• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials*

    2021-07-30 07:40:58XiangPingJiang蔣相平YiQiao喬藝andJunpengCao曹俊鵬
    Chinese Physics B 2021年7期

    Xiang-Ping Jiang(蔣相平) Yi Qiao(喬藝) and Junpeng Cao(曹俊鵬)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China 2

    School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4Peng Huanwu Center for Fundamental Theory,Xian 710127,China

    Keywords: non-Hermitian physics,Majorana zero modes,transfer matrix

    1. Introduction

    Exploring topological phases of matter in condensed matter physics has become an active topic of research over the last decade.[1-3]Among various novel phases, the topological superconducting phases (TSCs) characterized by bound Majorana edge modes have been intensively studied and been predicted in several compounds.[4,5]They are of great interest from the perspective of topological quantum computing because of their non-Abelian braiding statistics and the natural basis for topological qubits. The prototypical model for studying one-dimensional (1D) TSCs related with the effective spinless p-wave superconducting wire system is the Kitaev chain.[6]With the suitable model parameters, the Majorana zero modes(MZMs)arise at the ends of the chain under open boundary condition(OBC)and the system is in the topological nontrivial phase,which can be characterized by a bulk topological invariant. This is the result of bulk-edge correspondence which indicates that a nontrivial topological invariant in the bulk must correspond a localized edge mode that only appears at the boundaries in the thermodynamic limit.

    Beyond the topological aspects,the study of Anderson localization in the 1D systems is also an interesting topic.[7-12]Although the TSCs are protected by the particle-hole symmetry, the topological phases could be destroyed by the strong disorders and change into the topological trivial Anderson localized phases. Besides the random disorder, it is found that the quasiperiodic potentials or the incommensurate structures can also induce the Anderson localization.[13,14]In the 1D Anderson model,the infinitesimal random disorders can localize all the states.While in the 1D incommensurate Aubry-Andr′e-Harper(AAH)model,the Anderson localization requires that the strength of the quasiperiodic potential is finite which is a direct result of the self-duality of the system.

    After that, the competition between the Anderson localization and the topological superconducting phase draws many concerns.[15-20]For example, it is found that the MZMs are robust in the 1D p-wave SC systems with correlated or uncorrelated disorders. The transition from the TSC phase to the Anderson localized phase is obtained and the corresponding critical values are derived analytically. Meanwhile, the transition is also accompanied with the Anderson localizationdelocalization processes.

    Recently, there has been growing interest in the non-Hermitian(NH)topological phases.[21-25]Generally,the non-Hermiticity is achieved by introducing the nonreciprocal hopping processes or the gain and loss terms.The non-Hermiticity can induce many exotic phenomena such as the complexenergy gaps, non-Hermitian skin modes, and breakdown of the bulk-boundary correspondence based on the traditional Bloch band theory. All these pictures do not have the Hermitian counterparts. Moreover, when the non-Hermiticity is involved in the topological phases,the standard 10-fold Altland-Zirnbauer (AZ) symmetry class of the topological insulators and superconductors is generalized to the 38-fold Bernard-LeClair(BL)symmetry class.[22,23]These 38 BL symmetries can completely describe the intrinsic non-Hermitian topological phases. Obviously,it is very important to study the physics of non-Hermiticity meeting the 1D TSCs, and many interesting works such asPT-symmetric TSCs,[26,27]Kitaev chain with gain and loss terms,[28,29]nonreciprocal hopping and pwave pairing[30,31]have been done. All these results show that the MZMs in the topological phases are stable even for the NH systems.

    In this paper, we study the topological properties of the 1D NH Kitaev chain with either the periodic or the quasiperiodic potentials by using the transfer matrix derived from the equations of motion. We obtain the energy spectrum and the spatial distributions of the wavefunctions. Based on them,we obtain the phase transition from the TSCs to the topological trivial phase as well as the Anderson localization phase in this NH system and give the boundaries of different phases analytically. We also discuss the Majorana edge modes induced by the non-Hermiticity.

    The rest of the paper is organized as follows.In Section 2,we introduce the model Hamiltonian and calculate the transfer matrix. The definition of the related topological invariant is also given. In Section 3,we study the energy spectrum of the system with NH periodic potential under the OBC.The MZMs in the topological nontrivial phase are obtained explicitly. In Section 4,we consider the system with NH quasiperiodic potential. The topological phase and Anderson localization are investigated. The corresponding phase boundaries are computed. Section 5 devotes to a summary.

    2. The model Hamiltonian and transfer matrix approach

    Turning to our starting point, we consider a finite 1D wire of spinless electrons exhibiting p-wave superconductivity,which is described by the following Hamiltonian:[15,16]

    whereNis the number of sites,tis the nearest-neighbor hopping and set as 1 in this paper,fnandf?nare the annihilation and creation operators of electrons on the siten,respectively,Δis the superconducting pairing parameter,andμnis the onsite chemical potential. Ifμnis complex, Hamiltonian (1) is NH.The boundary condition is the open one.

    Obviously, in order to identify the MZMs, we only need to consider the case ofw=0,which leads to the fact that the equations in Eq. (2) are decoupled. Then the matrix form of Eq.(2)reads

    HereAnis the transfer matrix. The similar expressions can be obtained for the set of{βn}and the corresponding transfer matrixBnis related withAnasBn=A-1n. The existence of MZMs requires that theαn(orβn)should be normalizable,i.e., ∑n|αn|2(or ∑n|βn|2) should be finite. The behaviors of MZMs at the boundaries of a finite chain are determined by the full transfer matrixA=∏Nn=1An, which has two eigenvaluesλ1andλ2. If the periodicity of the system isp,then the properties of the edge modes are determined byA=ApAp-1···A1.Denote the number of eigenvalues of the matrixAless than 1 in the magnitude asnf. Ifnf=2, there will be an a-mode localized at the left end and a b-mode at the right end of the lattice. Ifnf=0,the two modes will be localized at the opposite ends. Ifnf=1,there do not exist the MZMs because theαn(orβn)can not be normalized.

    The topological invariant related with the system(1)is

    From the above discussions, we know that the system is in the topological phase (T phase) ifν=-1 while is in the nontopological phase (N phase) ifν=1. The topological invariant can also be given asν=-sgn[f(1)f(-1)], wheref(z) = det(A-zI) is the characteristic polynomial of full transfer matrixA. The topology of the system depends on the magnitude ofΔand we takeΔto be positive.From Eq.(3),we know that det|A|<1. Thus the two eigenvalues of the transfer matrixAsatisfy|λ1λ2|<1, which means that if|λ1|<|λ2|,then|λ1|<1 andnfis completely determined by the quantity|λ2|. This enable us to write the topological invariant (4) asν=sgn(ln|λ2|). Based on this topological invariant, we can study the topological properties of the NH Kitaev chain with complex periodic(Section 3)or quasiperiodic(Section 4)potentials.

    3. Non-Hermitian periodic potentials

    In this section, we focus on the Kitaev chain with NH periodic potentials. The non-Hermiticity is introduced by the complex chemical potentialμn. We consider following four typical patterns. (1)μn= iV, that is the chemical potential is pure imaginary. (2)μ2j-1= iVandμ2j=-iV,

    wherej=1,2,...,N/2 andNis even, which means that the chemical potential takes the alternate values and the corresponding period is 2. (3)μ4l-3=μ4l-2=μ4l-1= iVandμ4l=-iV. (4)μ4l-3=μ4l-2= iVandμ4l-1=μ4l=-iV.Herel=1,2,...,N/4 andNis the multiple of 4. Thus the period of the chemical potential in cases(3)and(4)is 4.

    We first consider theμn=iVpattern,where all the sites of the NH Kitaev chain are added with an uniform imaginary potential. Usually, the eigenenergies of the system are complex. The absolute values of eigenenergies|E| of the system withΔ=0.5 versus the strengthVof the NH potential are shown in Fig. 1(a). From it, we see that the MZMs denoted as the red points indeed exist in this NH system and the system is in the topological nontrivial phase when|V|<1. A pair of Majorana edge states emerges and satisfies the relations [H,?a]=[H,?b]=0. Due to the non-Hermiticity,??a/=?aand??b/=?b. These anomalous statistics contrast with the conventional ones for the Majorana fermions in the Hermitian counterpart,which are originated from the distinction between right and left eigenstates of the NH system.

    Fig.1.The absolute values of eigenenergies|E|of the system versus the strength V of NH potential. The red points represent the MZMs. The system is in the topological phase. (a)Uniform potential μn = iV. (b)Period-2 potential (iV,-iV). (c) Period-4 potential (iV,iV,iV,-iV).(d)Period-4 potential(iV,iV,-iV,-iV). Here N=100 and Δ =0.5.

    From the analysis of the eigenvalues of the transfer matrixAn(3) and according to the topological invariant (4), we obtain that the system is in the topological nontrivial phase when the strength of the NH potential satisfies|V|<2Δ, while the system is in the topological trivial phase and the boundary localized MZMs disappear if|V|>2Δ. The phase diagram is shown in Fig.2(a). The critical value of the topological phase transition is|Vc|=2Δ. The MZMs appear if the p-wave pairingΔ/=0.

    Fig. 2. Phase diagrams of the system, where T means the topological nontrivial phase and N means the topological trivial phase. (a)Uniform potential iV. (b) Period-2 potential (iV,-iV). (c) Period-4 potential (iV,iV,iV,-iV). (d) Period-4 potential (iV,iV,-iV,-iV).The topological phase boundaries are (a) Δ =|V|/2, (b) |V|=2, (c)Δ2=V2/2-1,(d)Δ =V2/4.

    For the period-2 NH potential (iV,-iV), the gain and loss in the system are balanced because the chemical potential takes the alternative values. From the transfer matrixA=A2A1, whereA1andA2take the forms of Eq. (3)with the replacing ofμnby iVand-iVfor the first matrix element, respectively, we obtain the topological invariant asν=-sgn(4-V2). The system is in the topological phase and the corresponding topological invariant isν=-1 if|V|<2 for arbitraryΔ/=0. The absolute values of the eigenenergies of the system withΔ=0.5 are shown in Fig.1(b)and the phase diagram is shown in Fig. 2(b). These results are consist with the previous ones obtained by using different methods.[27,29]

    Next, we consider the more complicated pattern(iV,iV,iV,-iV), where the period of the NH potential is 4.The absolute values of the energy spectrum are shown in Fig. 1(c) and the corresponding phase diagram is shown in Fig.2(c). From them,we see that the MZMs exist in the topological phase. The full transfer matrix isA=A4A3A2A1,

    where the value of chemical potential inA1=A2=A3is iVand that inA4is-iV. According to the above discussion in Section 2,the topological invariant isν=-sgn(4(1+Δ2)2-V4). Then the regime of the topological phase is determined from the full transfer matrix in one period and the result isΔ2>V2/2-1. The transition from the topological nontrivial phase to the normal phase happens at the critical valuesΔ2=V2/2-1. Thus,the strong non-Hermiticity will destroy the MZMs.

    For the pattern (iV,iV,-iV,-iV), the absolute values of the energy spectrum are shown in Fig. 1(d) and the corresponding phase diagram is shown in Fig. 2(d). The full transfer matrix isA=A4A3A2A1,where the value of chemical potential inA1=A2is iVand that inA3=A4is-iV. Thus the topological invariant isν=-sgn(16Δ2-V4). The topological regime isΔ2>V2/4 and the boundaries of different phases areΔ2=V2/2-1. The above results are summarized in Table 1.

    Table 1. Criteria for the topological phases for a given NH periodic potential,where Δ >0.

    4. Non-Hermitian quasiperiodic potential

    Now,we consider the Kitaev chain with the NH quasiperiodic potential

    The absolute values of the eigenenergies|E|of the system versus different potential strengthVwith the model parametersΔ=0.5,h=1,andN=100 are shown in Fig.3(a). We see that the MZMs indeed exist and the system is in the topological non-trivial phase in the regime ofV <Vc. Thus the MZMs are robust against the existence of the NH quasiperiodic potential in certain parameter regime. The distributions of right and left MZM wavefunctions in the topological phase withV=0.5 are shown in Fig.3(b). From it,we see that the Majorana edge states are located at the ends of the chain. IfVis larger than the critical valueVc,the MZMs disappear and the system is in the Anderson localization phase. At the critical pointVc, the topological phase transition from the superconducting to the Anderson localization arises. The boundaries of different phases can be analytically calculated from the introduced transfer matrix as well as the topological invariant.

    Fig.3. (a)The absolute values of eigenenergies|E|versus the strengths of quansiperiodic potential V. The MZMs denoted by the red points exist in the topological nontrivial phase regime V <Vc,where Vc is the critical value. If V >Vc, the MZMs vanish and the system enters into the topological trivial phase. (b)The spatial distributions of wavefunctions ? for the MZMs in the topological phase with V =0.5. We see that the Majorana edge states are located at the ends of the chain. Here N=100,Δ =0.5,and h=1.

    The transfer matrixAngiven by Eq.(3)with the constraint 0<Δ <1 can be written as

    Ifγ(V,h,Δ)>0,the system is localized and in the topological trivial phase while ifγ(V,h,Δ)=0,the system is extended and in the topological nontrivial phase.[36,37]Thus the topological properties of the system can be characterized by the Lyapunov exponent(9).

    The Lyapunov exponents of the system withΔ=0.5 versus the different values of NH phase factorhare shown in Fig.4. From it,we see that the Lyapunov exponent is zero and the system is in the topological phase ifV <Vc. Meanwhile,with the increase ofh,the values of the phase transition pointVcare decreased. These results are consist with those obtained from Fig.3.the system. There exists a phase transition from the topological non-trivial state to the topological trivial state. The boundaries of different phases are determined analytically. For the NH incommensurate quasiperiodic potential, the topological phase transition is accompanied by the Anderson localizationdelocalization transition.

    Fig.4. The Lyapunov exponent γ(V,h,Δ)of the system with Δ =0.5.

    Next, we shall determine the boundaries of different phases. From Eq. (10) and according to the above analysis,we obtain the critical values of phase transition as

    The Lyapunov exponent and topological properties of the system withΔ >1 can be obtained by taking the transformationμn →(-1)nμn/ΔandΔ →1/Δ.[15]Thus,we obtain the complete phase diagram of the systems and show it in Fig.5.The topological phase is in the regime ofΔ >Veh/2-1 while the localization phase is in the regime ofΔ <Veh/2-1.

    Fig. 5. The phase diagram of the Kitaev chain with NH quasiperiodic potential. Here h=1 and the phase boundaries are determined by Eq.(11).

    5. Summary

    In summary, we investigate the topological properties of the 1D Kitaev model with NH periodic and quasiperiodic potentials. From the analysis of the energy spectrum and using the transfer matrix method,we find that the MZMs indeed exist in the system within certain model parameter regimes and are robust against the NH potentials. With the help of the distribution of the wavefunctions, we obtain that the Majorana edge states are located at the ends of the chain. We also calculate the topological invariant and obtain the phase diagram of

    精品国产乱码久久久久久小说| 麻豆精品久久久久久蜜桃| 欧美日韩亚洲高清精品| 91精品三级在线观看| 精品福利永久在线观看| 又粗又硬又长又爽又黄的视频| 久久国产亚洲av麻豆专区| 热re99久久精品国产66热6| 美女中出高潮动态图| 精品国产一区二区三区久久久樱花| 69精品国产乱码久久久| 日本av手机在线免费观看| 亚洲欧美日韩另类电影网站| 你懂的网址亚洲精品在线观看| 91aial.com中文字幕在线观看| 99久久中文字幕三级久久日本| 国产成人免费无遮挡视频| 婷婷色av中文字幕| 日本黄色日本黄色录像| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 在线 av 中文字幕| h视频一区二区三区| 国产有黄有色有爽视频| 桃花免费在线播放| 国产精品久久久久久av不卡| 成人二区视频| 国产毛片在线视频| 日韩av不卡免费在线播放| 一级片'在线观看视频| 国产在视频线精品| 国产成人精品一,二区| 久久国产精品大桥未久av| 波多野结衣一区麻豆| 天堂8中文在线网| 国产精品免费视频内射| 亚洲精华国产精华液的使用体验| 成人手机av| 制服人妻中文乱码| 黄色 视频免费看| 国产伦理片在线播放av一区| 亚洲熟女精品中文字幕| 久久国产亚洲av麻豆专区| 在线亚洲精品国产二区图片欧美| 亚洲成人av在线免费| 国产精品秋霞免费鲁丝片| 观看美女的网站| 黄色毛片三级朝国网站| 飞空精品影院首页| 国产精品久久久av美女十八| 久久人妻熟女aⅴ| 菩萨蛮人人尽说江南好唐韦庄| 国产1区2区3区精品| 日韩中文字幕欧美一区二区 | a级毛片黄视频| 天天躁狠狠躁夜夜躁狠狠躁| 中文天堂在线官网| 亚洲国产精品一区三区| 18禁动态无遮挡网站| 免费大片黄手机在线观看| 哪个播放器可以免费观看大片| 久久久久久久久免费视频了| 晚上一个人看的免费电影| 亚洲在久久综合| 成人黄色视频免费在线看| 色视频在线一区二区三区| 99热全是精品| 成人免费观看视频高清| 色吧在线观看| 在现免费观看毛片| 男人添女人高潮全过程视频| 亚洲av中文av极速乱| 91久久精品国产一区二区三区| 亚洲国产色片| 日韩电影二区| 一区二区三区精品91| 9色porny在线观看| 韩国精品一区二区三区| 亚洲欧美精品自产自拍| 免费av中文字幕在线| 国产黄色视频一区二区在线观看| 久久毛片免费看一区二区三区| 亚洲一区二区三区欧美精品| 观看美女的网站| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 又粗又硬又长又爽又黄的视频| 曰老女人黄片| 高清视频免费观看一区二区| 欧美日韩一级在线毛片| 高清欧美精品videossex| 天天躁狠狠躁夜夜躁狠狠躁| 这个男人来自地球电影免费观看 | 国产日韩欧美视频二区| 大香蕉久久网| 可以免费在线观看a视频的电影网站 | 老汉色∧v一级毛片| 国产成人一区二区在线| 香蕉国产在线看| xxxhd国产人妻xxx| 九九爱精品视频在线观看| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 亚洲成人手机| 久久婷婷青草| 日韩中字成人| 大片免费播放器 马上看| 亚洲少妇的诱惑av| 亚洲精品自拍成人| 啦啦啦在线免费观看视频4| 三上悠亚av全集在线观看| 久久精品人人爽人人爽视色| 大片电影免费在线观看免费| 久久久久久免费高清国产稀缺| 国产探花极品一区二区| 亚洲成国产人片在线观看| 欧美国产精品va在线观看不卡| h视频一区二区三区| 国产精品国产三级专区第一集| 国产精品女同一区二区软件| 亚洲国产成人一精品久久久| 亚洲一码二码三码区别大吗| 国产人伦9x9x在线观看 | 国产97色在线日韩免费| 最近的中文字幕免费完整| 宅男免费午夜| 国产极品粉嫩免费观看在线| 久久国内精品自在自线图片| 午夜福利一区二区在线看| 大香蕉久久成人网| 久久国产亚洲av麻豆专区| 午夜福利视频在线观看免费| 最新的欧美精品一区二区| 综合色丁香网| tube8黄色片| 美女大奶头黄色视频| 久久久久人妻精品一区果冻| 亚洲av在线观看美女高潮| 亚洲经典国产精华液单| 免费久久久久久久精品成人欧美视频| 飞空精品影院首页| 精品国产露脸久久av麻豆| 国产精品欧美亚洲77777| 青春草国产在线视频| 欧美日本中文国产一区发布| 欧美精品国产亚洲| 性色av一级| 女性生殖器流出的白浆| 午夜激情久久久久久久| 日韩中文字幕欧美一区二区 | 熟女av电影| 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 一级爰片在线观看| 丝袜人妻中文字幕| 丰满少妇做爰视频| 熟女av电影| 日韩精品有码人妻一区| 下体分泌物呈黄色| 国产精品.久久久| 中国三级夫妇交换| 热re99久久精品国产66热6| 亚洲av电影在线进入| 高清av免费在线| 国产亚洲一区二区精品| 寂寞人妻少妇视频99o| 国产亚洲最大av| 欧美日韩亚洲高清精品| 亚洲欧美一区二区三区黑人 | 国产精品.久久久| 精品久久蜜臀av无| 午夜精品国产一区二区电影| 美女大奶头黄色视频| 久久97久久精品| 午夜福利视频在线观看免费| 69精品国产乱码久久久| 五月天丁香电影| 黄片小视频在线播放| 日韩中字成人| a 毛片基地| 国产一区二区三区综合在线观看| 日韩av免费高清视频| 久久久久久免费高清国产稀缺| 欧美最新免费一区二区三区| 在线观看国产h片| 99久久人妻综合| 人成视频在线观看免费观看| 日本av手机在线免费观看| 一个人免费看片子| 一区二区三区精品91| 丰满少妇做爰视频| 不卡视频在线观看欧美| www.精华液| 香蕉精品网在线| 精品酒店卫生间| 天天操日日干夜夜撸| 久久精品国产亚洲av天美| 宅男免费午夜| 成人免费观看视频高清| 日产精品乱码卡一卡2卡三| 在线观看三级黄色| 成人影院久久| 在线观看www视频免费| 黑丝袜美女国产一区| www.熟女人妻精品国产| 亚洲av在线观看美女高潮| 母亲3免费完整高清在线观看 | 精品亚洲乱码少妇综合久久| 青草久久国产| 丝袜脚勾引网站| 看十八女毛片水多多多| 成人漫画全彩无遮挡| 日日啪夜夜爽| 波多野结衣一区麻豆| www日本在线高清视频| 中文字幕人妻丝袜一区二区 | 欧美 亚洲 国产 日韩一| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 麻豆精品久久久久久蜜桃| 99国产综合亚洲精品| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 国产精品成人在线| 一二三四在线观看免费中文在| 五月开心婷婷网| 有码 亚洲区| 18禁观看日本| 国产精品成人在线| 一二三四在线观看免费中文在| 亚洲人成77777在线视频| 黑人猛操日本美女一级片| 日日啪夜夜爽| 99热国产这里只有精品6| 一本大道久久a久久精品| 久久精品国产亚洲av涩爱| 欧美日韩亚洲国产一区二区在线观看 | 伊人亚洲综合成人网| 亚洲,一卡二卡三卡| 国产淫语在线视频| 女人精品久久久久毛片| 三上悠亚av全集在线观看| 男女啪啪激烈高潮av片| 丰满少妇做爰视频| www.av在线官网国产| 欧美少妇被猛烈插入视频| 亚洲伊人色综图| 免费人妻精品一区二区三区视频| 国产成人aa在线观看| 欧美最新免费一区二区三区| 日日爽夜夜爽网站| 99re6热这里在线精品视频| av又黄又爽大尺度在线免费看| 麻豆乱淫一区二区| 高清黄色对白视频在线免费看| 国产成人免费无遮挡视频| 午夜免费男女啪啪视频观看| 日韩中文字幕视频在线看片| 如何舔出高潮| 亚洲人成电影观看| 国产 精品1| 久久国产精品大桥未久av| 色视频在线一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲国产av影院在线观看| 亚洲三区欧美一区| 天天躁夜夜躁狠狠久久av| 国产免费一区二区三区四区乱码| 亚洲男人天堂网一区| 日韩av免费高清视频| 伊人久久国产一区二区| 日韩伦理黄色片| 少妇人妻精品综合一区二区| 熟女电影av网| 国产免费一区二区三区四区乱码| 性高湖久久久久久久久免费观看| 啦啦啦中文免费视频观看日本| 青春草视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| av免费在线看不卡| 嫩草影院入口| 免费黄网站久久成人精品| 女性生殖器流出的白浆| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻熟女乱码| 亚洲av综合色区一区| 欧美精品人与动牲交sv欧美| 色婷婷久久久亚洲欧美| 亚洲第一区二区三区不卡| 日日摸夜夜添夜夜爱| 国产不卡av网站在线观看| 少妇的丰满在线观看| 久热久热在线精品观看| 亚洲色图 男人天堂 中文字幕| 97人妻天天添夜夜摸| 国产有黄有色有爽视频| 午夜老司机福利剧场| 亚洲精品美女久久av网站| 国产精品一区二区在线不卡| av视频免费观看在线观看| 老司机影院成人| 欧美+日韩+精品| av一本久久久久| 美女中出高潮动态图| 最近最新中文字幕免费大全7| 久久久久久久国产电影| 最黄视频免费看| 亚洲五月色婷婷综合| 国产成人精品久久二区二区91 | 日韩 亚洲 欧美在线| 久久人妻熟女aⅴ| av国产久精品久网站免费入址| 欧美激情极品国产一区二区三区| 色视频在线一区二区三区| 18+在线观看网站| 免费久久久久久久精品成人欧美视频| 久久久久久久亚洲中文字幕| 国产精品亚洲av一区麻豆 | 亚洲成色77777| 啦啦啦中文免费视频观看日本| 尾随美女入室| 国产日韩一区二区三区精品不卡| 蜜桃在线观看..| 一边亲一边摸免费视频| 男女无遮挡免费网站观看| 桃花免费在线播放| 久久久国产欧美日韩av| 亚洲精品乱久久久久久| 天天影视国产精品| av又黄又爽大尺度在线免费看| 国产日韩欧美亚洲二区| 日日撸夜夜添| 国产野战对白在线观看| 亚洲av.av天堂| 亚洲国产精品国产精品| 国产一区二区在线观看av| 国产爽快片一区二区三区| 日本av免费视频播放| 侵犯人妻中文字幕一二三四区| 男的添女的下面高潮视频| 久久国内精品自在自线图片| 最近最新中文字幕大全免费视频 | 黄色毛片三级朝国网站| 久久久国产精品麻豆| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 两个人看的免费小视频| 精品少妇黑人巨大在线播放| 国产av国产精品国产| 亚洲精品美女久久av网站| 黄色怎么调成土黄色| 亚洲第一青青草原| 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 天堂8中文在线网| 高清视频免费观看一区二区| 久久青草综合色| 国产探花极品一区二区| 免费观看无遮挡的男女| 五月开心婷婷网| 国产1区2区3区精品| 国产成人精品福利久久| 国产成人a∨麻豆精品| 五月开心婷婷网| 91精品国产国语对白视频| www.av在线官网国产| 啦啦啦在线免费观看视频4| 久久鲁丝午夜福利片| 亚洲色图综合在线观看| av有码第一页| 欧美日韩国产mv在线观看视频| 国产男女超爽视频在线观看| 一级毛片我不卡| 久久久久久久久久人人人人人人| 欧美人与性动交α欧美软件| 大话2 男鬼变身卡| 久久久久精品性色| 男女边摸边吃奶| 狂野欧美激情性bbbbbb| 18在线观看网站| 久久精品夜色国产| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的| 这个男人来自地球电影免费观看 | 久久av网站| 在线观看国产h片| 免费在线观看完整版高清| 青青草视频在线视频观看| 精品人妻熟女毛片av久久网站| 精品少妇久久久久久888优播| 亚洲久久久国产精品| 观看美女的网站| 在线天堂中文资源库| 美女福利国产在线| 中文字幕另类日韩欧美亚洲嫩草| 国产片特级美女逼逼视频| 欧美精品人与动牲交sv欧美| 侵犯人妻中文字幕一二三四区| 免费高清在线观看视频在线观看| 欧美 日韩 精品 国产| 婷婷色综合大香蕉| 亚洲少妇的诱惑av| 午夜激情久久久久久久| kizo精华| 日日爽夜夜爽网站| 丝袜美腿诱惑在线| 曰老女人黄片| 亚洲一区二区三区欧美精品| 蜜桃国产av成人99| 视频区图区小说| 男女午夜视频在线观看| 亚洲精品国产一区二区精华液| 成人午夜精彩视频在线观看| 黄片播放在线免费| 色94色欧美一区二区| 午夜91福利影院| 国产熟女欧美一区二区| 97人妻天天添夜夜摸| 最新的欧美精品一区二区| 亚洲精品在线美女| 国产精品秋霞免费鲁丝片| 国产亚洲精品第一综合不卡| www.精华液| 国产精品不卡视频一区二区| 国产成人免费无遮挡视频| 欧美日韩综合久久久久久| 2021少妇久久久久久久久久久| 成人毛片a级毛片在线播放| 亚洲精品日本国产第一区| 伊人亚洲综合成人网| 国产乱来视频区| 五月伊人婷婷丁香| 久久精品国产鲁丝片午夜精品| 日韩三级伦理在线观看| 秋霞伦理黄片| 国产一区二区 视频在线| 不卡视频在线观看欧美| 精品久久久精品久久久| 电影成人av| 在线观看www视频免费| 最新中文字幕久久久久| 精品亚洲成国产av| 男女高潮啪啪啪动态图| 亚洲精品美女久久久久99蜜臀 | 色视频在线一区二区三区| 成人免费观看视频高清| 亚洲四区av| 日韩av在线免费看完整版不卡| 建设人人有责人人尽责人人享有的| 欧美日韩精品成人综合77777| 国产乱人偷精品视频| 国产精品人妻久久久影院| 久久毛片免费看一区二区三区| 黄色怎么调成土黄色| 免费高清在线观看日韩| 黄色视频在线播放观看不卡| 街头女战士在线观看网站| 狠狠精品人妻久久久久久综合| av片东京热男人的天堂| 人妻 亚洲 视频| 欧美日韩视频高清一区二区三区二| 久久久国产精品麻豆| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 国产精品人妻久久久影院| 热99久久久久精品小说推荐| 久久99热这里只频精品6学生| 国产男女超爽视频在线观看| 国产 精品1| 国产精品一国产av| 国产日韩欧美亚洲二区| 色吧在线观看| 波多野结衣av一区二区av| 日本vs欧美在线观看视频| 国产一级毛片在线| 午夜日本视频在线| 性色avwww在线观看| 免费大片黄手机在线观看| 在线观看国产h片| 亚洲视频免费观看视频| 国产高清国产精品国产三级| 大香蕉久久网| 男人爽女人下面视频在线观看| 国产极品天堂在线| 久久人人97超碰香蕉20202| 爱豆传媒免费全集在线观看| 亚洲,欧美精品.| 亚洲婷婷狠狠爱综合网| 精品人妻偷拍中文字幕| 欧美日韩亚洲高清精品| 国产精品人妻久久久影院| 免费看不卡的av| 亚洲,一卡二卡三卡| 久久人妻熟女aⅴ| 三级国产精品片| 日韩精品有码人妻一区| 久久婷婷青草| 高清不卡的av网站| 制服丝袜香蕉在线| 国产亚洲一区二区精品| 国产97色在线日韩免费| 亚洲第一青青草原| 人妻人人澡人人爽人人| 亚洲一区二区三区欧美精品| av线在线观看网站| 男女高潮啪啪啪动态图| 亚洲成色77777| 午夜激情av网站| 少妇被粗大猛烈的视频| 久久国产精品男人的天堂亚洲| 青春草亚洲视频在线观看| 波野结衣二区三区在线| 777久久人妻少妇嫩草av网站| 最黄视频免费看| 精品一区二区三卡| 亚洲色图综合在线观看| 最近最新中文字幕大全免费视频 | 9热在线视频观看99| 中文字幕人妻熟女乱码| 亚洲三级黄色毛片| 久久久久久久精品精品| 亚洲国产精品一区二区三区在线| 欧美亚洲日本最大视频资源| 亚洲国产av新网站| 成人午夜精彩视频在线观看| 丝袜美足系列| 久久久亚洲精品成人影院| 纯流量卡能插随身wifi吗| 高清av免费在线| www.av在线官网国产| 国产精品久久久久久精品电影小说| 婷婷色综合大香蕉| 精品一品国产午夜福利视频| 亚洲,一卡二卡三卡| 亚洲精品aⅴ在线观看| 国产一级毛片在线| av网站在线播放免费| 不卡视频在线观看欧美| 美女国产高潮福利片在线看| 美女主播在线视频| 青春草视频在线免费观看| 亚洲精品av麻豆狂野| 美女大奶头黄色视频| 欧美成人午夜免费资源| 国产精品 欧美亚洲| 国产成人精品在线电影| 欧美成人午夜精品| 一本色道久久久久久精品综合| 亚洲第一青青草原| 超碰成人久久| 五月伊人婷婷丁香| 秋霞伦理黄片| 色播在线永久视频| 亚洲精品视频女| 新久久久久国产一级毛片| 国产一区二区 视频在线| 免费观看av网站的网址| 欧美 日韩 精品 国产| 国产精品免费大片| 亚洲av电影在线进入| 国产日韩欧美视频二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲成av片中文字幕在线观看 | 久久久国产精品麻豆| 亚洲精品成人av观看孕妇| 色吧在线观看| 不卡视频在线观看欧美| 人妻少妇偷人精品九色| 极品人妻少妇av视频| 18禁国产床啪视频网站| 不卡av一区二区三区| 哪个播放器可以免费观看大片| 成年动漫av网址| 色播在线永久视频| 久久精品亚洲av国产电影网| 欧美av亚洲av综合av国产av | 久久久久久久国产电影| av一本久久久久| 一级毛片黄色毛片免费观看视频| 美女视频免费永久观看网站| 有码 亚洲区| 国产高清不卡午夜福利| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 国产在线免费精品| 国产成人aa在线观看| av免费在线看不卡| 日本黄色日本黄色录像| 亚洲欧美一区二区三区国产| 成人国产av品久久久| 最近中文字幕2019免费版| 另类精品久久| 国产成人精品婷婷| 国产精品一区二区在线观看99| 韩国av在线不卡| xxx大片免费视频| 久久久国产精品麻豆| 国产亚洲一区二区精品| 国产亚洲欧美精品永久| 亚洲av电影在线进入| 国产无遮挡羞羞视频在线观看| 欧美精品国产亚洲| 亚洲人成77777在线视频| 国产精品久久久久久精品古装| 又粗又硬又长又爽又黄的视频| 亚洲av电影在线进入| 妹子高潮喷水视频| 国产精品 欧美亚洲| 你懂的网址亚洲精品在线观看| 久久久久久人人人人人| 搡老乐熟女国产| 欧美xxⅹ黑人| 亚洲av在线观看美女高潮| 日本av手机在线免费观看|