a temperature range from-40°C to 110°C.Jang and Lin[11]and Janget al.[12]analyzed the temperature-dependent steady and dynamic state characteristics of SCR-based ESD protecting circuits,focusing on the triggering and holding behavior of ESD protecting devices. Houet al.[13]improved a thermal-stable diode-triggered silicon-controlled rectifier(TSDTSCR)device to obtain almost constant high-temperature ESD protecting capabilities. Doet al.[14]developed the floating technology to reduce the trigger voltage of 4H-SiC GGNMOS to cater to the design window and carried out high-temperature evaluation. Arbess and Bafleur[15]looked into a new type of MOS insulated gate bipolar transistor(MOS-IGBT)power clamping device for high-temperature operation. It had a lower temperature sensitivity at 200°C. However, in most of those studies considered are only the changes in the characteristics of the traditional or novel ESD protecting devices with temperature to verify their reliability within their operating temperature range, but the relation of temperature to triggering, or holding, or failure characteristics are not analyzed by the underlying physical mechanism and simulation.

    In this paper,the temperature-dependent triggering characteristics of partially depleted silicon-on-insulator (PDSOI)NMOS devices for ESD protection are analyzed. The transmission line pulsing(TLP)I-Vcurves are measured, and the first breakdown voltage (VT1) is studied and discussed. The technology computer aided design(TCAD)simulation is carried out to obtain a physical insight into the mechanism of the temperature dependence of the triggering behavior.

    2. Experiment

    The device under test (DUT) was an H-gate NMOS device and fabricated with a 0.18-μm PDSOI technology. More parameters are summarized in Table 1. The measurements were targeted to the human body model(HBM)and conducted using the TLP/VFTLP(transmission line pulse/very fast transmission line pulse)test system HOXI-I with a pulse width of 100 ns and a rise time of 5 ns, which is made in the Institute of Microelectronics of the Chinese Academy of Sciences.The heating module provided a testing temperature range from 30°C to 200°C. We characterized the TLPI-Vcurves of the two operating modes, the grounded-gate NMOS (GGNMOS)mode and the gate-triggered NMOS(GTNMOS)mode,under varying temperatures. The GGNMOS mode describes an NMOS-based ESD protecting device whose gate, source,body, and substrate electrode were connected to the ground(0 V),and the drain electrode was subjected to the ESD stress.The GTNMOS differs from GGNMOS in an extra DC gate voltage supply. In our experiment, a 1.5-V DC voltage was applied to the gate electrode during the TLP testing in GTNMOS mode.

    Table 1. Some parameters of the device under test.

    Figure 1(a)shows the measured TLPI-Vcurves near the first breakdown point of the GGNMOS.The measured TLPIVcurves near the first breakdown point of the GTNMOS are presented in Fig. 1(b) as discussed in our previous work.[16]Each figure includes five curves related to the five different temperatures. The measured TLPI-Vcurves are normalized to the current per unit gate width,i.e.,each ESD current value is divided by the total width of the PDSOI NMOS device. The measurement results suggest that the values ofVT1of GTNMOS are all lower than those of GGNMOS.The value ofVT1in GGNMOS mode increases from 8.8 V to 9.7 V with temperature increasing from 30°C to 195°C.The total rise is about 0.9 V, accounting for 10.2 percent of room-temperatureVT1.In the GTNMOS mode,a 1.5-V voltage is applied to the gate electrode.The value ofVT1in GTNMOS mode decreases from 6.84 V to 6.11 V in a temperature range from 30°C to 195°C.The total decline is nearly 0.73 V,which is about 10.7 percent ofVT1at room temperature,The above results indicate that theVT1varies in an opposite trend with the increasing of temperature in the two modes. The mechanisms will be analyzed by TCAD simulation below.

    Fig. 1. TLP I-V curves of DUT in temperature range of 30 °C to 195 °C(near the first breakdown point)for(a)GGNMOS and(b)GTNMOS.

    3. Simulation results

    To support and analyze the experimental conclusion,TCAD simulation is carried out. The two-dimensional (2D)model for simulation is shown in Fig. 2, in which the body contact is set to be on the right of the source contact. Just because the body contact configuration of the 2D model is different from that in the real H-gate PDSOI NMOS device, the absolute value ofVT1in the simulation curve differs from that of the measured TLPI-Vcurve. Nevertheless,the same trend ofVT1versus temperature is obtained in the TCAD simulation, which is essential to analyze the trigger mechanism at high temperatures.

    The simulation method is named the multi-current pulse simulation method.In the method,a customized piecewise linear function(PWL)is used to generate the TLP current pulse which is applied to the drain electrode.As shown in Fig.2,the DC voltages of 0 V and 1.2 V are applied to the gate electrode in GGNMOS and GTNMOS modes,respectively. Other electrodes including the source, body, and substrate electrode are connected to the ground(0 V).

    Fig.2. Schematic diagram of the 2D model.

    Figures 3 and 4 show the simulated transientI-Vcurves of DUT operating in GGNMOS mode and GTNMOS mode,respectively. The variation ofVT1versustemperature of TLP testing and TCAD simulation are shown in Fig. 5. The simulation results suggest thatVT1increases with temperature increasing in GGNMOS mode and decreases in GTNMOS mode, which is consistent well with the measured TLPI-Vcharacteristics given in Figs.1(a)and 1(b).

    Fig.3. TCAD simulation I-V curves of GGNMOS at temperatures ranging from 30°C to 195°C near the first breakdown point,with inset showing overall simulation I-V curves of GGNMOS under five different temperatures.

    Fig.4. TCAD simulation I-V curves of GTNMOS at temperatures ranging from 30 °C to 195 °C near the first breakdown point, with inset exhibiting overall simulation I-V curves of GTNMOS under five different temperatures.

    To analyze the underlying physical mechanism of the temperature dependence ofVT1in GGNMOS mode and in GTNMOS mode comparatively,we choose 5 points in each mode to analyze the response process under five operating temperatures as marked in Figs. 3 and 4. At each point, a certain moment in a range of 70%-90%of the TLP pulse period is selected to analyze the distribution of some essential parameters in the following.

    Fig.5. Variations of VT1 with temperature of TLP testing and TCAD simulation.

    3.1. Discussion of GGNMOS

    3.1.1. Electric field

    Before the first breakdown point, the ESD current maintains a very low level and flows through the drain contact,reversed drain-body junction, body region, and the body contact.Because of the high resistance of the reversed drain-body junction, a relatively high ESD voltage is mostly clamped at the junction, thus forming an extremely high electric field.Therefore,the electric field distribution at the first breakdown point is an indication ofVT1. The electric field distribution along path 1 (marked in Fig. 2) is shown in Fig. 6. It can be seen that the electric field increases with temperature in GGNMOS mode and decreases in GTNMOS mode. The peak electric field of GGNMOS is about 1.5 times higher than that of GTNMOS.The relationship between the critical electric field,Ec,and the avalanche threshold voltage,Vava,is given by[17]

    whereε0andεrare the permittivity of vacuum and the relative dielectric constant, respectively,αjrepresents the ionization rate of collision,andqdenotes the elementary charge.Equation (1) describes the avalanche mechanism in the linear graded PN junction. As temperature increases, the mean free path of the carriers in the space charge region decreases,a higherEcis needed for the carriers to obtain enough kinetic energy to trigger the avalanche breakdown. Thus, the thermal coefficient of the avalanche mechanism is proportional to temperature.[9,10]

    Fig.6. Electric field distributions in GGNMOS mode and GTNMOS mode along path 1 under various ambient temperatures.

    In the GGNMOS mode,the triggering of the DUT relies on the avalanche breakdown of the drain-body junction. The avalanche multiplication generates a large number of electronhole pairs and the holes drift towards the body contact,which generates a voltage drop across the body resistanceRBodyand raises the local body potentialVBody. The source-body junction is turned on by enoughVBody, leading the parasitic BJT to trigger on. Thus, theVT1of GGNMOS is governed by the avalanche critical electric field and the avalanche threshold voltage in the drain-body junction,resulting in theVT1of GGNMOS increasing with temperature rising.

    Oppositely, the decreasing ofVT1of GTNMOS suggests that there exist other prior triggering mechanisms besides the avalanche in GTNMOS mode.

    3.1.2. Impact ionization

    Impact ionization occurs when the high reverse bias voltage of the drain-body junction creates a strong internal electric field,which accelerates the carriers through the silicon crystal lattice and produces secondary electron-hole pairs. The impact ionization can be used to characterize the efficiency of avalanche multiplication for GGNMOS.

    Figure 7 shows the impact ionization distributions at the drain-body junction under various ambient temperatures in GGNMOS mode and the GTNMOS mode, respectively. It can be seen in Fig.7 that the total impact ionization decreases with temperature increasing in both GGNMOS mode and GTNMOS mode.

    The impact ionization is mainly governed by the electric field and the mean-free path of the carriers. As mentioned before,the critical triggering electric field increases with temperature increasing. Hence, the electric field with a positive temperature coefficient proves to influence the impact ionization little in the GGNMOS mode. The mean free path of the carriers is dominated by the scattering of phonons, generated by the vibration of the atomic lattice,which is positively correlated with temperature. The mean-free path is visualized by the mobility distribution,which decreases with temperature increasing as shown in Fig.8.

    Fig. 7. Impact ionization distributions in GGNMOS mode and GTNMOS mode at drain-body junction under various ambient temperatures.

    To sum up,the avalanche threshold voltage of the drainbody junction in DUT increases with temperature increasing because the impact ionization is inversely proportional to temperature. And it is the reason why theVT1in GGNMOS mode rises when the temperature goes up.

    From Figs. 3 and 4 it follows that comparing with the GGNMOS mode,VT1of GTNMOS decreases with temperature increasing, which means that the first breakdown in the GTNMOS mode occurs at a lower electric field and lower impact ionization than in GGNMOS. Thus, the temperature dependence of triggering in GTNMOS mode is not governed by avalanche breakdown but the channel current and the triggering-on of the parasitic BJT.We will analyze theVT1of GTNMOS as followed.

    Fig.8.Mobility distributions in(a)GGNMOS mode and(b)GTNMOS mode along path 1 under various ambient temperatures.

    3.2. Discussion of GTNMOS

    3.2.1. Channel current

    Unlike GGNMOS, theVT1of GTNMOS decreases because there exists channel current,IDS, in the period of ESD pulse. TheIDSplays a crucial part in reducing theVT1of GTNMOS mode because theIDSis the main contributor to the increase of the incident currentIpfor the avalanche multiplication at the drain-body junction. The avalanche generation currentIgenis related toIpand the avalanche multiplication factorMby[18]

    Before the turning on of BJT, body currentIBody=Igen. TheIpis strengthened byIDS,and a lowerMcan sustain the sameIBody. TheIDSmakesVT1of GTNMOS decrease with respect to that of GGNMOS.Thus,the temperature dependence ofVT1is not simply affected by the avalanche breakdown. As shown in Figs.1(b)and 4,before the first breakdown points,theIDSof the GTNMOS transistor increases with temperature increasing. According to Eq. (2),IDSstrengthensIpand lowersM,which ultimately makesVT1of GTNMOS decrease.

    3.2.2. Electrostatic potential

    The forward bias of the source-body junction is one of the most essential conditions to trigger the parasitic BJT.The threshold voltage of the source-body junction can be characterized by the electrostatic potential barrier.

    Figure 9 shows the distribution of electrostatic potential along path 2 (marked in Fig. 2) before the ESD stress is applied to the drain electrode of DUT.It suggests that the electrostatic potential barrier at the source-body junction decreases when the temperature goes up. The source-body junction can be forward-biased more easily at higher temperatures, which contributes to the turning on of the parasitic BJT at a lowerVT1. Thus, the electrostatic potential barrier of the sourcebody junction decreasing with temperature increasing is one of the factors leading theVT1to decline in the GTNMOS mode.But it is not the major cause in GGNMOS mode compared with the avalanche breakdown behavior.

    Fig.9. Electrostatic potential distributions in GTNMOS mode along path 2 under various ambient temperatures.

    3.2.3. Body resistance

    The body resistance,RBody, is defined as the body resistance from the source-body junction to the body electrode.TheRBodyinfluences the body potential near the source-body junction when the body current,IBody,flows through the body region. Previous research has shown that the resistivity of the p-silicon increases with temperature rising in a temperature range from 30°C to 195°C.[19]

    The current density distribution in the silicon film can be used to characterizeRBodyindirectly. The total ESD current flows into the DUT through the drain electrode and flows out through the body electrode and the source electrode.Figure 10 shows the total current density distributions of GGNMOS and GTNMOS at five different temperatures. From Fig. 10(b) it can follow that at the same ESD current before GTNMOS is triggered on,the ratio of the body current decreases with temperature increasing. It suggests that the resistance on the path from drain-body junction to body electrode is proportional to temperature. The higher body resistance contributes to higher body potential at the source-body junction, which provides the forward-biasing of the source-body junction and the turning on of the parasitic BJT.

    It can be seen in Figs. 10(a) and 10(b) that theIBodyof GGNMOS is larger than that of GTNMOS at each temperature when the parasitic BJT is triggered. TheIBodyfrom the avalanche current in GGNMOS mode is large enough to provide the forward-biasing of the source-body junction, so the major cause to dominate theVT1in GGNMOS mode is the avalanche breakdown threshold but not the positive temperature coefficient ofRBody.

    To sum up,the temperature dependence of RBody is another factor to explain the negative temperature coefficient ofVT1in the GTNMOS mode.The body resistance also increases with temperature increasing in the GGNMOS mode as shown in Fig.10(a). Still,it is not the dominant factor when referring to the temperature dependence ofVT1.

    Fig.10. Current density distributions in(a)GGNMOS mode and(b)GTNMOS mode in the silicon film under various ambient temperatures.

    4. Conclusions

    We have investigated the triggering parameters,VT1,of a PDSOI NMOS device for ESD protecting device operating at elevated temperatures. We conclude the opposite effect thatVT1of GGNMOS increases with temperature increasing and thatVT1of GTNMOS shows reverse variation with temperature. Good agreement is achieved between the TLP measurements,and the TCAD simulated results obtained by the multicurrent pulse simulation method. More analyses of the temperature dependence ofVT1in the two modes are conducted by using TCAD simulation outputs. In the GGNMOS mode,the variation ofVT1with temperature is governed by the avalanche breakdown of the drain-body junction while the temperature dependence ofVT1in the GTNMOS mode is dominated by the channel current and triggering of the parasitic BJT.This study offers a useful insight into and the information about obtaining the safe margin of the triggering parameters of PDSOI NMOS devices operating in a high-temperature ESD protection environment,and also presents the way of weakening the temperature effects in the two modes, which can help to design the temperature-insensitive ESD protecting devices.

    猜你喜歡
    李博羅家發(fā)展
    破解函數(shù)零點差問題的兩個“妙招”
    LabVIEW下通信原理實驗教改探討
    邁上十四五發(fā)展“新跑道”,打好可持續(xù)發(fā)展的“未來牌”
    中國核電(2021年3期)2021-08-13 08:56:36
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    小蝸牛
    Muelleria pseudogibbula, a new species from a newly recorded genus (Bacillariophyceae) in China*
    砥礪奮進(jìn) 共享發(fā)展
    華人時刊(2017年21期)2018-01-31 02:24:01
    Experimental and simulation studies of single-event transient in partially depleted SOI MOSFET?
    Harry Potter 哈利·波特
    改性瀝青的應(yīng)用與發(fā)展
    北方交通(2016年12期)2017-01-15 13:52:53
    成年免费大片在线观看| 一进一出抽搐gif免费好疼| 欧美日韩精品成人综合77777| 久久精品影院6| 性插视频无遮挡在线免费观看| 少妇熟女欧美另类| 亚洲欧美成人精品一区二区| 久久热精品热| 国产一区亚洲一区在线观看| 性插视频无遮挡在线免费观看| 如何舔出高潮| 不卡视频在线观看欧美| 3wmmmm亚洲av在线观看| 在线观看美女被高潮喷水网站| 狂野欧美白嫩少妇大欣赏| 又黄又爽又刺激的免费视频.| 成年版毛片免费区| 免费av毛片视频| 一级二级三级毛片免费看| 亚洲人与动物交配视频| 亚洲成av人片在线播放无| 天堂中文最新版在线下载 | 欧美丝袜亚洲另类| 欧美+日韩+精品| 日产精品乱码卡一卡2卡三| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av中文字字幕乱码综合| 国产乱人视频| 波多野结衣高清作品| 男插女下体视频免费在线播放| 高清在线视频一区二区三区 | 1000部很黄的大片| 国国产精品蜜臀av免费| 午夜激情欧美在线| 色5月婷婷丁香| 午夜福利在线在线| 99九九线精品视频在线观看视频| 一级av片app| 久久亚洲国产成人精品v| 亚洲精品乱码久久久久久按摩| 九色成人免费人妻av| 久久九九热精品免费| 又爽又黄a免费视频| .国产精品久久| 久久精品久久久久久噜噜老黄 | 精品99又大又爽又粗少妇毛片| 不卡视频在线观看欧美| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩卡通动漫| 亚洲国产精品国产精品| 日本黄色视频三级网站网址| 亚洲内射少妇av| 亚洲欧美日韩高清专用| 99精品在免费线老司机午夜| 男人舔奶头视频| 国产精品三级大全| 欧美色视频一区免费| 日韩欧美国产在线观看| 国产高清不卡午夜福利| 久久久久久伊人网av| 好男人视频免费观看在线| 亚洲图色成人| 不卡一级毛片| 欧美一区二区国产精品久久精品| 啦啦啦啦在线视频资源| 成人高潮视频无遮挡免费网站| 国产 一区精品| 我要看日韩黄色一级片| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 亚洲电影在线观看av| 国产蜜桃级精品一区二区三区| 亚洲国产欧美在线一区| 99在线视频只有这里精品首页| 日韩大尺度精品在线看网址| 九九在线视频观看精品| 国产成人福利小说| 精品人妻熟女av久视频| 久久亚洲国产成人精品v| 国产精品福利在线免费观看| 99久久无色码亚洲精品果冻| 久久久久久久亚洲中文字幕| 人妻夜夜爽99麻豆av| 亚洲精品色激情综合| 国内精品宾馆在线| 国产精品人妻久久久久久| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 色视频www国产| 91狼人影院| 国产午夜精品久久久久久一区二区三区| 成人漫画全彩无遮挡| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看| 久久99热这里只有精品18| 一本久久精品| 欧美变态另类bdsm刘玥| www日本黄色视频网| 久久6这里有精品| 国产久久久一区二区三区| .国产精品久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 变态另类成人亚洲欧美熟女| 亚洲一级一片aⅴ在线观看| 亚洲最大成人手机在线| 国产av麻豆久久久久久久| 22中文网久久字幕| 99九九线精品视频在线观看视频| 嘟嘟电影网在线观看| 看十八女毛片水多多多| 日韩三级伦理在线观看| 久久久国产成人免费| 赤兔流量卡办理| 国产三级在线视频| 亚洲婷婷狠狠爱综合网| 国产欧美日韩精品一区二区| 91av网一区二区| 美女内射精品一级片tv| 日韩大尺度精品在线看网址| 国产三级中文精品| 国产精品女同一区二区软件| 欧美3d第一页| av福利片在线观看| 哪里可以看免费的av片| 夜夜夜夜夜久久久久| 欧美人与善性xxx| 欧美日韩在线观看h| 69人妻影院| 成人亚洲精品av一区二区| 免费无遮挡裸体视频| 国产精品久久久久久精品电影| 能在线免费看毛片的网站| 又黄又爽又刺激的免费视频.| 悠悠久久av| 亚洲无线在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产高清不卡午夜福利| 国产精品三级大全| 免费看av在线观看网站| 夫妻性生交免费视频一级片| 色哟哟·www| 久久99热6这里只有精品| 亚洲欧美日韩东京热| 少妇被粗大猛烈的视频| 最近手机中文字幕大全| 国产伦理片在线播放av一区 | 三级毛片av免费| 国产伦一二天堂av在线观看| 免费av毛片视频| 1024手机看黄色片| 熟妇人妻久久中文字幕3abv| 亚洲一级一片aⅴ在线观看| 午夜爱爱视频在线播放| 国产伦在线观看视频一区| 看非洲黑人一级黄片| 亚洲五月天丁香| 老女人水多毛片| av在线蜜桃| 亚洲最大成人av| 如何舔出高潮| 身体一侧抽搐| 美女xxoo啪啪120秒动态图| 亚洲av不卡在线观看| 国内精品一区二区在线观看| 波多野结衣高清作品| 国产美女午夜福利| 成人高潮视频无遮挡免费网站| 日日撸夜夜添| 国产亚洲欧美98| 亚洲在久久综合| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 精品国内亚洲2022精品成人| 中文欧美无线码| 在线观看午夜福利视频| 国产伦一二天堂av在线观看| 国产精品久久久久久精品电影| 成人性生交大片免费视频hd| 一个人看的www免费观看视频| 亚洲国产欧洲综合997久久,| 干丝袜人妻中文字幕| 成人亚洲欧美一区二区av| 亚洲内射少妇av| 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 一级毛片久久久久久久久女| 成人美女网站在线观看视频| 最新中文字幕久久久久| 国产日本99.免费观看| 免费无遮挡裸体视频| 一边亲一边摸免费视频| 精品久久久久久成人av| 久久热精品热| 高清毛片免费观看视频网站| 欧美激情久久久久久爽电影| 欧美性猛交黑人性爽| 成熟少妇高潮喷水视频| 国产三级中文精品| 午夜精品在线福利| 小说图片视频综合网站| 一级毛片久久久久久久久女| 99精品在免费线老司机午夜| 亚洲av男天堂| 国产精品久久久久久久久免| 国产精品久久久久久亚洲av鲁大| 国产亚洲精品久久久com| 97超碰精品成人国产| 99久久精品热视频| 桃色一区二区三区在线观看| 国产午夜福利久久久久久| 成人特级av手机在线观看| 中出人妻视频一区二区| 天堂中文最新版在线下载 | 亚洲人成网站高清观看| 欧美又色又爽又黄视频| 午夜福利视频1000在线观看| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 久久草成人影院| 久久精品91蜜桃| 中国国产av一级| 亚洲图色成人| 日韩一本色道免费dvd| 亚洲av熟女| 欧美潮喷喷水| 97超视频在线观看视频| 精品99又大又爽又粗少妇毛片| 精品人妻偷拍中文字幕| 99国产精品一区二区蜜桃av| 日韩成人伦理影院| 床上黄色一级片| 欧美高清性xxxxhd video| ponron亚洲| 在线观看美女被高潮喷水网站| 天堂网av新在线| 精品久久久久久久久亚洲| 精品欧美国产一区二区三| 国产伦理片在线播放av一区 | 成人亚洲精品av一区二区| 日本免费一区二区三区高清不卡| 欧美成人a在线观看| 国产成人午夜福利电影在线观看| 免费av毛片视频| 国产69精品久久久久777片| 日本成人三级电影网站| 一区二区三区四区激情视频 | 最近中文字幕高清免费大全6| 精品久久久久久久久久免费视频| 亚洲美女视频黄频| 最近2019中文字幕mv第一页| 寂寞人妻少妇视频99o| 日日干狠狠操夜夜爽| 成人欧美大片| 亚洲av.av天堂| 成人二区视频| 波多野结衣高清无吗| 一本久久中文字幕| 大香蕉久久网| 91久久精品国产一区二区三区| 国产又黄又爽又无遮挡在线| 日韩精品有码人妻一区| 男人狂女人下面高潮的视频| av在线观看视频网站免费| 亚洲va在线va天堂va国产| 亚洲,欧美,日韩| 国产国拍精品亚洲av在线观看| 国产91av在线免费观看| 成人三级黄色视频| 免费在线观看成人毛片| 91久久精品电影网| 久久国内精品自在自线图片| 国产精品一区二区在线观看99 | 免费观看a级毛片全部| 在线免费十八禁| 婷婷精品国产亚洲av| 一级毛片久久久久久久久女| 午夜免费男女啪啪视频观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日产精品乱码卡一卡2卡三| 午夜精品在线福利| 欧美日韩一区二区视频在线观看视频在线 | 午夜爱爱视频在线播放| 国内精品美女久久久久久| 亚洲五月天丁香| 亚洲,欧美,日韩| 国产一区二区亚洲精品在线观看| 99精品在免费线老司机午夜| 国产男人的电影天堂91| 99久久成人亚洲精品观看| 亚洲成人精品中文字幕电影| 麻豆精品久久久久久蜜桃| 两个人的视频大全免费| 给我免费播放毛片高清在线观看| 看十八女毛片水多多多| 国产高清有码在线观看视频| 国产成人freesex在线| 亚洲无线在线观看| 欧美变态另类bdsm刘玥| 国国产精品蜜臀av免费| 中文字幕久久专区| 又粗又硬又长又爽又黄的视频 | 亚洲精品成人久久久久久| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在 | 看黄色毛片网站| 深夜精品福利| av黄色大香蕉| 国产精品久久久久久精品电影| 欧美成人免费av一区二区三区| 亚洲av中文av极速乱| 亚洲av免费高清在线观看| 成人亚洲欧美一区二区av| 女人十人毛片免费观看3o分钟| 国产午夜精品论理片| 男女边吃奶边做爰视频| 午夜精品一区二区三区免费看| 婷婷六月久久综合丁香| 国产精品久久电影中文字幕| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 国产真实伦视频高清在线观看| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕 | 国产 一区精品| 日韩一区二区三区影片| 欧美又色又爽又黄视频| a级毛色黄片| 国产爱豆传媒在线观看| 国产黄色视频一区二区在线观看 | 有码 亚洲区| 亚洲在线自拍视频| 国产精品一及| 久久人妻av系列| 亚洲av.av天堂| 国内久久婷婷六月综合欲色啪| 免费观看a级毛片全部| 成年免费大片在线观看| 国产精品无大码| 日韩一区二区三区影片| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类| 亚洲欧美日韩无卡精品| 国产单亲对白刺激| 国产 一区精品| 久久精品久久久久久久性| 亚洲精品乱码久久久久久按摩| 国产老妇伦熟女老妇高清| 在线天堂最新版资源| 性插视频无遮挡在线免费观看| 国产精品一区二区三区四区免费观看| 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验 | 看十八女毛片水多多多| 日韩av在线大香蕉| 免费无遮挡裸体视频| 欧美激情在线99| 久久鲁丝午夜福利片| 青青草视频在线视频观看| 日韩在线高清观看一区二区三区| 欧美性感艳星| 中国美白少妇内射xxxbb| 中国国产av一级| 人妻少妇偷人精品九色| 免费大片18禁| 亚洲无线观看免费| 少妇裸体淫交视频免费看高清| 色5月婷婷丁香| av在线天堂中文字幕| 亚洲欧美成人精品一区二区| 嫩草影院精品99| 亚洲精华国产精华液的使用体验 | 男女那种视频在线观看| 国产精品人妻久久久影院| 亚洲在线自拍视频| 色哟哟·www| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 尾随美女入室| 亚洲av熟女| 婷婷亚洲欧美| 亚洲va在线va天堂va国产| 日本黄色视频三级网站网址| av女优亚洲男人天堂| 午夜福利高清视频| 韩国av在线不卡| 自拍偷自拍亚洲精品老妇| 久久99热6这里只有精品| 久久人人精品亚洲av| 国产精品伦人一区二区| 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 男女边吃奶边做爰视频| 亚洲无线观看免费| 亚洲国产精品成人综合色| 色综合色国产| 精品久久久久久久末码| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻一区二区三区麻豆| 国产高清视频在线观看网站| a级一级毛片免费在线观看| 97在线视频观看| 亚洲国产日韩欧美精品在线观看| 国产黄片视频在线免费观看| 久久久久久久久久久免费av| 能在线免费看毛片的网站| 欧美日韩一区二区视频在线观看视频在线 | 久久久a久久爽久久v久久| 亚洲18禁久久av| 99热精品在线国产| 精品午夜福利在线看| 啦啦啦韩国在线观看视频| 成人特级av手机在线观看| 尾随美女入室| 99久久无色码亚洲精品果冻| 免费观看在线日韩| 少妇人妻精品综合一区二区 | 一进一出抽搐动态| 久久99精品国语久久久| 中文字幕免费在线视频6| 亚洲av.av天堂| 成人综合一区亚洲| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| av视频在线观看入口| 三级男女做爰猛烈吃奶摸视频| 99久久精品国产国产毛片| 欧美一区二区精品小视频在线| 少妇人妻精品综合一区二区 | 51国产日韩欧美| 91久久精品电影网| 人妻系列 视频| 日本与韩国留学比较| 在线免费十八禁| 亚洲中文字幕日韩| 亚洲精品久久国产高清桃花| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 国产成人freesex在线| 噜噜噜噜噜久久久久久91| 国产探花在线观看一区二区| 99久久中文字幕三级久久日本| 一卡2卡三卡四卡精品乱码亚洲| 99国产极品粉嫩在线观看| 99在线视频只有这里精品首页| 国产黄色小视频在线观看| 高清在线视频一区二区三区 | 精品一区二区三区人妻视频| 99riav亚洲国产免费| 精品少妇黑人巨大在线播放 | 欧美性猛交黑人性爽| 亚洲av成人精品一区久久| 国产一区二区在线观看日韩| 桃色一区二区三区在线观看| 日本黄色视频三级网站网址| 欧美成人a在线观看| 91狼人影院| 男女边吃奶边做爰视频| 真实男女啪啪啪动态图| 久久这里只有精品中国| 午夜激情欧美在线| 最好的美女福利视频网| 精品99又大又爽又粗少妇毛片| 99久久精品热视频| 99热这里只有是精品50| 国产视频首页在线观看| 99久久九九国产精品国产免费| 亚洲精品国产av成人精品| av在线蜜桃| 一进一出抽搐动态| 国产午夜精品久久久久久一区二区三区| 精品日产1卡2卡| 久久中文看片网| 成人一区二区视频在线观看| 嫩草影院精品99| 精品少妇黑人巨大在线播放 | 青春草国产在线视频 | 成年免费大片在线观看| 久久99热这里只有精品18| 国内精品久久久久精免费| 我要看日韩黄色一级片| 国产精品一区二区在线观看99 | 变态另类丝袜制服| 欧美激情国产日韩精品一区| 97热精品久久久久久| 日本-黄色视频高清免费观看| 熟女人妻精品中文字幕| 精品人妻视频免费看| 精品人妻一区二区三区麻豆| 成人特级av手机在线观看| 成人高潮视频无遮挡免费网站| 一本久久中文字幕| 日产精品乱码卡一卡2卡三| 亚洲久久久久久中文字幕| 亚洲国产欧洲综合997久久,| 欧美+日韩+精品| 午夜老司机福利剧场| 欧美一区二区精品小视频在线| 国产单亲对白刺激| 国产精品,欧美在线| 国产成人a区在线观看| 国产男人的电影天堂91| 在线播放无遮挡| 欧美在线一区亚洲| 国产午夜福利久久久久久| 少妇人妻精品综合一区二区 | 免费无遮挡裸体视频| 国产亚洲精品久久久com| 日韩人妻高清精品专区| 国产亚洲欧美98| 久久久成人免费电影| 国产激情偷乱视频一区二区| 69人妻影院| 成年女人看的毛片在线观看| 国产人妻一区二区三区在| av免费观看日本| 国产精品.久久久| 亚洲欧美清纯卡通| 日本免费一区二区三区高清不卡| 亚洲av电影不卡..在线观看| 一边亲一边摸免费视频| www.av在线官网国产| 国产精品嫩草影院av在线观看| av在线观看视频网站免费| 尤物成人国产欧美一区二区三区| 97在线视频观看| 国产白丝娇喘喷水9色精品| 好男人在线观看高清免费视频| 国产午夜精品久久久久久一区二区三区| 又爽又黄a免费视频| 国产视频首页在线观看| 日本成人三级电影网站| 国产日本99.免费观看| 美女国产视频在线观看| 中文字幕av在线有码专区| 18禁在线无遮挡免费观看视频| 中文字幕av成人在线电影| 欧美成人精品欧美一级黄| 日韩精品有码人妻一区| 天堂影院成人在线观看| 亚州av有码| 亚洲丝袜综合中文字幕| 97在线视频观看| 中国美白少妇内射xxxbb| 一个人免费在线观看电影| 欧美人与善性xxx| 欧美zozozo另类| 在线观看66精品国产| 一本久久中文字幕| 边亲边吃奶的免费视频| 99热全是精品| 欧美日韩在线观看h| 校园春色视频在线观看| 久久精品国产清高在天天线| 国产成人a区在线观看| 国产一区二区在线av高清观看| 久久久欧美国产精品| 99九九线精品视频在线观看视频| 少妇熟女aⅴ在线视频| 亚洲高清免费不卡视频| 午夜福利在线观看免费完整高清在 | 日韩大尺度精品在线看网址| 国产视频首页在线观看| 人妻制服诱惑在线中文字幕| 日韩欧美精品免费久久| 男的添女的下面高潮视频| 亚洲成a人片在线一区二区| 黄片wwwwww| 国产综合懂色| 久久久久久久午夜电影| 不卡视频在线观看欧美| 日韩欧美精品免费久久| 22中文网久久字幕| 久久精品国产99精品国产亚洲性色| 看非洲黑人一级黄片| 国产 一区 欧美 日韩| 99在线人妻在线中文字幕| 久久久久久久久中文| 狠狠狠狠99中文字幕| 国产老妇女一区| 熟女人妻精品中文字幕| 久久久久久久久大av| 看黄色毛片网站| 国产精华一区二区三区| 国产一区二区在线观看日韩| 看黄色毛片网站| 免费观看的影片在线观看| 亚洲精品成人久久久久久| 天堂av国产一区二区熟女人妻| 能在线免费看毛片的网站| 国产 一区精品| 免费一级毛片在线播放高清视频| 亚洲精品久久国产高清桃花| 久久国产乱子免费精品| 天堂av国产一区二区熟女人妻| 性色avwww在线观看| 日本色播在线视频| 看片在线看免费视频| 精品久久久久久久末码| 亚洲成人精品中文字幕电影| 国产欧美日韩精品一区二区| 一级毛片我不卡| 少妇人妻一区二区三区视频| 中文字幕久久专区| 好男人视频免费观看在线| 少妇人妻一区二区三区视频| 看片在线看免费视频| 美女cb高潮喷水在线观看| 少妇被粗大猛烈的视频| 日韩在线高清观看一区二区三区| 久久久色成人| 菩萨蛮人人尽说江南好唐韦庄 | 国产午夜福利久久久久久| 九九爱精品视频在线观看| 国产精品女同一区二区软件| 国产精品综合久久久久久久免费|