• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)*

    2021-07-30 07:41:42HuanYang楊歡YixuanGao高藝璇WenhuiNiu牛雯慧XiaoChang常霄LiHuang黃立JunzhiLiu劉俊治YiyongMai麥亦勇XinliangFeng馮新亮ShixuanDu杜世萱andHongJunGao高鴻鈞
    Chinese Physics B 2021年7期

    Huan Yang(楊歡) Yixuan Gao(高藝璇) Wenhui Niu(牛雯慧) Xiao Chang(常霄)Li Huang(黃立) Junzhi Liu(劉俊治) Yiyong Mai(麥亦勇)Xinliang Feng(馮新亮) Shixuan Du(杜世萱) and Hong-Jun Gao(高鴻鈞)

    1Institute of Physics and University of Chinese Academy of Sciences(CAS),Beijing 100190,China

    2Center for Advancing Electronics Dresden(cfaed)&Faculty of Chemistry and Food Chemistry,Technische Universit¨at Dresden,01062 Dresden,Germany

    3School of Chemistry and Chemical Engineering,Frontiers Science Center for Transformative Molecules,Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing,Shanghai Jiao Tong University,Shanghai 200240,China

    4Department of Chemistry and State Key Laboratory of Synthetic Chemistry,The University of Hong Kong,Hong Kong,China

    5CAS Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100190,China

    Keywords: on-surface synthesis, sulfur-doped cove-edged graphene nanoribbons, scanning tunneling microscopy,non-contact atomic force microscopy

    1. Introduction

    Graphene has attracted intensive attentions due to its unique properties and potential applications in nanoelectronics.[1-7]Graphene nanoribbons (GNRs), which have an energy bandgap and tunable electronic structures,[4,8-11]that can be directly determined by widths, edge configurations,and dopants are an important branch in graphene research as promising candidates for future electronic devices.[12-18]The fabrication of GNRs generally includes top-down and bottom-up approaches,[19-22]among which the latter is renowned for its capabilities to yield structurally well-defined GNRs.[19,23,24]With specifically designed organic precursors,scientists have achieved various kinds of GNRs, including armchair-edged GNRs with different widths and their corresponding heterostructures,[15,19,25,26]zigzag-edged GNRs,and cove-edged GNRs.[16,27-29]Among those, cove-edged GNRs as a representative semiconductor enrich the families of GNRs,which could benefit to explore exotic physical properties of GNRs containing distinct edge configurations.[27,30,31]Furthermore, GNRs doped with heteroatoms have been successfully synthesized and investigated during the past few years.[12,32-34]For instance, the introduction of nitrogen (N)atoms into the GNRs can shift the bandgap position without changing its magnitude;[12,33,35]while sulfur (S) and boron(B) atoms can lead to the change of the bandgap values of GNRs.[36-40]Particularly, bandgaps of GNRs can be further tailored by modulating sulfur configurations,which may yield S-doped GNRs containing a sequence of multiple heterojunctions with distinct bandgaps.[37,38]

    In this work,we report the bottom-up synthesis of sulfurdoped cove-edged graphene nanoribbons (S-CGNRs) on Au(111)using a uniquely designed thiophene-ring containing precursor,4,4’-dibromo-10,10’-biphenanthro[2,1-b]thiophene(DBDPT). Scanning tunneling microscopy (STM) measurements verified the successful fabrication of GNRs,while noncontact atomic force microscopy(nc-AFM)images confirmed the existence of S dopants at the cove edges. Scanning tunneling spectroscopy (STS) spectra demonstrate the conduction band minimum of the S-CGNR locates at 1.2 eV.Density functional theory (DFT) calculations on the wellordered S-CGNRs show a bandgap of 1.17 eV, significantly narrower than that of the pristine carbon-based cove-edged CNRs (CGNRs) (1.7 eV).[27]Due to the partial cleavage of C-S bonds and different chirality of the precursor on the surface, the involved Ullmann-type polymerization and cyclodehydrogenation yielded S-CGNRs with branched configurations. By increasing the precursor coverage from submonolayer to monolayer,the cross-link of S-CGNRs was evidently reduced,providing linear-shaped S-CGNRs arrays.

    2. Methods

    2.1. Sample preparation,STM/STS measurement

    All experiments were performed in a CreaTec ultra-high vacuum (UHV) STM/nc-AFM system with a base pressure of 2×10-10mbar (1 bar=105Pa). Au(111) substrate was cleaned by repeated cycles of Ar+ion sputtering and annealing at 700 K for 20 min. The precursor was thermally sublimated at 560 K onto the Au(111) substrate, which was held at room temperature during molecular deposition. Subsequently, the sample was annealed at 500 K and 700 K for 40 min each, which led to the surface-assisted polymerization and cyclodehydrogenation to form corresponding polymers and S-CGNRs,respectively. All STM and nc-AFM measurements were carried out at 5 K using a qPlus tuning. STM images were obtained in constant current mode and the voltages referred to the bias on samples with respect to the tip.AFM images were acquired in the frequency modulation mode with a CO-functionalized tip.[41,42]Differential conductance(dI/dV) spectra were acquired by using a lock-in technique at a frequency of 973 Hz.

    2.2. DFT calculations

    The structural relaxations and electronic-structure calculations were performed within density functional theory calculations by using the Viennaab initiosimulation package.[43,44]A generalized gradient approximation (GGA)in the form of Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation was adopted for the exchangecorrelation functional.[45]The wave functions were expanded using a planewave basis set with an energy cutoff of 500 eV.The thickness of vacuum layer was larger than 13 ?A to avoid interactions between neighboring nanoribbons. AΓ-centered 6×1×1k-point sampling in the first Brillouin zone was used during structural optimization of the GNR. The structures were relaxed until the residual forces were smaller than 0.01 eV/?A.The band structure was calculated along high symmetry directions in the Brillouin zone.

    3. Results and discussion

    Figure 1(a) illustrates the synthesis of S-CGNRs on Au(111) from a specifically designed precursor containing fused thiophene rings (4,4’-dibromo-10,10’-biphenanthro[2,1-b]thiophene,DBDPT,synthesis method described in Section 2 and Figs. S1-S6 of supplementary material). In principle,the precursors could undergo dehalogenation,polymerization,and cyclodehydrogenation when annealed on surface, resulting in the formation of GNRs with sulfur-doped cove edges as shown in Fig.1(a).

    The DBDPT molecules are prochiral when deposited on Au(111)substrate,as illustrated in Fig.S7(a).Due to the steric hinderance between the two groups of hydrogen atoms highlighted by the green ovals in Fig. 1(a), the precursors are not planar on the substrate. At low coverage, the precursors tend to form clusters that adsorb on fcc and elbow regions of the reconstructed Au(111)surface as shown in Fig.1(b). Most of the clusters consist of 10 bright protrusions with a height of 320 pm (Fig. S7(c)) and assemble into rhomboids. The apparent lateral size of one bright protrusion in STM images is about 1.95 nm(Fig.S7(c)),which is comparable to the lateral size of a precursor (1.1 nm) considering the dispersed electronic states of molecules. Therefore,we attribute each bright protrusion in Fig.1(b)corresponds to a single molecular precursor. By annealing the sample to 500 K,the precursors went through Ullmann coupling and formed polymers. The polymers defused into islands on fcc regions of Au(111) surface and modified the Au(111)surface reconstruction as shown in Fig. 1(c), suggesting a strong interaction between the polymers. Figure 1(d) shows an STM image of the sample after annealing to 700 K, which results in the formation of GNRs with a height of 180 pm(Fig.S8). Most nanoribbons exhibit an appearance of branched structures that indicate complex inter-ribbon cross-coupling during the cyclodehydrogenation stage. The straight ribbon segments generally have the lengths ranging from 2 nm to 9 nm.The strong interaction between the polymers in previous step is likely the reason for the formation of the branch-shape GNRs.

    Fig.1. On-surface synthetic process of S-CGNR and the corresponding STM images on Au(111). (a)Structure model of the precursor 4,4’-dibromo-10,10’-biphenanthro[2,1-b]thiophene monomer, the polymer after Ullmann reaction, and the resultant S-CGNR. (b) STM image of the precursors adsorbed on Au(111)substrate at a coverage of 0.2 ML(V =-1 V,I=10 pA).(c)STM image of the polymers after annealing the sample to 500 K(V =-1 V,I=10 pA).(d)STM image of the S-CGNRs after annealing the sample to 700 K(V =-1 V,I=10 pA).

    Fig. 2. A segment of branched S-CGNRs. (a) STM image of S-CGNRs(V =-1 V, I =10 pA). (b) Chemical-bond-resolved nc-AFM image of the S-CGNR segment obtained on the area marked by a red rectangle in panel(a).(c)Structure model of the S-CGNR segment. The segment is originated from isomers with the same chirality.

    Despite the branch-like morphology,it is possible to find short straight segments of GNRs that have ordered peripheries.To gain further insight into the atomic structure of the resultant ribbons, nc-AFM measurements were carried out with a COfunctionalized tip.[46]The AFM image in Fig.2(b)is obtained on the area marked by the red rectangle in Fig.2(a). Combining the AFM image and the configurations of the precursors,we infer that the segment in Fig. 2(b) arises from precursors with the same chirality. To guide our eyes,the corresponding structure model of the nanoribbon is provided in Fig.2(c).The cove-shaped edges are clearly visualized, but not as uniform as illustrated in Fig.1(a). The thiophene rings observed in the AFM image prove the existence of sulfur atoms. However,some C-S bonds have been cleaved due to annealing at high temperature and the unsaturated S atoms form new bonds with adjacent carbon atoms marked with red circles in the structure model in Fig.2(c). Carbon atoms detached from other precursors may also be involved in the reaction to form the ribbons,as referred by the green circles(Fig.2(c)).

    For the purpose of unveiling the electronic properties of S-CGNRs, differential conductance (dI/dV) spectra were performed to obtain the local density of states(LDOS)of the ribbon. Figure 3(a)shows an STM image of a short segment from a S-CGNR,which was used to acquire the representative dI/dVspectra. In Fig. 3(b), the red curve was taken on the S-CGNR as marked by the red dot in Fig.3(a),while the black curve taken on bare Au(111)surface for comparison with the same tip. The significantly increased intensity of LDOS at 1.2 V is attributed to the conduction band minimum(CBM)of the S-CGNR.The valence band maximum of the S-CGNR is not detected due to the strong coupling between S-CGNRs and metallic substrate,which is similar to the situation for zigzagedges graphene nanoribbons on Au(111).[16]Meanwhile, the spatial distribution of the CBM on the ribbon is displayed in the dI/dVmap in Fig. 3(c), exhibiting pronounced LDOS along the coved edges of the ribbon.

    To explore the effect of S atoms on the electronic structures of CGNRs,DFT calculations were also carried out based on the perfect structure of S-CGNR in Fig.1(a). Figures 3(d)shows the DFT calculated density of states(DOS)of S-CGNR,indicating a bandgap of 1.17 eV.Compared to its corresponding pristine CGNR that has been reported to have a calculated bandgap of 1.70 eV,[27]the doping of S atoms significantly reduces the energy bandgap.

    In order to tune the morphology of S-CGNRs, we tried to adjust the coverage of DBBPT molecules to near monolayer. At this coverage, the precursors form self-assembled structures along the Au(111) surface reconstruction, as displayed in Fig. 4(a). Magnified STM image shows detailed well-ordered monolayer structure in Fig. 4(b), in which the DBBPT molecules regularly assemble to form the periodical nanoporous structures. After annealing the sample to 700 K,S-CGNRs can be obtained as shown in Fig.4(c). Long-curved ribbons are formed comparing with the branch-like structures in sub-monolayer coverage. The zoom-in STM image in Fig.4(d)shows that well-aligned linear-shaped S-CGNRs can also be formed in this condition,as highlighted in the red rectangle.

    Fig.3. Electronic structure of S-CGNR.(a)STM image of a short segment from a S-CGNR(V =1 V,I=50 pA).(b)Differential conductance(dI/dV)spectra taken on a S-CGNR(red)and on bare Au(111)(black). The conduction band minimum(CBM)of the S-CGNR locates at 1.2 eV(open-feedback parameters: V =1.00 V,I =50 pA;modulation voltage Vrms =10 mV).(c) dI/dV map at the energy of 1.2 eV(CBM)(open-feedback parameters:V =1.2 V,I=600 pA,modulation voltage Vrms =20 mV).(d)DFT calculated density of states(DOS)of the S-CGNR.The DFT calculations show that the S-CGNR has a bandgap of 1.17 eV,while the pristine CGNR possesses a bandgap of 1.7 eV.

    Fig. 4. STM images of monolayer precursors and the corresponding SCGNRs on Au(111). (a) Monolayer precursors deposited on Au(111) substrate(V =-1 V,I=10 pA).(b)Magnified STM image of monolayer precursors(V =1 V,I=60 pA).(c)STM image of the S-CGNRs shows linear structures after annealing to 700 K (V =-1 V, I =30 pA). (d) Zoom-in STM image on the S-CGNRs presents the well-aligned linear-shaped structures(V =-1 V,I=30 pA).

    4. Conclusion

    We have successfully synthesized sulfur-doped coveedged GNRs on Au(111)substrate. Nc-AFM image confirms the formation of S-CGNRs and resolves the atomic structures with non-uniform edge configurations due to the C-S bond cleavage at elevated temperature.STS spectra demonstrate the conduction band minimum of the S-CGNR locates at 1.2 eV.DFT calculations reveal that the well-ordered,S-CGNRs have a bandgap of 1.17 eV,which is much smaller than that of the pristine carbon-based GNRs with the similar structure. The SCGNRs produced with low precursor coverage cross-couple into branched structures. With increasing the precursor coverage to near monolayer, linear-shaped ribbons have been successfully obtained. This bottom-up synthesis of S-CGNRs promotes future applications of heteroatom-doped graphene nanoribbons in nanoelectronics.

    Acknowledgements

    Part of the research was performed in the Key Laboratory of Vacuum Physics,Chinese Academy of Sciences. Computational resources were provided by the National Supercomputing Center in Tianjin Municipality, China. The Instrumental Analysis Center of Shanghai Jiao Tong University is also acknowledged for some measurements.

    午夜av观看不卡| 在线精品无人区一区二区三| 五月天丁香电影| 国产成人欧美在线观看 | 亚洲精品第二区| av一本久久久久| 国产av精品麻豆| 天天躁狠狠躁夜夜躁狠狠躁| 9热在线视频观看99| www.精华液| 老鸭窝网址在线观看| 欧美激情 高清一区二区三区| 男人爽女人下面视频在线观看| xxx大片免费视频| 欧美xxⅹ黑人| 国产成人午夜福利电影在线观看| 亚洲精品中文字幕在线视频| 男女免费视频国产| 悠悠久久av| 我要看黄色一级片免费的| 免费久久久久久久精品成人欧美视频| 日韩av在线免费看完整版不卡| 在线天堂中文资源库| 伊人久久大香线蕉亚洲五| 黄色 视频免费看| 一本久久精品| 99九九在线精品视频| 18禁裸乳无遮挡动漫免费视频| 日韩一本色道免费dvd| 日韩熟女老妇一区二区性免费视频| 亚洲国产av新网站| 日本黄色日本黄色录像| 午夜福利视频在线观看免费| 亚洲成人一二三区av| 亚洲综合精品二区| 国产免费视频播放在线视频| av片东京热男人的天堂| 国产精品偷伦视频观看了| av.在线天堂| 不卡视频在线观看欧美| 精品视频人人做人人爽| 伊人久久大香线蕉亚洲五| 亚洲四区av| 一二三四中文在线观看免费高清| 亚洲国产中文字幕在线视频| 七月丁香在线播放| 亚洲精品日韩在线中文字幕| 免费高清在线观看日韩| 一本一本久久a久久精品综合妖精| 国产淫语在线视频| 亚洲美女搞黄在线观看| 黄色视频在线播放观看不卡| 精品少妇内射三级| 久久热在线av| www.熟女人妻精品国产| bbb黄色大片| 成人黄色视频免费在线看| 亚洲七黄色美女视频| 国产成人一区二区在线| tube8黄色片| 亚洲av综合色区一区| 亚洲情色 制服丝袜| 制服诱惑二区| 欧美激情 高清一区二区三区| 在现免费观看毛片| 啦啦啦中文免费视频观看日本| 成人18禁高潮啪啪吃奶动态图| 大码成人一级视频| 99久久精品国产亚洲精品| 亚洲欧洲国产日韩| 国产精品成人在线| 麻豆av在线久日| 亚洲国产精品一区二区三区在线| 天天添夜夜摸| 久久精品国产亚洲av涩爱| av视频免费观看在线观看| 日韩精品免费视频一区二区三区| 国产日韩欧美亚洲二区| 飞空精品影院首页| 亚洲欧美激情在线| 国产精品一二三区在线看| 大片免费播放器 马上看| 最近中文字幕高清免费大全6| 欧美另类一区| 色综合欧美亚洲国产小说| 少妇人妻 视频| 人人妻人人澡人人看| 观看av在线不卡| 成人手机av| 日韩精品有码人妻一区| 成人黄色视频免费在线看| 汤姆久久久久久久影院中文字幕| 日韩av在线免费看完整版不卡| 欧美日韩亚洲综合一区二区三区_| 国产成人精品福利久久| 亚洲中文av在线| 欧美人与善性xxx| 成人午夜精彩视频在线观看| videos熟女内射| 国产一卡二卡三卡精品 | 一区二区日韩欧美中文字幕| 国产一区有黄有色的免费视频| 高清在线视频一区二区三区| 亚洲专区中文字幕在线 | a级毛片在线看网站| 国产精品久久久久久人妻精品电影 | 国产成人a∨麻豆精品| 人人妻人人添人人爽欧美一区卜| 中国国产av一级| 黑人欧美特级aaaaaa片| av又黄又爽大尺度在线免费看| 日本wwww免费看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩不卡一区二区三区视频在线| 高清黄色对白视频在线免费看| 久久精品国产亚洲av高清一级| 99国产综合亚洲精品| 免费女性裸体啪啪无遮挡网站| 亚洲av电影在线进入| 90打野战视频偷拍视频| 国产熟女欧美一区二区| 久久99精品国语久久久| 一区二区av电影网| 黑人欧美特级aaaaaa片| 麻豆精品久久久久久蜜桃| 亚洲美女搞黄在线观看| 亚洲精品美女久久av网站| 国产极品天堂在线| 国产精品人妻久久久影院| 黑人欧美特级aaaaaa片| 最近中文字幕高清免费大全6| 大香蕉久久网| www.av在线官网国产| 午夜福利在线免费观看网站| 狠狠婷婷综合久久久久久88av| 男女免费视频国产| 国产精品国产三级专区第一集| 日本午夜av视频| 国产麻豆69| 中国三级夫妇交换| 大片电影免费在线观看免费| 制服人妻中文乱码| 中文字幕av电影在线播放| 欧美乱码精品一区二区三区| 免费日韩欧美在线观看| 欧美精品亚洲一区二区| 超碰97精品在线观看| 丝瓜视频免费看黄片| 国产一区有黄有色的免费视频| 国产淫语在线视频| 午夜福利,免费看| 精品酒店卫生间| 你懂的网址亚洲精品在线观看| 肉色欧美久久久久久久蜜桃| 日韩av不卡免费在线播放| 香蕉国产在线看| 我要看黄色一级片免费的| 在线 av 中文字幕| 国产精品国产三级国产专区5o| 精品国产超薄肉色丝袜足j| 丝袜在线中文字幕| 日日啪夜夜爽| 精品一品国产午夜福利视频| 亚洲欧美成人精品一区二区| 国产一区二区激情短视频 | 9色porny在线观看| 一区二区三区四区激情视频| 久久精品国产综合久久久| 国产老妇伦熟女老妇高清| 一边摸一边做爽爽视频免费| 国产精品久久久久久精品古装| 97在线人人人人妻| 80岁老熟妇乱子伦牲交| 99国产精品免费福利视频| 午夜福利免费观看在线| 人成视频在线观看免费观看| 亚洲精品久久久久久婷婷小说| bbb黄色大片| 成人三级做爰电影| 9色porny在线观看| 一区二区三区乱码不卡18| 少妇人妻精品综合一区二区| 自线自在国产av| 日韩电影二区| 欧美老熟妇乱子伦牲交| 岛国毛片在线播放| 亚洲av日韩在线播放| 亚洲精品久久久久久婷婷小说| 国产 一区精品| 国产麻豆69| 午夜激情久久久久久久| 成人影院久久| 国产成人免费无遮挡视频| 欧美日韩国产mv在线观看视频| 欧美日韩av久久| 亚洲精品在线美女| 国产成人系列免费观看| 成年美女黄网站色视频大全免费| 国产97色在线日韩免费| 亚洲av电影在线观看一区二区三区| 欧美成人午夜精品| 欧美人与善性xxx| 少妇被粗大猛烈的视频| 大片免费播放器 马上看| 久久精品国产a三级三级三级| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 亚洲欧美一区二区三区久久| 少妇精品久久久久久久| 看免费成人av毛片| 中文字幕另类日韩欧美亚洲嫩草| 美女大奶头黄色视频| av福利片在线| 搡老乐熟女国产| 妹子高潮喷水视频| 赤兔流量卡办理| 免费观看人在逋| 视频区图区小说| 国产精品久久久久成人av| 韩国精品一区二区三区| 久久国产精品大桥未久av| av片东京热男人的天堂| 国产精品嫩草影院av在线观看| 涩涩av久久男人的天堂| 老汉色∧v一级毛片| 国产在线一区二区三区精| 欧美黑人欧美精品刺激| 丝袜人妻中文字幕| 久久综合国产亚洲精品| 欧美 日韩 精品 国产| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| 丰满少妇做爰视频| 亚洲第一av免费看| 欧美在线一区亚洲| 亚洲欧洲精品一区二区精品久久久 | 午夜福利视频精品| 人人妻,人人澡人人爽秒播 | 看免费成人av毛片| 国产麻豆69| 国产精品久久久久成人av| 日韩 欧美 亚洲 中文字幕| 18在线观看网站| 日日摸夜夜添夜夜爱| 亚洲欧美日韩另类电影网站| 精品少妇久久久久久888优播| 亚洲四区av| 欧美成人午夜精品| 久久天堂一区二区三区四区| 伊人亚洲综合成人网| 日日撸夜夜添| 国产黄色视频一区二区在线观看| 亚洲成人一二三区av| 高清视频免费观看一区二区| 香蕉国产在线看| 亚洲国产欧美在线一区| 国产一区二区三区av在线| 欧美久久黑人一区二区| videos熟女内射| 亚洲av中文av极速乱| 一二三四中文在线观看免费高清| 亚洲欧美色中文字幕在线| 街头女战士在线观看网站| 人人澡人人妻人| 久久人人97超碰香蕉20202| videosex国产| 精品午夜福利在线看| 久久久久网色| 宅男免费午夜| 免费人妻精品一区二区三区视频| 国产免费一区二区三区四区乱码| 欧美97在线视频| 亚洲美女黄色视频免费看| 多毛熟女@视频| 国产在视频线精品| 亚洲视频免费观看视频| 亚洲激情五月婷婷啪啪| 精品少妇内射三级| 久久婷婷青草| 观看av在线不卡| 国产在视频线精品| 日韩电影二区| 日本av免费视频播放| av卡一久久| 日韩 欧美 亚洲 中文字幕| 男女免费视频国产| 久久午夜综合久久蜜桃| 三上悠亚av全集在线观看| 亚洲av日韩精品久久久久久密 | 亚洲av日韩精品久久久久久密 | 最近最新中文字幕免费大全7| 9热在线视频观看99| 成人午夜精彩视频在线观看| 91国产中文字幕| 久久韩国三级中文字幕| 精品视频人人做人人爽| 婷婷色综合大香蕉| 久久久久精品性色| 熟女av电影| 国产成人欧美在线观看 | 日韩av免费高清视频| 老司机靠b影院| av.在线天堂| 国产一区二区 视频在线| 乱人伦中国视频| 久久天躁狠狠躁夜夜2o2o | 色播在线永久视频| 久久狼人影院| 男的添女的下面高潮视频| 青青草视频在线视频观看| 欧美日韩亚洲高清精品| 大陆偷拍与自拍| 色综合欧美亚洲国产小说| 日韩中文字幕欧美一区二区 | 精品少妇黑人巨大在线播放| 各种免费的搞黄视频| 黄网站色视频无遮挡免费观看| 亚洲精品美女久久av网站| xxx大片免费视频| 欧美国产精品va在线观看不卡| 亚洲成人免费av在线播放| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡动漫免费视频| 一本久久精品| 国产午夜精品一二区理论片| 欧美日韩福利视频一区二区| 亚洲av福利一区| 狂野欧美激情性bbbbbb| 欧美变态另类bdsm刘玥| 亚洲人成77777在线视频| 国产极品天堂在线| 国产国语露脸激情在线看| 国产成人欧美在线观看 | 国产老妇伦熟女老妇高清| 99热全是精品| 成年av动漫网址| 国产精品麻豆人妻色哟哟久久| 亚洲人成网站在线观看播放| 91精品三级在线观看| 精品国产一区二区三区久久久樱花| 亚洲国产欧美在线一区| 国产日韩欧美视频二区| 国产免费现黄频在线看| 久久人人97超碰香蕉20202| 久久国产精品大桥未久av| 国产成人啪精品午夜网站| 日韩一区二区三区影片| 国产欧美亚洲国产| 少妇的丰满在线观看| 两性夫妻黄色片| 成人漫画全彩无遮挡| 看免费av毛片| 国产精品熟女久久久久浪| 久久精品久久久久久久性| 精品亚洲乱码少妇综合久久| 成人午夜精彩视频在线观看| 国产一区二区激情短视频 | 操出白浆在线播放| 一边亲一边摸免费视频| 综合色丁香网| 国产精品熟女久久久久浪| 免费看av在线观看网站| 波多野结衣av一区二区av| 免费在线观看完整版高清| 黑丝袜美女国产一区| a级毛片在线看网站| 一区二区av电影网| 男女高潮啪啪啪动态图| 午夜日韩欧美国产| 99热全是精品| 免费黄频网站在线观看国产| 一本一本久久a久久精品综合妖精| 免费观看人在逋| 日本色播在线视频| 国产男女内射视频| 精品少妇内射三级| 亚洲三区欧美一区| 亚洲国产毛片av蜜桃av| 久久精品国产亚洲av涩爱| 成人毛片60女人毛片免费| 最黄视频免费看| 激情五月婷婷亚洲| 国语对白做爰xxxⅹ性视频网站| 啦啦啦啦在线视频资源| 国产又爽黄色视频| 精品酒店卫生间| 视频在线观看一区二区三区| 亚洲av男天堂| 一区二区三区激情视频| 伊人久久大香线蕉亚洲五| 国产伦理片在线播放av一区| 亚洲av日韩在线播放| 国产国语露脸激情在线看| av天堂久久9| 免费日韩欧美在线观看| 久久人人97超碰香蕉20202| 国产一卡二卡三卡精品 | 香蕉国产在线看| 欧美中文综合在线视频| 99久久99久久久精品蜜桃| 免费看av在线观看网站| 欧美黑人精品巨大| 你懂的网址亚洲精品在线观看| 99精品久久久久人妻精品| 搡老乐熟女国产| 一边摸一边抽搐一进一出视频| 亚洲av在线观看美女高潮| 亚洲在久久综合| 这个男人来自地球电影免费观看 | 国产精品久久久久久精品古装| 欧美黑人精品巨大| 成年美女黄网站色视频大全免费| 人人妻人人澡人人看| 综合色丁香网| 久久人人爽人人片av| 精品一区二区三卡| 国产有黄有色有爽视频| 日韩不卡一区二区三区视频在线| 久久久久久久久免费视频了| 少妇 在线观看| 国产精品香港三级国产av潘金莲 | kizo精华| 老鸭窝网址在线观看| 18禁裸乳无遮挡动漫免费视频| 嫩草影院入口| 天天躁夜夜躁狠狠躁躁| 精品少妇黑人巨大在线播放| 久久99精品国语久久久| 黑人猛操日本美女一级片| 男人爽女人下面视频在线观看| 91成人精品电影| 波野结衣二区三区在线| 中文字幕人妻熟女乱码| 久久久久久久精品精品| 日韩中文字幕欧美一区二区 | 成年av动漫网址| 亚洲国产日韩一区二区| 欧美日韩视频精品一区| 欧美日韩视频高清一区二区三区二| 亚洲欧美日韩另类电影网站| 人妻 亚洲 视频| 国产免费福利视频在线观看| 各种免费的搞黄视频| 高清欧美精品videossex| 捣出白浆h1v1| 亚洲精品国产一区二区精华液| 女性被躁到高潮视频| 亚洲第一av免费看| 久久精品国产亚洲av高清一级| 男女国产视频网站| 在线观看人妻少妇| 大香蕉久久成人网| 777久久人妻少妇嫩草av网站| 夫妻性生交免费视频一级片| 欧美日韩视频高清一区二区三区二| 在线观看人妻少妇| 日韩大码丰满熟妇| 午夜91福利影院| 国产又色又爽无遮挡免| 爱豆传媒免费全集在线观看| 久久久精品国产亚洲av高清涩受| 999精品在线视频| a级毛片在线看网站| 精品少妇内射三级| 久久久久精品人妻al黑| 日韩av免费高清视频| tube8黄色片| 日韩伦理黄色片| 啦啦啦啦在线视频资源| 在线看a的网站| 一本久久精品| 19禁男女啪啪无遮挡网站| 精品第一国产精品| 亚洲人成网站在线观看播放| 日韩中文字幕视频在线看片| 韩国精品一区二区三区| 国产欧美日韩综合在线一区二区| 亚洲精品中文字幕在线视频| 日韩一卡2卡3卡4卡2021年| 男女无遮挡免费网站观看| 两个人看的免费小视频| 亚洲成人av在线免费| 午夜激情av网站| 男人操女人黄网站| 亚洲国产毛片av蜜桃av| 亚洲情色 制服丝袜| 波野结衣二区三区在线| 日韩 亚洲 欧美在线| 婷婷色综合大香蕉| 久久国产精品男人的天堂亚洲| 国产高清国产精品国产三级| 亚洲av电影在线进入| 9热在线视频观看99| 一区在线观看完整版| 在线观看人妻少妇| 成人18禁高潮啪啪吃奶动态图| 成人亚洲精品一区在线观看| 水蜜桃什么品种好| 精品国产乱码久久久久久小说| 亚洲第一av免费看| 日本av手机在线免费观看| 香蕉丝袜av| 欧美成人午夜精品| 99热网站在线观看| 1024香蕉在线观看| 国产成人免费无遮挡视频| 午夜福利免费观看在线| 毛片一级片免费看久久久久| 欧美最新免费一区二区三区| 日韩免费高清中文字幕av| 久久99一区二区三区| 九色亚洲精品在线播放| 国产极品天堂在线| 欧美亚洲日本最大视频资源| 久久精品久久久久久噜噜老黄| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品免费大片| 精品人妻在线不人妻| 多毛熟女@视频| 秋霞伦理黄片| 大片电影免费在线观看免费| 精品人妻一区二区三区麻豆| 精品久久久久久电影网| 黑人巨大精品欧美一区二区蜜桃| 国产成人精品无人区| 中文乱码字字幕精品一区二区三区| 午夜福利免费观看在线| 日日爽夜夜爽网站| 十八禁网站网址无遮挡| 久久精品久久精品一区二区三区| 91精品三级在线观看| 人人澡人人妻人| 中文字幕人妻丝袜一区二区 | 午夜福利乱码中文字幕| 国产精品欧美亚洲77777| av视频免费观看在线观看| 成人影院久久| 久久久国产精品麻豆| 九色亚洲精品在线播放| 亚洲国产av新网站| 久久天堂一区二区三区四区| 一区二区三区乱码不卡18| 免费人妻精品一区二区三区视频| 午夜福利视频在线观看免费| 久久综合国产亚洲精品| 制服丝袜香蕉在线| 女的被弄到高潮叫床怎么办| 国产成人啪精品午夜网站| 久久久久久久久久久免费av| 亚洲精品第二区| 亚洲av男天堂| 国产精品二区激情视频| 亚洲精品日本国产第一区| 欧美日韩福利视频一区二区| 午夜免费观看性视频| 在线观看免费高清a一片| 1024视频免费在线观看| 新久久久久国产一级毛片| 精品第一国产精品| 制服丝袜香蕉在线| 午夜精品国产一区二区电影| 一级毛片电影观看| 国产精品av久久久久免费| 妹子高潮喷水视频| 成人三级做爰电影| 亚洲av日韩精品久久久久久密 | 天天躁夜夜躁狠狠躁躁| 激情五月婷婷亚洲| 国产熟女欧美一区二区| 蜜桃国产av成人99| 美女扒开内裤让男人捅视频| 久久女婷五月综合色啪小说| 欧美成人午夜精品| 日韩中文字幕视频在线看片| 黄色一级大片看看| 一级黄片播放器| 亚洲精品乱久久久久久| 19禁男女啪啪无遮挡网站| 国产精品免费视频内射| 一级毛片 在线播放| 亚洲精品美女久久久久99蜜臀 | av视频免费观看在线观看| 丰满少妇做爰视频| 午夜av观看不卡| 午夜福利乱码中文字幕| 欧美日韩国产mv在线观看视频| 91国产中文字幕| 日韩电影二区| netflix在线观看网站| 久久性视频一级片| 国产淫语在线视频| 国产免费一区二区三区四区乱码| 欧美精品一区二区免费开放| 精品一品国产午夜福利视频| 亚洲欧美一区二区三区久久| 男人操女人黄网站| 赤兔流量卡办理| 国产精品久久久久成人av| 免费在线观看黄色视频的| 蜜桃在线观看..| 国产精品久久久久成人av| 久久久久精品久久久久真实原创| 宅男免费午夜| 国产片特级美女逼逼视频| 国产一区二区在线观看av| 亚洲成av片中文字幕在线观看| 丝袜脚勾引网站| 色吧在线观看| 美女高潮到喷水免费观看| 麻豆乱淫一区二区| 哪个播放器可以免费观看大片| 国产日韩欧美亚洲二区| 国产精品 欧美亚洲|