• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress*

    2021-07-30 07:41:38YiDongYuan原義棟DongYanZhao趙東艷YanRongCao曹艷榮YuBoWang王于波JinShao邵瑾YanNingChen陳燕寧WenLongHe何文龍JianDu杜劍MinWang王敏YeLingPeng彭業(yè)凌HongTaoZhang張宏濤ZhenFu付振ChenRen任晨FangLiu劉芳LongTaoZhang張龍濤YangZhao趙揚LingLv呂玲YiQi
    Chinese Physics B 2021年7期

    Yi-Dong Yuan(原義棟) Dong-Yan Zhao(趙東艷) Yan-Rong Cao(曹艷榮) Yu-Bo Wang(王于波)Jin Shao(邵瑾) Yan-Ning Chen(陳燕寧) Wen-Long He(何文龍) Jian Du(杜劍)Min Wang(王敏) Ye-Ling Peng(彭業(yè)凌) Hong-Tao Zhang(張宏濤) Zhen Fu(付振)Chen Ren(任晨) Fang Liu(劉芳) Long-Tao Zhang(張龍濤) Yang Zhao(趙揚)Ling Lv(呂玲) Yi-Qiang Zhao(趙毅強) Xue-Feng Zheng(鄭雪峰)Zhi-Mei Zhou(周芝梅) Yong Wan(萬勇) and Xiao-Hua Ma(馬曉華)

    1School of Microelectronics,Tianjin University,Tianjin 300072,China

    2Beijing Engineering Research Center of High-reliability IC with Power Industrial Grade,Beijing Smart-Chip Microelectronics Technology Co.,Ltd,Beijing 100192,China

    3School of Electro-Mechanical Engineering,Xidian University,Xi’an 710071,China

    4Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices,Xidian University,Xi’an 710071,China

    5Smart Shine Microelectronics Technology Co.,Ltd,Qingdao 100081,China

    Keywords: gate-recessed MOS-HEMTs,channel electron injection,gate electron injection,barrier layer traps

    1. Introduction

    AlGaN/GaN high electron mobility transistor(HEMT)is a kind of semiconductor device with wide band gap,high electron mobility and high breakdown electric field. Owing to its superior electrical, optical and thermal properties, it has become a research hotspot of the third-generation semiconductor materials and devices.[1-5]The gate-recessed metaloxide-semiconductor high electron mobility transistor(MOSHEMT)device can reduce the gate tunneling current and improve the gate control ability of the conventional HEMT device,so it has been widely concerned.[6-10]GaN-based HEMT has great application prospects in high temperature, high frequency, and high power electronics. Although it has been put into the market to a certain extent, there are still many reliability problems that seriously restrict the development of GaN HEMT.[11-14]GaN-based HEMTs are usually used in microwave high-power fields.The devices often work under high drain-bias (VDS). Therefore, the degradation of GaN-based HEMTs in high field has aroused extensive research. Under high field stress,the channel hot electron effect can cause the device characteristics and output current to degrade.[15,16]Trewet al.[17]put forward that there exists a strong electricfield peak near the gate between gate and drain,and gate electrons can get to the barrier layer’s surface under the influence of electric-field peak,which results in leakage current between the gate and drain.Gate electrons can also fill the surface traps,and thus forming a virtual gate,which will cause some degradation phenomena such as the increase of threshold voltage(VTH)and the reduction of drain current. The research of Wenping Guet al.[18]shows that the effect of hot electron and the virtual gate lead the device to degrade.

    At present, there are many studies on AlGaN/GaN conventional HEMTs’ degradation under electrical stress, showing that the channel hot electron injection and gate electron injection can lead the threshold voltage to vary. However,there are few studies of the gate-recessed MOS-HEMT device.In order to analyze the difference and similarity in reliability between gate-recessed MOS-HEMT device and conventional HEMT device,in this paper the comparison between the characteristic changes of gate-recessed Al2O3/AlGaN/GaN HEMT and conventional HEMT devices are conducted under electrical stress. And the influence of the two degradation modes,channel hot electron injection,and gate electron injection,on the characteristic parameters and reliability of the device are studied.

    2. Devices and stress experiments

    The tested GaN-based gate-recessed MOS-HEMTs were fabricated by low pressure metal-organic chemical vapor deposition (LP-MOCVD) equipment to grow AlGaN/GaN heterostructure on sapphire substrate. In the GaN-based gaterecessed MOS-HEMTs,the materials from bottom to top were sapphire substrate, 40-nm-thick AlN nucleating layer, 1-μmthick undoped GaN epitaxial layer, and 25-nm-thick AlGaN barrier layer with a doping concentration of 2×108cm-3. In addition, Al component of AlGaN barrier layer was about 30%. Chlorine-based reactive ion etching (RIE) was used to etch the recessed-gate, and atomic layer deposition(ALD)was used to deposit 5-nm-thick Al2O3gate dielectric layer.Electron beam evaporation was used to grow a Ti/Al/Ni/Au(respectively with 22 nm/140 nm/55 nm/45 nm in thickness)multilayer metal to realize the ohmic contacts and also used to form a Ni/Au/Ni (respectively with 45 nm/200 nm/20 nm in thickness)gate electrode multilayer metal. The gate length and width for each of the gate-recessed MOS-HEMTs were respectively 0.8 μm and 50 μm, and the thickness of the dielectric layer was 5 nm. The gate electrode lay in the midpoint between source and drain while Si3N4layer acted as a passivation layer. Compared with the gate-recessed MOS-HEMT device proposed in this work,conventional HEMT device had no groove or deposition oxide layer step, and the rest of the structure were the same. The schematic diagrams of the two kinds of HEMTs are shown in Fig.1.

    With the Hall effect measurement tests at room temperature, we obtained the mobility and density of twodimensional electron gas (2DEG), which are 1150 cm2/V·s and 1.2×1013cm-2, respectively in the AlGaN/GaN heterostructure. The Keithley4200, a semiconductor parameter analyzer was used to test the direct current(DC)characteristics and electrical-stress characteristics of HEMTs.There are three main electrical-stress test parts in this paper: (i)channel electron injection stress(gate floating,VS=0 V,andVD=15 V);(ii)gate electron injection stress(source floating,VG=-20 V,andVD=0 V); (iii) another high field electrical stress (coupling between channel electron injection and gate electron injection)(VG=VS=0 V andVD=15 V).The stress times of tests were all 1000 s.

    Fig.1. Schematic diagram of(a)gate-recessed MOS-HEMT and(b)conventional HEMT.

    3. Experimental results and analysis

    3.1. Experimental results

    After 1000 s of channel electron injection stress (gate floating,VS=0 V, andVD=15 V) and gate electron injection stress (source floating,VG=-20 V, andVD=0 V), the threshold voltage variations of conventional HEMTs and gaterecessed MOS-HEMTs with stress time are obtained as shown in Figs.2 and 3. In Fig.2,under the stress of channel electron injection, the characteristics of the two kinds of devices are degraded,and the threshold voltages are both increased.

    Figure 3 shows the degradations of conventional HEMT and gate-recessed MOS-HEMT under gate electron injection stress.The threshold voltage of conventional HEMT decreases(negative shift) in the first 100 s, while the threshold voltage of gate-recessed MOS-HEMT increases(positive shift)significantly during the first 100-s stress. And then in the 100 s-1000 s process of the gate electron injection stress,the threshold voltage of conventional HEMT and the threshold voltage of gate-recessed MOS-HEMT are both reduced.

    Fig.2. Under channel electron injection stress: (a)drain current versus gate voltage,(b)threshold voltage versus stress time of conventional HEMT,(c)drain current versus gate voltage,and(d)threshold voltage versus stress time of gate-recessed MOS-HEMT.

    Fig.3. Under gate electron injection stress: (a)drain current versus gate voltage, (b)threshold voltage versus stress time of conventional HEMT,(c)drain current versus gate voltage,(d)threshold voltage versus stress time of gate-recessed MOS-HEMT.

    The threshold voltage and drain current degradations of the two devices under the two kinds of electron injection stresses are obtained and shown in Table 1. For the same device, the degradation under channel electron injection condition is more serious, and the electrons trapped by the barrier layer are an important factor leading the parameters to degrade,indicating that the hot electrons generated by the channel impact ionization captured by the barrier layer traps are more important in the case of high-field electrical stress.

    Table 1. Parameters’degradation of two kinds of devices under two electron injection stresses.

    In addition, from Figs. 2 and 3, we can obtain that the leakage currents degrade much more seriously under gate electron injection stress than under channel electron injection stress. And the subthreshold swing(SS)of gate-recessed MOS-HEMT change much larger than that of conventional HEMT.

    3.2. Mechanism analysis

    Under the channel hot electron injection condition, electrons in the device channel are accelerated by the strong electric field and become hot electrons with high energy. The hot electrons can overflow from the channel, and may be trapped by defects in the AlGaN barrier layer, causing the current to decrease and the threshold voltage to increase in the device.High-energy hot electrons may collide with the lattices to produce new defects,[19,20]resulting in further degradation. At the same time, the gate etching of the gate-recessed MOSHEMT brings about more defects under the gate dielectric of the device[21]which can cause the SS to degrade after being stressed. With the injection of channel hot electrons, the traps under the gate dielectric can capture electrons and form an additional negative charge layer under the MOS structure.This charge layer will shield part of the electric field from the gate to the channel, thereby resulting an additional threshold voltage degradation, and the schematic diagram is shown in Fig. 4(a). Therefore, for the gate-recessed MOS-HEMT device,when channel hot electrons are injected,the degradation of the device is the result of the combined effect of traps in the barrier layer and those under the gate dielectric of the device.

    Fig. 4. Effects of under-gate traps on gate-recessed MOS-HEMT under stresses of(a)channel hot electrons injection and(b)gate electrons injection.

    In some researches it is believed that in the process of gate electron injection,gate electrons can be injected into the barrier layer’s surface to fill in the surface state,thus forming a virtual gate between the gate and the drain,[22]which plays a role in depleting the channel, thus increasing the threshold voltage and reducing the current. However,Table 1 shows that the threshold voltage of conventional HEMT device under gate electron injection stress does not increase but decreases. The conventional HEMT has no gate dielectric,and the gate electrons are easier to inject into the barrier layer under the strong negative gate voltage stress. When the electrons are injected into the barrier layer, on the one hand, the surface states will be filled to form a virtual gate;on the other hand,the electrons injected into the barrier layer can be trapped and those above Fermi level in AlGaN barrier layer will be released into GaN layer under the effect of negative gate voltage stress, which increases the 2DEG concentration as shown in Fig.5.[23]The effect of increasing 2DEG concentration is greater than that of the virtual gate, therefore, the threshold voltage of conventional HEMT decreases. However,under the gate electron injection stress, the threshold voltage of gate-recessed MOSHEMT first increases and then decreases. This is because in addition to the depletion of the channel by the virtual gate,the traps under the gate can capture the electrons from the gate injection, thus forming a negative charge layer, which can also deplete part of the channel, as shown schematically in Fig. 4(b). Therefore, for the gate-recessed MOS-HEMT,the threshold voltage increases significantly in the first 100 s.However,with the extension of the stress time,the number of electrons tunneling through the gate dielectric into the barrier layer and then releasing into the channel increases, resulting in the reduced threshold voltage as shown in Fig. 3(d) after 100 s. In addition, with the effect of gate electrons, the traps under gate result in much largerSSand leakage current of gaterecessed MOS-HEMT.

    In order to further analyze the changes of the traps inside the device under the gate electron injection stress, the interface traps are characterized by the conductivity method,[24,25]as their time constantτis relatively small and can trap and release the electrons easily. The detailed principle for this technique can be found in Ref. [26]. The experimental data of parallel conductanceGP/ωas a function of radial frequencyωof the gate-recessed MOS-HEMT before and after the electrical stress are shown in Fig.6. And the relationship betweenGP/ωandωcan be expressed as[26]

    whereDitandτitare the interface trap density and time constant,respectively.

    Fig. 5. Under gate electron injection stress: (a) energy band diagram and(b)structure diagram of electrons entering into channel through barrier layer trap.

    Fig. 6. (GP/ω)-ω curves (a) before stress and (b) after stress for gaterecessed MOS-HEMT device.

    According to the curves fitted by Eq. (1) in Fig. 6,we can obtain the interface trap densityDitand time constantτit. The range ofDitandτitbefore being stressed are 0.57×1013eV-1·cm-2-3.04×1013eV-1·cm-2and 0.5 μs-1.3 μs respectively. After being stressed for 1000 s,Ditandτitbecome 0.31×1013eV-1·cm-2-1.89×1013eV-1·cm-2and 0.9 μs-13.7 μs. The increase of the time constantτitin Fig.7(a)shows that some interface traps have become deeper level traps after being stressed. The interface trap energyETcan be estimated from the following equation:[27]

    where the capture cross sectionσT,the density of states in the conduction bandNC, and the average thermal velocity of the carriersνtare all constants, and have been reported in other paper.[28]The relationship betweenETandDitis illustrated in Fig. 7(b). The trap energy levelETis higher, and the trap densitiesDitare lower after being stressed than before being stressed. The results are consistent with those of Fig. 7(a).Therefore, the shallow level traps that can capture the gate injected electrons and release them into the channel become less,and thus the threshold voltage drops slowly. It is further proved that the threshold voltage is affected by the electron capture and release effect of barrier layer traps under the gate electron injection stress.

    Fig. 7. (a) Relationship between time constant and gate voltage and (b) relationship between trap energy level ET and trap density Dit before and after being stressed,for gate-recessed MOS-HEMT device.

    Figure 8 shows the threshold voltage changes of conventional HEMT and gate-recessed MOS-HEMT under another high field stress condition (coupling between channel electron injection and gate electron injection) (VG=VS= 0 V,VD=15 V). In the first 100 s, the threshold voltages of both HEMTs increase obviously, and then increase slowly in the period of 100 s-1000 s, which is different from the degradation of device under the stress of channel hot electron injection. Under this high field stress, in addition to the effect of channel electron injection, the gate electrons will be injected into the barrier layer by the voltage between the gate and drain,VGD=-15 V.According to the previous analysis,the gate electron injection can cause the threshold voltage to decrease. Under the effect of coupling between channel electron and gate electron injection, the threshold voltage of the device increases slowly in the period from 100 s to 1000 s.The overall increase of the threshold voltage under this high field stress indicates that the main effect in the process comes from the influence of channel electron injection.

    Fig.8. Threshold voltage changes of(a)conventional HEMTs and(b)gaterecessed MOS-HEMTs under high field stress (coupling between channel electron injection and gate electron injection).

    4. Conclusions

    Owing to the introduction of etching and gate dielectrics into gate-recessed MOS-HEMTs,when studying the degradation of gate-recessed MOS-HEMTs and conventional HEMTs under different electron injection modes,it is necessary to take the influence of the under-gate traps into consideration. Under the channel hot electron injection stress,besides the effect of barrier layer traps, the traps introduced by groove etching can trap electrons and deplete part of the channel. Therefore,the degradation of gate-recessed MOS-HEMT is more serious. The gate electrons injected into the barrier layer will be released into the channel,which makes the threshold voltage degradation different from the previous studies, that is,the threshold voltage decreases. Meanwhile, because of defects under gate dielectrics which can trap electrons from gate and deplete part of the channel,the threshold voltage of gaterecessed MOS-HEMT first increases and then decreases as that of the conventional HEMT does. In addition,the increase of threshold voltage is slow under the condition of high field electrical stress(coupling between the channel electron injection and gate electron injection). It is further proved that the gate electron injection can reduce the threshold voltage.At the same time, the overall increase of threshold voltage indicates that the electron captured by barrier trap comes mainly from channel hot electrons injection.

    啪啪无遮挡十八禁网站| АⅤ资源中文在线天堂| 久久这里只有精品中国| 国产一区二区三区视频了| 禁无遮挡网站| 一区二区三区高清视频在线| 日韩国内少妇激情av| 欧美色视频一区免费| 少妇人妻一区二区三区视频| 久久精品亚洲精品国产色婷小说| 国产真实乱freesex| 亚洲 国产 在线| 亚洲精品一区av在线观看| 国产爱豆传媒在线观看 | 国产欧美日韩一区二区三| 久久精品亚洲精品国产色婷小说| 久久久久久久久免费视频了| 久久久久九九精品影院| 久久婷婷成人综合色麻豆| 中文字幕久久专区| 日韩大尺度精品在线看网址| 精品第一国产精品| 免费一级毛片在线播放高清视频| 精品午夜福利视频在线观看一区| 免费看十八禁软件| 日日干狠狠操夜夜爽| 男女做爰动态图高潮gif福利片| 国产乱人伦免费视频| 国产精品乱码一区二三区的特点| 亚洲午夜理论影院| 18禁黄网站禁片午夜丰满| 国产精品 国内视频| 日韩欧美国产一区二区入口| 国产成人啪精品午夜网站| 亚洲免费av在线视频| 99久久国产精品久久久| 琪琪午夜伦伦电影理论片6080| 18禁观看日本| 99国产精品99久久久久| 九色国产91popny在线| 成在线人永久免费视频| 在线视频色国产色| 999久久久精品免费观看国产| 国产亚洲精品综合一区在线观看 | 亚洲国产精品合色在线| 国产99久久九九免费精品| 国产精品亚洲av一区麻豆| 日本 欧美在线| 久久精品人妻少妇| 欧美一级毛片孕妇| 又粗又爽又猛毛片免费看| 欧美极品一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 免费在线观看影片大全网站| 免费观看人在逋| 男男h啪啪无遮挡| 国产一区二区激情短视频| 国产一级毛片七仙女欲春2| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 成年免费大片在线观看| 欧美成人性av电影在线观看| 亚洲精品美女久久av网站| 在线观看一区二区三区| 在线免费观看的www视频| 1024香蕉在线观看| 精品少妇一区二区三区视频日本电影| 99国产精品一区二区三区| 女同久久另类99精品国产91| 亚洲在线自拍视频| 久久性视频一级片| 黄色片一级片一级黄色片| 狂野欧美白嫩少妇大欣赏| 国产精品美女特级片免费视频播放器 | 欧美成人一区二区免费高清观看 | 国产精品香港三级国产av潘金莲| 国产亚洲精品一区二区www| 中出人妻视频一区二区| 国产精华一区二区三区| 久久天躁狠狠躁夜夜2o2o| 18禁美女被吸乳视频| 男人舔女人下体高潮全视频| 在线观看免费视频日本深夜| 国产成人精品久久二区二区免费| 亚洲第一电影网av| 国产日本99.免费观看| 国产亚洲av嫩草精品影院| 日日干狠狠操夜夜爽| 久久精品综合一区二区三区| 久久精品国产亚洲av香蕉五月| av中文乱码字幕在线| 中文字幕最新亚洲高清| e午夜精品久久久久久久| 成人三级做爰电影| 国产高清视频在线播放一区| 国产久久久一区二区三区| 人成视频在线观看免费观看| a级毛片a级免费在线| 香蕉丝袜av| 人人妻,人人澡人人爽秒播| 国产亚洲精品综合一区在线观看 | 2021天堂中文幕一二区在线观| 久久人人精品亚洲av| 国产高清激情床上av| 亚洲欧美精品综合一区二区三区| 国产免费男女视频| 久热爱精品视频在线9| 日韩大尺度精品在线看网址| 午夜成年电影在线免费观看| 亚洲天堂国产精品一区在线| 日日爽夜夜爽网站| 国产av麻豆久久久久久久| 黄色丝袜av网址大全| 亚洲男人的天堂狠狠| 日日干狠狠操夜夜爽| 欧美在线黄色| 男人舔女人的私密视频| 午夜福利高清视频| 亚洲国产精品sss在线观看| 又黄又粗又硬又大视频| 国产69精品久久久久777片 | 岛国视频午夜一区免费看| 国产成人系列免费观看| 全区人妻精品视频| 少妇熟女aⅴ在线视频| 久久精品亚洲精品国产色婷小说| 一区二区三区国产精品乱码| 99热这里只有是精品50| 制服人妻中文乱码| 中文字幕最新亚洲高清| 在线播放国产精品三级| 亚洲国产中文字幕在线视频| 首页视频小说图片口味搜索| 亚洲人成伊人成综合网2020| 午夜激情福利司机影院| 国内精品久久久久久久电影| 国模一区二区三区四区视频 | 在线观看美女被高潮喷水网站 | 久久久久国产精品人妻aⅴ院| 久久午夜综合久久蜜桃| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美国产在线观看| 老司机午夜福利在线观看视频| 真人一进一出gif抽搐免费| 欧美成狂野欧美在线观看| 久久久久久亚洲精品国产蜜桃av| 真人做人爱边吃奶动态| 麻豆成人av在线观看| 亚洲中文字幕一区二区三区有码在线看 | 啪啪无遮挡十八禁网站| 成年人黄色毛片网站| 欧美成狂野欧美在线观看| 亚洲精品久久国产高清桃花| 18禁裸乳无遮挡免费网站照片| 久9热在线精品视频| 黄色片一级片一级黄色片| 可以免费在线观看a视频的电影网站| 久久久久久大精品| 视频区欧美日本亚洲| 国产成人精品久久二区二区91| av福利片在线| 99久久综合精品五月天人人| 日本a在线网址| АⅤ资源中文在线天堂| АⅤ资源中文在线天堂| 大型av网站在线播放| 久久中文字幕人妻熟女| 中文字幕人妻丝袜一区二区| 亚洲av成人av| 色综合站精品国产| 亚洲人成77777在线视频| 日韩三级视频一区二区三区| 国产一区二区在线av高清观看| 亚洲精品美女久久久久99蜜臀| 国产午夜精品久久久久久| 九九热线精品视视频播放| 听说在线观看完整版免费高清| 我要搜黄色片| 亚洲aⅴ乱码一区二区在线播放 | 黑人欧美特级aaaaaa片| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦韩国在线观看视频| 亚洲中文日韩欧美视频| 麻豆国产av国片精品| 成人午夜高清在线视频| 国产精品 国内视频| 男人的好看免费观看在线视频 | 亚洲欧洲精品一区二区精品久久久| 亚洲天堂国产精品一区在线| 又黄又粗又硬又大视频| 亚洲 国产 在线| 亚洲成人国产一区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产欧美日韩一区二区三| 国产精品久久久人人做人人爽| 欧美黑人精品巨大| 一个人免费在线观看电影 | 88av欧美| 久久精品夜夜夜夜夜久久蜜豆 | 麻豆av在线久日| 可以免费在线观看a视频的电影网站| 欧美黄色淫秽网站| bbb黄色大片| 国产蜜桃级精品一区二区三区| 男女之事视频高清在线观看| 国产精品美女特级片免费视频播放器 | 视频区欧美日本亚洲| 国产欧美日韩一区二区精品| 精品久久久久久久久久久久久| 婷婷亚洲欧美| 搡老岳熟女国产| 久久久久久大精品| 好男人在线观看高清免费视频| 天堂影院成人在线观看| 亚洲午夜精品一区,二区,三区| 国产亚洲精品第一综合不卡| 亚洲熟妇熟女久久| 亚洲成av人片免费观看| 亚洲第一电影网av| 欧美精品亚洲一区二区| 午夜a级毛片| 国产伦人伦偷精品视频| 国产精品亚洲av一区麻豆| 欧美日韩国产亚洲二区| 午夜免费成人在线视频| 久久久久久国产a免费观看| 麻豆国产av国片精品| 怎么达到女性高潮| 国产午夜福利久久久久久| 1024香蕉在线观看| 日韩高清综合在线| 中文在线观看免费www的网站 | 亚洲黑人精品在线| 法律面前人人平等表现在哪些方面| 曰老女人黄片| 18禁国产床啪视频网站| 亚洲五月婷婷丁香| 中文在线观看免费www的网站 | 黄片大片在线免费观看| 99热这里只有是精品50| 国产一级毛片七仙女欲春2| 免费高清视频大片| 99在线视频只有这里精品首页| 啦啦啦观看免费观看视频高清| 国产一区二区三区视频了| 免费av毛片视频| 亚洲精华国产精华精| 亚洲精品国产一区二区精华液| 欧美精品啪啪一区二区三区| 巨乳人妻的诱惑在线观看| а√天堂www在线а√下载| 一卡2卡三卡四卡精品乱码亚洲| 成人国产综合亚洲| 美女大奶头视频| 免费看美女性在线毛片视频| 99久久综合精品五月天人人| 777久久人妻少妇嫩草av网站| 亚洲片人在线观看| www.www免费av| 淫妇啪啪啪对白视频| 亚洲成人久久性| 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类 | 成人手机av| 欧美一级a爱片免费观看看 | 真人一进一出gif抽搐免费| 日日爽夜夜爽网站| 日本五十路高清| 90打野战视频偷拍视频| 日本撒尿小便嘘嘘汇集6| 9191精品国产免费久久| 无遮挡黄片免费观看| 欧美zozozo另类| 正在播放国产对白刺激| 午夜两性在线视频| 免费高清视频大片| 亚洲欧美激情综合另类| 亚洲专区字幕在线| 国产不卡一卡二| 国产精品久久视频播放| 制服人妻中文乱码| 三级国产精品欧美在线观看 | 我要搜黄色片| 级片在线观看| 国产高清视频在线播放一区| 久久久久久大精品| 久久久国产成人精品二区| 欧美日韩精品网址| 国产av一区二区精品久久| 欧美成人一区二区免费高清观看 | 一级毛片精品| 日本五十路高清| 搡老妇女老女人老熟妇| 黄色丝袜av网址大全| 黄色 视频免费看| 亚洲男人天堂网一区| 好男人在线观看高清免费视频| 免费观看精品视频网站| 波多野结衣高清无吗| 国产精品久久视频播放| 精品久久久久久久久久免费视频| 老汉色∧v一级毛片| 久久精品综合一区二区三区| 国产成人av教育| 超碰成人久久| 欧美在线黄色| 国产精华一区二区三区| 真人做人爱边吃奶动态| 搡老岳熟女国产| 亚洲国产欧美一区二区综合| 久久国产精品人妻蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 亚洲色图av天堂| 国产欧美日韩精品亚洲av| 午夜激情福利司机影院| 亚洲欧美日韩东京热| 久久中文看片网| 亚洲欧美激情综合另类| 少妇熟女aⅴ在线视频| 五月玫瑰六月丁香| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 女警被强在线播放| 欧美最黄视频在线播放免费| 又粗又爽又猛毛片免费看| 亚洲精品中文字幕一二三四区| 亚洲国产中文字幕在线视频| 精品少妇一区二区三区视频日本电影| 国产免费av片在线观看野外av| 男插女下体视频免费在线播放| 日日爽夜夜爽网站| 久久久国产欧美日韩av| www.www免费av| 国产精品野战在线观看| 日本 av在线| 中亚洲国语对白在线视频| 亚洲人成伊人成综合网2020| 757午夜福利合集在线观看| 久久欧美精品欧美久久欧美| 90打野战视频偷拍视频| 婷婷丁香在线五月| 国产精品久久久久久久电影 | 亚洲最大成人中文| 亚洲精品美女久久久久99蜜臀| 非洲黑人性xxxx精品又粗又长| 久热爱精品视频在线9| 琪琪午夜伦伦电影理论片6080| 丰满人妻熟妇乱又伦精品不卡| 久久欧美精品欧美久久欧美| 欧美成人一区二区免费高清观看 | 国产伦在线观看视频一区| 精品国产美女av久久久久小说| 真人一进一出gif抽搐免费| netflix在线观看网站| 国产免费av片在线观看野外av| 日韩有码中文字幕| 日本熟妇午夜| 亚洲男人天堂网一区| 欧美3d第一页| 日本黄色视频三级网站网址| 俄罗斯特黄特色一大片| 色尼玛亚洲综合影院| 国产亚洲精品第一综合不卡| 久久久久九九精品影院| 国产午夜精品久久久久久| а√天堂www在线а√下载| 午夜福利成人在线免费观看| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 色播亚洲综合网| av片东京热男人的天堂| 国产免费男女视频| 免费av毛片视频| 午夜老司机福利片| 精品福利观看| 亚洲国产欧美人成| 精品日产1卡2卡| 麻豆久久精品国产亚洲av| 久久人妻福利社区极品人妻图片| 高清在线国产一区| 亚洲av成人不卡在线观看播放网| 狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 国产又色又爽无遮挡免费看| 久久香蕉激情| 日韩国内少妇激情av| 波多野结衣高清作品| 老司机午夜福利在线观看视频| 悠悠久久av| 欧美在线一区亚洲| 国产99久久九九免费精品| 一a级毛片在线观看| 好男人在线观看高清免费视频| 不卡av一区二区三区| 九色成人免费人妻av| 国产久久久一区二区三区| 男人舔女人的私密视频| 一个人观看的视频www高清免费观看 | 少妇人妻一区二区三区视频| 嫁个100分男人电影在线观看| 一级毛片精品| www日本黄色视频网| 久久香蕉激情| 无人区码免费观看不卡| 成人三级做爰电影| 成人亚洲精品av一区二区| 搡老熟女国产l中国老女人| 少妇粗大呻吟视频| 免费电影在线观看免费观看| 色播亚洲综合网| 老司机午夜福利在线观看视频| 国产av麻豆久久久久久久| 国产精品亚洲一级av第二区| 久久国产乱子伦精品免费另类| avwww免费| 久久久国产精品麻豆| 99热6这里只有精品| 男男h啪啪无遮挡| 久久婷婷成人综合色麻豆| 国产黄a三级三级三级人| 毛片女人毛片| 欧美大码av| 中文亚洲av片在线观看爽| 午夜福利欧美成人| 搡老妇女老女人老熟妇| 国产成人aa在线观看| 欧美一级a爱片免费观看看 | 丝袜美腿诱惑在线| 很黄的视频免费| 日日爽夜夜爽网站| 国产三级中文精品| 亚洲熟妇中文字幕五十中出| 亚洲五月婷婷丁香| 99热这里只有是精品50| 在线观看www视频免费| 精品乱码久久久久久99久播| 在线观看免费日韩欧美大片| 久久久久久人人人人人| 一a级毛片在线观看| 18禁美女被吸乳视频| 亚洲免费av在线视频| 精品无人区乱码1区二区| 成在线人永久免费视频| 成年免费大片在线观看| 亚洲av成人一区二区三| 日韩免费av在线播放| 99国产综合亚洲精品| 久久久久久亚洲精品国产蜜桃av| 在线十欧美十亚洲十日本专区| 午夜a级毛片| a在线观看视频网站| 日本一本二区三区精品| 亚洲精品中文字幕在线视频| 88av欧美| 欧美色欧美亚洲另类二区| 日本一本二区三区精品| 国产成+人综合+亚洲专区| 成人三级黄色视频| 又大又爽又粗| 看免费av毛片| 在线视频色国产色| 久久精品国产亚洲av高清一级| 校园春色视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产91精品成人一区二区三区| 麻豆成人午夜福利视频| 一本综合久久免费| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 国产精品av视频在线免费观看| 国产真实乱freesex| 天天一区二区日本电影三级| 88av欧美| 欧美另类亚洲清纯唯美| 一进一出抽搐gif免费好疼| 亚洲欧美一区二区三区黑人| 久久热在线av| 午夜免费成人在线视频| a级毛片在线看网站| 99国产精品99久久久久| 一a级毛片在线观看| 99久久国产精品久久久| 色老头精品视频在线观看| 久久精品影院6| 成熟少妇高潮喷水视频| 伊人久久大香线蕉亚洲五| 人成视频在线观看免费观看| 久久久久久久久中文| 免费电影在线观看免费观看| 老司机午夜十八禁免费视频| 欧美一级a爱片免费观看看 | 妹子高潮喷水视频| 三级国产精品欧美在线观看 | 天天一区二区日本电影三级| 亚洲男人天堂网一区| 午夜激情av网站| 操出白浆在线播放| 国产精品国产高清国产av| 黄色女人牲交| av片东京热男人的天堂| 日本黄色视频三级网站网址| 香蕉丝袜av| 99国产精品99久久久久| 久久中文看片网| 在线观看免费午夜福利视频| 国产精品免费视频内射| 天天添夜夜摸| 国产精品一区二区免费欧美| 男女午夜视频在线观看| 国产av又大| 小说图片视频综合网站| 在线观看美女被高潮喷水网站 | 亚洲成人国产一区在线观看| 免费看日本二区| 大型黄色视频在线免费观看| 18美女黄网站色大片免费观看| 国产午夜精品论理片| 19禁男女啪啪无遮挡网站| 99久久综合精品五月天人人| 男人舔女人的私密视频| 这个男人来自地球电影免费观看| 搡老熟女国产l中国老女人| 亚洲精品美女久久av网站| 成人18禁在线播放| 在线视频色国产色| 性欧美人与动物交配| 亚洲中文字幕一区二区三区有码在线看 | 亚洲第一欧美日韩一区二区三区| 国产99白浆流出| 一本久久中文字幕| 欧美不卡视频在线免费观看 | 国产成人av激情在线播放| 美女免费视频网站| 欧美丝袜亚洲另类 | 久久久久久久精品吃奶| 亚洲 欧美一区二区三区| 色噜噜av男人的天堂激情| 亚洲一区高清亚洲精品| 精品电影一区二区在线| 99在线视频只有这里精品首页| 精品少妇一区二区三区视频日本电影| 制服丝袜大香蕉在线| 国产99久久九九免费精品| 国产精品av视频在线免费观看| e午夜精品久久久久久久| 亚洲 国产 在线| 在线观看免费日韩欧美大片| 欧美不卡视频在线免费观看 | 成人欧美大片| 99在线人妻在线中文字幕| 高潮久久久久久久久久久不卡| 99久久精品热视频| 成熟少妇高潮喷水视频| 2021天堂中文幕一二区在线观| 久久久精品国产亚洲av高清涩受| 国产精品一区二区精品视频观看| 国产精品自产拍在线观看55亚洲| 99精品在免费线老司机午夜| 日本精品一区二区三区蜜桃| 91麻豆av在线| 国产av在哪里看| 99久久国产精品久久久| 欧美一区二区精品小视频在线| 午夜精品在线福利| 精品国产超薄肉色丝袜足j| 久久久久九九精品影院| 久久国产精品影院| 我要搜黄色片| 伦理电影免费视频| 一a级毛片在线观看| 99热这里只有精品一区 | 老司机深夜福利视频在线观看| a级毛片a级免费在线| 精品一区二区三区av网在线观看| 精品乱码久久久久久99久播| 国产久久久一区二区三区| 久久精品aⅴ一区二区三区四区| 老司机午夜福利在线观看视频| 午夜福利18| 国产成人欧美在线观看| 村上凉子中文字幕在线| 很黄的视频免费| 波多野结衣高清无吗| 无人区码免费观看不卡| 国产精品影院久久| 狂野欧美白嫩少妇大欣赏| 欧美一区二区精品小视频在线| 亚洲一卡2卡3卡4卡5卡精品中文| 不卡一级毛片| 后天国语完整版免费观看| 午夜两性在线视频| 国产成人影院久久av| 一边摸一边做爽爽视频免费| 18美女黄网站色大片免费观看| 亚洲欧美精品综合一区二区三区| 免费搜索国产男女视频| 国语自产精品视频在线第100页| 男女视频在线观看网站免费 | 国产亚洲精品久久久久5区| 国产亚洲精品一区二区www| 久久久国产精品麻豆| 色综合婷婷激情| 天天添夜夜摸| 欧美乱色亚洲激情| 一二三四社区在线视频社区8| 91老司机精品| 国产精品一区二区三区四区久久| 啦啦啦观看免费观看视频高清| 亚洲精品色激情综合| 国产精品电影一区二区三区| 亚洲中文av在线| 91在线观看av| 在线观看美女被高潮喷水网站 |