• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature*

    2021-07-30 07:40:52RuiHuang黃瑞TianLan蘭天ChongLi李沖JingLi李景andZhiyongWang王智勇
    Chinese Physics B 2021年7期
    關(guān)鍵詞:蘭天智勇

    Rui Huang(黃瑞) Tian Lan(蘭天) Chong Li(李沖) Jing Li(李景) and Zhiyong Wang(王智勇)

    1Institute of Advanced Technology on Semiconductor Optics&Electronics,Institute of Laser Engineering,Beijing University of Technology,Beijing 100124,China

    2College of Microelectronics,Beijing University of Technology,Beijing 100124,China

    Keywords: surface-activation bonding,energy-dispersive x-ray spectroscopy,intermix,point defects

    1. Introduction

    Gallium arsenide (GaAs) is an attractive semiconductor material with excellent physical, chemical and mechanical properties. Bulk GaAs is a direct bandgap semiconductor material with a cubic zinc-blende structure, a lattice constant of 5.6419 ?A and a bandgap of 1.428 eV at room temperature.[1]Due to the high electron mobility of GaAs,its electron mobility is about five times higher than that of Si,and its operational speed is much higher than those of Si devices, so it can be used to fabricate high-speed or microwave semiconductor devices.[2]GaAs is also used to make hightemperature-resistant,radiation-resistant or low-noise devices,near-infrared light-emitting diodes (LEDs) and laser diodes(LDs), as well as photocathode materials.[3-6]More importantly, it has become the basic material for the future development of ultra-high-speed semiconductor integrated circuits. Over the last ten years, with the development of molecular-beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), it has become possible to fabricate heterojunction and superlattice structures on GaAs substrates. Power electronic semiconductor devices, such as high-power electron-mobility transistor(HEMTs)and heterojunction bipolar transistors(HBTs),have engendered broader prospects for the application of GaAs material.[7,8]

    Traditional silicon-based substrates (such as SiO2-on-Si and Si) are suitable for micro/nano manufacturing technologies. The combination of single-crystal GaAs with silicon oxide can produce a GaAs-on-insulator(GaAsOI,GaAs/SiO2/Si)structure, which can replace the Si-on-insulator (SOI) structure, improve the modulation speed and reduce parasitic effects.[9]The formation of a GaAs/Si structure can create ohmic interfaces which are beneficial to the fabrication of Si-based GaAs solar cells.[10-12]When GaAs is epitaxially grown on the surface of a Si wafer at temperatures between 500°C and 700°C, crystal defects such as dislocations and cracks appear. These defects reduce the device’s lifetime and affect its performance. Surface-activated bonding (SAB) can overcome the difficulties caused by the lattice and thermal expansion coefficient mismatches.[13]Yeoet al.[14]reported that the highest bonding energy of GaAs/Si was 478 mJ/m2under Ar fast atom beam(FAB)treatment conditions of 30 s, 120 mTorr and 200 W. Additionally, in order to fabricate low-resistance GaAs/Si heterointerfaces, Yutaka Ohnoet al.[15]optimized the surface-activation bonding and subsequent annealing conditions. In this method, the wafer surface was irradiated by an FAB of Ar before bonding. Heterojunctions realized by SAB,such as Si/GaAs,[14]Si/InP,[16]Si/SiC,[17]Si/GaN,[18]GaAs/GaN,[19]LiNbO3/SiC,[20]and diamond/Si,[21]have been widely studied. In addition, the electrical properties of the bonding interface can be changed by annealing.[22]

    Aberration-corrected scanning transmission electron microscopy (AC-STEM) can be used to study the nanostructures at the bonding interface. It has been reported that an amorphous-type transition layer can be observed at the bonding interface.[23,24]Although the electrical properties of the interface are likely to be strongly influenced by its chemical properties,[22]the chemical properties at the interface or the properties of the chemical atomic bonds have not been fully understood. Consequently, it is necessary to study the chemical properties of the chemical atomic bonds at the GaAs/SiO2/Si and GaAs/Si bonding interfaces at the atomic level.

    In this work, bonding interfaces between GaAs/SiO2/Si and GaAs/Si have been realized by surface-activated bonding(SAB) and subsequent annealing at RT. The bonding rate is observed using scanning acoustic microscopy(SAM),and the nanostructure of the bonding interface is studied by transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy(EDX).The thickness of the interface transition layer is estimated,and the atomic composition at the bonding interface of the sample is analyzed.

    2. Experimental methods

    2.1. Materials

    In this work, 4-inch double-sided polished P-type Bdoped Si (100) wafers with a thickness of 525 μm are used.For the SiO2/Si substrate,a SiO2layer about 300 nm thick is thermally oxidized on the surface of the Si wafer. Four-inch N-type Si-doped GaAs(100)wafers with a double-sided polishing thickness of 625 μm are used in the study.Before wafer activation, all substrates are successively soaked and cleaned using ethanol and deionized water.

    2.2. Surface activation and bonding procedures

    The GaAs,Si,and SiO2/Si substrates are activated by an Ar fast-atom beam (FAB). When the air pressure in the vacuum chamber is reduced to 2×10-6Pa, different substrates are activated for 60 s by the inert Ar-FAB at a voltage of 2 kV and a current of 60 mA (with a corresponding dose of 2×1018atoms/cm2at the atomic energy of 2 keV). The Ar-FAB reaches the surface at an angle of approximately 45°. After activation,the substrates are placed in a wafer bonder(EVG 520,EV Group,Austria). Under high-vacuum conditions(below 5×10-5Pa) and at RT, the bonding force and time are 10 kN and 5 min,respectively.

    2.3. Surface and interface characterizations

    After bonding,GaAs/SiO2/Si and GaAs/Si bonded wafer pairs are observed using SAM (SAM 301, PVA TePla, Germany). The frequency is set to 250 MHz and the scanning speed is 5 mm/s. GaAs/SiO2/Si and GaAs/Si wafer pairs are cut into dies with sizes of 10×10 mm2. The GaAs/SiO2/Si and GaAs/Si dies are then further cut into 500×500 μm2square islets with a depth of 725 μm. The specific process flow is shown in Fig. 1. It can be seen from the inset that the GaAs remains attached to the top of the die. The dies are annealed at 200°C for 1 min. Cross-sectional samples are then prepared by double beam FIB/SEM (JIB-4700F,Japan). During the thinning of the wafers, a carbon layer is deposited on the top of the samples in order to protect the areas to be studied. Ga+ions are accelerated at 2-30 kV to suppress the defects at the interface caused by the FIB process. Scanning electron microscopy (SEM) provides evidence of the uniform thickness of the FIB samples at the interfaces. The structural properties and chemical composition of the interface are determined by high angle annular dark field (HAADF) and energy dispersive x-ray spectroscopy(EDX)using aberration-corrected TEM(JEM-ARM 300F,Japan). The surface roughness of the bonded surface is a key factor for direct bonding at RT.The surface roughness of the GaAs, Si, and SiO2/Si substrates after Ar-FAB treatment is measured by atomic force microscopy(AFM,Bruker,Germany). The scanning area of the AFM is 10×10 μm2,and the resolution is 256×256 pixels.

    Fig.1. A schematic diagram of the bonding process using an Ar-FAB.

    3. Results and discussion

    3.1. Surface roughness after Ar-FAB treatment

    As a key factor affecting the bonding quality at RT, the surface roughness of the bonding surface is directly related to the structural damage (cracks, bubbles, or holes) formed at the interface. A smooth wafer surface, with fewer defects induced by atomic bombardment and a surface saturated by-OH dangling bonds is favorable for direct bonding. The surface roughnesses of the GaAs, Si, and SiO2/Si substrates before and after Ar-FAB bombardment are measured by AFM.Figure 2 shows the AFM images and root-mean-square values(RMS)of the surface roughnesses of the GaAs,Si and SiO2/Si substrates after Ar-FAB bombardment. Before bombardment,the RMS roughnesses of the GaAs, Si and SiO2/Si substrates are 0.35,0.22 and 0.30 nm,respectively.The values after bombardment are 0.372,0.25 and 0.44 nm,respectively. Although sputtering during wafer bombardment can make the substrate surfaces rougher, the contact area and dangling bonds on the wafer surface can be increased by activation.[25]After the surface is cleaned with deionized water,the existence of dangling bonds can contribute to the formation of more silanol hydroxyl groups(Si-OH).

    Fig. 2. Three-dimensional surface morphologies of (a) GaAs, (b) Si and(c)SiO2 after Ar-FAB treatment for 60 s.

    3.2. Bonding strength and interface performance

    3.2.1. Strength of GaAs/Si-based material bonding interfaces

    The interfaces of the bonded GaAs/SiO2/Si and GaAs/Si wafer pairs are observed using SAM.The scanning results are shown in Figs. 3(a) and 3(b). The black areas represent areas with good bonding, while the white areas indicate the areas without bonding. Although it can be seen in Fig. 3 that the edge area is not bonded, the unbonded area is due to surface contaminants. There are a lot of contaminant particles on the edge of the wafer, which are mainly caused by the processes of atomic bombardment and wafer clamping. Particles are more likely to accumulate at the edge of the wafer. After the bonded wafer pairs are stored at RT for 24 h, the bonding energy is quantitatively measured by the blade-insertion method. A schematic diagram of the“crack-opening”method is shown in Fig. 4. The blade is inserted along the edge of the bonded pairs. The opening length is measured by SAM.The heterogeneous surface energy (γ) is calculated using the following equation:[26]

    whereESiandEGaAsare the Young’s moduli for Si (1.30×1011Pa)and GaAs(8.5×1010Pa),respectively,tSiandtGaAsare the thicknesses of the Si and GaAs wafers, successively,tbis the blade thickness (tb= 80 μm), andlcis the crack propagation length. The measured surface energies of the GaAs/SiO2/Si and GaAs/Si bonded pairs are 0.7 J/m2and 0.6 J/m2,respectively. In addition,the bonded pairs are fixed to a glass plate using paraffin wax, and the bonded pairs are then cut into small pieces 10×10 mm2in size by a chip cutting machine. The cutting surface is the GaAs side. A small piece is then taken out and fixed onto the glass plate again using paraffin wax. GaAs islets are cut to a size of 500×500 μm2and a depth of 725 μm from the small piece by the chip cutting machine. The GaAs islets are not detached, which indicates that the bonded pairs have high bonding quality.

    Fig. 3. (a) GaAs/SiO2/Si waferbonding pairs; (b) GaAs/Si waferbonding pairs.

    Fig.4. A schematic diagram of measuring the wafer bonding energy by the blade insertion method.

    3.2.2. The 200 °C annealed GaAs/SiO2/Si bonding interface

    In Fig. 5, STEM-HAADF images of the GaAs/SiO2/Si bonding interface are displayed. It can be seen from Fig.5(a)that a gap-free GaAs/SiO2/Si sandwich interface morphology is formed by the Ar atom activation treatment, and the thickness of the SiO2layer is about 300 nm. In Fig. 5(a), a small number of pollutant particles are attached to the SiO2layer,which is due to the need to deposit a carbon-powder protective layer on the surface before thinning. During the thinning process, carbon powder is attached to the interface. By capturing a high-resolution TEM image of the marked area in Fig.5(a),it can be seen that the interface is atomically bonded and free of structural damage, which confirms that the lower damage position is formed across the surface and the interface.As presented in Fig.5(b), there is an amorphous layer with a thickness of about 2 nm at the interface. On the left side of the amorphous layer,the GaAs lattice is damaged by Ar atom bombardment, resulting in an irregular lattice arrangement at the bonding interface. In order to further study the element composition at the interface,an element analysis for As,Ga,O and Si is conducted using EDX.The element distribution maps are shown in Figs.5(c)-5(f).It can be seen from Figs.5(c)and 5(d) that the As and Ga elements are diffused into the entire 2 nm-thick transition layer. In Figs. 5(e) and 5(f), some O and Si elements are distributed on the GaAs side. Because Si is harder than GaAs, when the bonding pairs are thinned by the FIB process, the Si material is above the GaAs material. Therefore, when the Si material is thinned first, a small portion of the Si and O elements are attached to the GaAs below. Figure 6 shows the percentage distributions of As,Ga,O and Si atoms across the bonding interface determined by EDX analysis. The horizontal and vertical axes represent the position of the bonding interface and the percentage of each atom,respectively. At a depth of 2 nm on the GaAs side of the bonding pair, the content of As is significantly higher than that of Ga.

    Fig. 5. (a), (b) Cross-sectional TEM images of the GaAs/SiO2/Si bonding interface after annealing at 200 °C. Element maps of As, Ga, O and Si are displayed in(c),(d),(e)and(f),respectively.

    Fig. 6. Element analysis across the GaAs/SiO2/Si interface by EDX line scanning.

    Fig.7.(a),(b)Cross-sectional TEM images of the GaAs/Si bonding interface after annealing at 200 °C.Element maps of As, Ga, O and Si are displayed in(c),(d),(e)and(f),respectively.

    Fig.8. Element analysis across the GaAs/Si interface by EDX line scanning.

    3.2.3. The 200°C annealed GaAs/Si bonding interface

    Figure 7 shows a HAADF-STEM image of the GaAs/Si heterostructure interface after annealing at 200°C. By capturing a high-resolution TEM image from the marked area in Fig.7(a),it is observed that the interface is atomically bonded and free from structural damage. An amorphous layer with a thickness of about 7 nm is formed at the bonding interface,and the amorphous layer is relatively uniform, as shown in Fig.7(b). The amorphous layer at the interface is the result of activation treatment. The characteristic of Ar-FAB activation treatment is that two ultra-thin oxygen-rich layers are formed at the interface.Before activation,there is a natural oxide layer with a thickness of approximately 3-4 nm on the surfaces of both Si and GaAs substrates. Although the activation time is sufficiently long, only some of the natural oxides (such as Ga2O3or As2O3)can be removed. The element composition distribution of the bonding interface is revealed by EDX analysis in Figs.7(c)-7(f). It can be seen from the element distribution curve in Fig.8 that the intermediate amorphous layer is mainly composed of Ga,As,O and Si elements. The presence of oxides will inevitably interfere with current transmission at the GaAs/Si interface,thereby affecting the performance of solar cells.

    3.3. Bonding mechanism

    The influence of activation on GaAs/SiO2/Si and GaAs/Si bonded pairs can now be described,based on the observations and the analysis results.High-power atomic activation is likely to cause damage to the primary oxides of Si and GaAs, so it is deemed that there is a high degree of strain and reactivity on their surfaces. This may lead to a large amount of hydroxyl (GaAs-OH) on the surfaces of the GaAs and Si-OH groups.[27,28]Upon annealing, they can then polymerize in a similar fashion to that shown below:

    A high number of interfacial covalent oxygen bridges are produced between the GaAs and the Si(GaAs-O-Si). In order to contain peeling stress during annealing and prevent debonding failures,a large number of interfacial GaAs-O-Si bridges is needed,especially in a very thermally mismatched bonding system. In addition, when the bonding surface is not sufficiently activated, the energy of most of the Ar atoms is too low to destroy and alter the surface chemistry of the Si and GaAs surfaces.Therefore,a smaller number of surface GaAs-OH and Si-OH groups appear,and lower H2O outward diffusion efficiency occurs,resulting in an ultimate decrease in the amount of GaAs-O-Si at the interface.[14]When the GaAs/Si wafer is not annealed, the diffusion of atoms such as Ga, As,O and Si at the interface is reduced. Due to the large amount of H2O that collects at the interface,it cannot diffuse into the Si and GaAs substrates. Therefore,the oxygen content at the interface increases,as shown in Fig.9.

    Fig. 9. Element analysis across the unannealed GaAs/Si interface by EDX line scanning.

    Through reaction(2),strong covalent bonds are formed at the interface and play a leading role in robust bonding. After bonding, the bonded pairs are subjected to high-temperature annealing in a quartz furnace. High-temperature annealing accelerates the movement of water molecules produced by the reaction(2).Water molecules not only diffuse in the horizontal direction but also in the vertical direction. For GaAs/SiO2/Si and GaAs/Si bonded pairs, the water generated diffuses into the bulk Si through the oxide layer,and H2bubbles are formed at the interface,according to reaction[29]

    The distribution of Ar atoms on the GaAs surface can be simulated by SRIM software,[30]and the density of the residual Ar atoms reaches a peak at a depth of 3 nm. The simulation also indicates that high-density vacancies are introduced at a depth of 2 nm.Quite a few point defects are produced by the interaction of fast Ar atoms with the GaAs surface. Sadanaet al.[31]confirmed that the displacement damage caused by atomic bombardment of GaAs can be dynamically annealed when the substrate temperature is higher than 100°C. The increase of temperature promotes the diffusion of defects,[32]which can eliminate the defects and prevent the formation of defect cascades. The element distribution curves of the interface obtained by EDX analysis in Figs.6 and 8 show that atomic intermixing occurs at the interface during bonding and subsequent annealing.

    On the GaAs side of the bonded pairs,an amorphous layer is introduced,and lattice fringes can be observed,even in the vicinity of the interfaces, as shown in Fig. 6(a). Due to the introduction of point defects during the process of surface activation, transient diffusion is enhanced, as observed in implanted GaAs wafers. Vacancy agglomerates about 1 nm in size can be observed near the interfaces. Due to the formation of Frenkel-type defects on the As sites, the density ratio between the As and the Ga (As/Ga), is less than 1 down to a depth of 2 nm from the interface, and it is higher than 1 in the depth range from 2 nm to 6 nm. On the Si side of the wafer adjacent to the interface,an amorphous layer a few nm thick is formed. The density of various atoms at the interface changes gradually, resulting in a 4-8 nm-thick intermediate layer with a gradient composition. On the one hand,the layers are formed in such a way that the lattice mismatch between the interfaces of GaAs/SiO2/Si and GaAs/Si does not lead to highenergy and high-defect interfaces. This can reduce the elastic energy around the interfaces. On the other hand, a gradient layer can be formed due to the effect of roughness on the activated surface. In the bonding process,in order to maximize the chemical bond at the interface,atoms need to diffuse to fill the rough bonding interface. Through the surface activation process,the tough heterogeneous interface can be prepared at a low temperature. Therefore, the surface activation process not only needs to remove the surface oxide and produce the dangling bond, but also requires the enhancement of atomic diffusivity.

    4. Conclusion

    In this paper,GaAs/SiO2/Si and GaAs/Si heterointerfaces were fabricated by surface-activated bonding at room temperature. Cross-section scanning electron microscopy and dispersive x-ray spectroscopy (EDX) were used to confirm the presence of atomic intermixing at the bonding interface,which was mainly caused by the point defects introduced during the surface activation process. On the one hand,the point-defectassisted atomic diffusion can reduce the elastic energy around the heterogeneous interface. On the other hand, it can fill the rough bonding interface, so that tough heterogeneous interfaces between different materials can be prepared at room temperature. Therefore,the surface activation bonding conditions ought to be optimized to achieve bonding between different materials.

    猜你喜歡
    蘭天智勇
    禮縣蘭天系小麥品種對(duì)比試驗(yàn)初報(bào)
    《禾木之晨》
    High-performance and fabrication friendly polarization demultiplexer
    8個(gè)冬小麥新品種在莊浪縣引種試驗(yàn)研究初報(bào)
    冬小麥新品種比較試驗(yàn)初報(bào)
    康樂(lè)縣冬小麥新品種引種比較試驗(yàn)
    Existence of Periodic Solutions for a Class of Damped Vibration Problems
    楊智勇藝術(shù)作品欣賞
    禮縣冬小麥品比試驗(yàn)初報(bào)
    身家50億的智勇堅(jiān)守
    欧美日韩亚洲国产一区二区在线观看| 19禁男女啪啪无遮挡网站| 欧美zozozo另类| 久久久色成人| 欧美国产日韩亚洲一区| 99国产精品一区二区三区| 日韩欧美 国产精品| 97人妻精品一区二区三区麻豆| 国产一区二区在线av高清观看| 俺也久久电影网| www国产在线视频色| 看片在线看免费视频| 熟女电影av网| 亚洲美女视频黄频| 少妇裸体淫交视频免费看高清| 99久久国产精品久久久| 最近最新中文字幕大全电影3| 在线十欧美十亚洲十日本专区| 男人舔女人的私密视频| 亚洲av成人av| 桃红色精品国产亚洲av| 色尼玛亚洲综合影院| 国产免费男女视频| 亚洲精品一区av在线观看| 国产精品一区二区三区四区久久| 真人一进一出gif抽搐免费| 亚洲国产精品久久男人天堂| 少妇熟女aⅴ在线视频| 此物有八面人人有两片| 国产一区二区在线av高清观看| 禁无遮挡网站| 亚洲欧美日韩高清在线视频| 色哟哟哟哟哟哟| 国产精品一及| 黄片大片在线免费观看| 精品久久久久久久久久久久久| 在线十欧美十亚洲十日本专区| 人人妻,人人澡人人爽秒播| 日本精品一区二区三区蜜桃| 香蕉国产在线看| 亚洲欧洲精品一区二区精品久久久| 熟妇人妻久久中文字幕3abv| 在线视频色国产色| 精品国产乱码久久久久久男人| 国产成人av教育| 久久久精品大字幕| 国产一级毛片七仙女欲春2| 久久久成人免费电影| 两个人视频免费观看高清| 桃色一区二区三区在线观看| 日本熟妇午夜| 男女下面进入的视频免费午夜| 国内毛片毛片毛片毛片毛片| 国内精品久久久久久久电影| 免费一级毛片在线播放高清视频| 成人国产一区最新在线观看| 国产精品自产拍在线观看55亚洲| 久99久视频精品免费| 天堂网av新在线| 日韩中文字幕欧美一区二区| 国产欧美日韩精品亚洲av| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 手机成人av网站| 丁香欧美五月| 老鸭窝网址在线观看| 欧美一级毛片孕妇| 老司机深夜福利视频在线观看| 日韩精品青青久久久久久| 日韩三级视频一区二区三区| 麻豆成人午夜福利视频| 美女被艹到高潮喷水动态| 欧美日韩黄片免| 岛国视频午夜一区免费看| www.www免费av| 亚洲第一电影网av| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 欧美乱妇无乱码| 欧美精品啪啪一区二区三区| www日本黄色视频网| 一个人免费在线观看电影 | 国产精品1区2区在线观看.| 在线视频色国产色| 啪啪无遮挡十八禁网站| 国内久久婷婷六月综合欲色啪| 网址你懂的国产日韩在线| 午夜福利欧美成人| 18美女黄网站色大片免费观看| 亚洲男人的天堂狠狠| 亚洲午夜精品一区,二区,三区| 18禁黄网站禁片免费观看直播| 精品免费久久久久久久清纯| 亚洲男人的天堂狠狠| h日本视频在线播放| 久久亚洲精品不卡| 久久精品91无色码中文字幕| 夜夜躁狠狠躁天天躁| 每晚都被弄得嗷嗷叫到高潮| 亚洲狠狠婷婷综合久久图片| 精品久久蜜臀av无| 精品福利观看| 波多野结衣高清作品| 欧美色视频一区免费| 精品国产乱子伦一区二区三区| 亚洲一区二区三区色噜噜| 长腿黑丝高跟| 无人区码免费观看不卡| 国产成+人综合+亚洲专区| 色在线成人网| 中亚洲国语对白在线视频| 亚洲欧洲精品一区二区精品久久久| 成人特级黄色片久久久久久久| 99精品欧美一区二区三区四区| 亚洲欧美日韩高清专用| 欧美黄色淫秽网站| 免费观看的影片在线观看| 久久久久久久久免费视频了| 神马国产精品三级电影在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片 | 免费搜索国产男女视频| 国产精品永久免费网站| 悠悠久久av| 久久久久久国产a免费观看| 美女 人体艺术 gogo| 亚洲午夜理论影院| 国产真人三级小视频在线观看| 免费搜索国产男女视频| 亚洲av成人精品一区久久| 12—13女人毛片做爰片一| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美精品综合久久99| 国产精品亚洲美女久久久| 日本五十路高清| 午夜亚洲福利在线播放| 亚洲一区高清亚洲精品| 脱女人内裤的视频| 亚洲自偷自拍图片 自拍| 欧美中文综合在线视频| xxxwww97欧美| 免费一级毛片在线播放高清视频| 色哟哟哟哟哟哟| 久久精品国产清高在天天线| 我要搜黄色片| 美女cb高潮喷水在线观看 | 看片在线看免费视频| 好看av亚洲va欧美ⅴa在| 亚洲午夜精品一区,二区,三区| 激情在线观看视频在线高清| 久久精品91蜜桃| 国产精品一及| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区四区五区乱码| 最新美女视频免费是黄的| 免费无遮挡裸体视频| 午夜福利18| a级毛片a级免费在线| 18美女黄网站色大片免费观看| 色综合欧美亚洲国产小说| 亚洲av成人一区二区三| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费一区二区三区在线| 99久久无色码亚洲精品果冻| 别揉我奶头~嗯~啊~动态视频| 国产成人啪精品午夜网站| 在线观看舔阴道视频| 国产99白浆流出| 国内揄拍国产精品人妻在线| 国产成人福利小说| 欧美xxxx黑人xx丫x性爽| 亚洲欧美激情综合另类| 伦理电影免费视频| 搡老熟女国产l中国老女人| 麻豆久久精品国产亚洲av| 国产不卡一卡二| 女生性感内裤真人,穿戴方法视频| 麻豆av在线久日| av片东京热男人的天堂| 怎么达到女性高潮| 老司机在亚洲福利影院| 精品久久久久久,| 国产成人福利小说| 性色avwww在线观看| 欧美丝袜亚洲另类 | 99热6这里只有精品| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品综合一区在线观看| 国产一级毛片七仙女欲春2| 成人三级黄色视频| 国产一区二区在线av高清观看| 久久亚洲真实| 国内精品久久久久久久电影| 欧美大码av| 熟妇人妻久久中文字幕3abv| 麻豆久久精品国产亚洲av| 国产不卡一卡二| 欧美日韩乱码在线| 久久久色成人| 制服人妻中文乱码| 少妇的逼水好多| 亚洲国产精品合色在线| 日韩欧美国产一区二区入口| 日本精品一区二区三区蜜桃| 嫁个100分男人电影在线观看| 亚洲av电影不卡..在线观看| 91在线观看av| 久久精品91蜜桃| 久久久成人免费电影| 欧美激情在线99| 亚洲成a人片在线一区二区| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 国产精品久久久人人做人人爽| 日韩av在线大香蕉| 女人被狂操c到高潮| 欧美日韩国产亚洲二区| 亚洲 国产 在线| 床上黄色一级片| 一本久久中文字幕| 欧美中文综合在线视频| 久久久久国产精品人妻aⅴ院| 午夜影院日韩av| 偷拍熟女少妇极品色| 亚洲成人久久爱视频| 一级毛片精品| 国产精品综合久久久久久久免费| 国产伦精品一区二区三区视频9 | 精品久久久久久,| 免费大片18禁| 性欧美人与动物交配| 可以在线观看毛片的网站| 老汉色∧v一级毛片| 美女高潮喷水抽搐中文字幕| www.999成人在线观看| 最近视频中文字幕2019在线8| 欧美日韩福利视频一区二区| 国产在线精品亚洲第一网站| av天堂中文字幕网| 草草在线视频免费看| 日韩av在线大香蕉| 成人亚洲精品av一区二区| www日本在线高清视频| 国产精品影院久久| 亚洲精品美女久久久久99蜜臀| 99在线视频只有这里精品首页| 国产探花在线观看一区二区| 人妻夜夜爽99麻豆av| 老汉色av国产亚洲站长工具| 日韩有码中文字幕| 日韩欧美在线乱码| 亚洲美女黄片视频| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av| 我要搜黄色片| 99久久综合精品五月天人人| 特级一级黄色大片| 色噜噜av男人的天堂激情| 国产高清有码在线观看视频| 欧美丝袜亚洲另类 | 老汉色∧v一级毛片| 久久精品影院6| 一级作爱视频免费观看| 淫妇啪啪啪对白视频| 悠悠久久av| 国产亚洲欧美在线一区二区| 国产麻豆成人av免费视频| 可以在线观看毛片的网站| 午夜福利高清视频| 欧美性猛交黑人性爽| 日本撒尿小便嘘嘘汇集6| 香蕉久久夜色| 亚洲中文字幕日韩| 黄色女人牲交| 欧美av亚洲av综合av国产av| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩无卡精品| АⅤ资源中文在线天堂| 99国产综合亚洲精品| 精品一区二区三区视频在线 | 怎么达到女性高潮| 又黄又粗又硬又大视频| 国产亚洲精品久久久久久毛片| 1000部很黄的大片| av天堂在线播放| 国产av不卡久久| 日韩高清综合在线| 国内精品久久久久久久电影| 99久久成人亚洲精品观看| 亚洲在线观看片| 麻豆成人av在线观看| 三级国产精品欧美在线观看 | 欧美黄色片欧美黄色片| 色精品久久人妻99蜜桃| 亚洲人成伊人成综合网2020| 亚洲欧洲精品一区二区精品久久久| 一级毛片高清免费大全| 国内精品一区二区在线观看| 久久久久久九九精品二区国产| 在线观看一区二区三区| 一本久久中文字幕| 日本在线视频免费播放| 国产激情偷乱视频一区二区| 九九在线视频观看精品| 久久国产乱子伦精品免费另类| 97碰自拍视频| 国产午夜精品论理片| 12—13女人毛片做爰片一| 他把我摸到了高潮在线观看| 亚洲欧美日韩卡通动漫| svipshipincom国产片| 无限看片的www在线观看| 黑人巨大精品欧美一区二区mp4| 男人舔奶头视频| 久久精品国产清高在天天线| 久久久久九九精品影院| 蜜桃久久精品国产亚洲av| 免费看光身美女| 国产欧美日韩一区二区三| 最近最新中文字幕大全免费视频| 色视频www国产| 美女被艹到高潮喷水动态| 久久久久亚洲av毛片大全| 久久久精品欧美日韩精品| 午夜精品在线福利| 免费观看精品视频网站| 国产精品一区二区精品视频观看| 色在线成人网| 国内毛片毛片毛片毛片毛片| 亚洲男人的天堂狠狠| 亚洲国产日韩欧美精品在线观看 | 国产三级黄色录像| 国产精品免费一区二区三区在线| 亚洲性夜色夜夜综合| 国产淫片久久久久久久久 | 免费人成视频x8x8入口观看| cao死你这个sao货| 噜噜噜噜噜久久久久久91| 天天躁日日操中文字幕| 成人av在线播放网站| 欧美大码av| 757午夜福利合集在线观看| 亚洲自拍偷在线| 婷婷六月久久综合丁香| 黄频高清免费视频| tocl精华| 久久久久久久久免费视频了| 国产精品久久久久久久电影 | 天堂网av新在线| 两性午夜刺激爽爽歪歪视频在线观看| 成人国产一区最新在线观看| 琪琪午夜伦伦电影理论片6080| 中国美女看黄片| 97超级碰碰碰精品色视频在线观看| 最近最新中文字幕大全电影3| 久久香蕉精品热| 他把我摸到了高潮在线观看| 亚洲五月天丁香| 色视频www国产| 日韩欧美在线乱码| 大型黄色视频在线免费观看| 国产精品免费一区二区三区在线| av视频在线观看入口| 国产麻豆成人av免费视频| 一级毛片精品| 18禁观看日本| 少妇丰满av| 国产午夜精品久久久久久| 这个男人来自地球电影免费观看| 久久久久国产一级毛片高清牌| 国产亚洲精品一区二区www| 人人妻人人澡欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 麻豆国产av国片精品| 日韩欧美在线二视频| 国产熟女xx| 久久人人精品亚洲av| 亚洲av日韩精品久久久久久密| 精品久久久久久久末码| 91麻豆av在线| 国产成+人综合+亚洲专区| 又粗又爽又猛毛片免费看| 免费高清视频大片| 亚洲人与动物交配视频| 啦啦啦韩国在线观看视频| 手机成人av网站| 亚洲激情在线av| 日韩高清综合在线| 黄色丝袜av网址大全| 国语自产精品视频在线第100页| 91麻豆精品激情在线观看国产| 男插女下体视频免费在线播放| 亚洲精品乱码久久久v下载方式 | 听说在线观看完整版免费高清| 亚洲国产精品久久男人天堂| 亚洲精品一卡2卡三卡4卡5卡| 男女床上黄色一级片免费看| a在线观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av五月六月丁香网| 国产欧美日韩一区二区三| 给我免费播放毛片高清在线观看| 成人永久免费在线观看视频| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 色尼玛亚洲综合影院| 亚洲熟女毛片儿| 亚洲18禁久久av| 免费看十八禁软件| 亚洲 欧美一区二区三区| 日韩欧美 国产精品| 亚洲国产欧美人成| 欧美黄色淫秽网站| 国内精品一区二区在线观看| 久久天堂一区二区三区四区| 久久这里只有精品19| 久久精品国产综合久久久| 色噜噜av男人的天堂激情| 欧美日韩一级在线毛片| 99精品在免费线老司机午夜| 日韩欧美国产一区二区入口| 国产欧美日韩精品亚洲av| 亚洲色图 男人天堂 中文字幕| 一级毛片女人18水好多| 日本黄色视频三级网站网址| 国产精品自产拍在线观看55亚洲| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 最好的美女福利视频网| 国产成年人精品一区二区| 国产淫片久久久久久久久 | 亚洲国产精品久久男人天堂| 亚洲欧美精品综合一区二区三区| 宅男免费午夜| 三级毛片av免费| 欧美最黄视频在线播放免费| 亚洲 国产 在线| 久久久国产精品麻豆| 两人在一起打扑克的视频| 日本熟妇午夜| 男人舔女人下体高潮全视频| 俄罗斯特黄特色一大片| 首页视频小说图片口味搜索| 在线十欧美十亚洲十日本专区| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美国产在线观看| 国产乱人伦免费视频| 在线免费观看的www视频| 两性夫妻黄色片| 看免费av毛片| 亚洲乱码一区二区免费版| 亚洲七黄色美女视频| 免费观看的影片在线观看| 在线播放国产精品三级| 日韩欧美 国产精品| 99在线人妻在线中文字幕| 真人一进一出gif抽搐免费| 国产欧美日韩精品一区二区| 日韩精品青青久久久久久| 国内毛片毛片毛片毛片毛片| 精品久久久久久成人av| 中文亚洲av片在线观看爽| 亚洲精品美女久久av网站| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 好男人电影高清在线观看| 一个人免费在线观看电影 | 国产亚洲av嫩草精品影院| 99热这里只有是精品50| 一进一出抽搐gif免费好疼| 国产一区二区激情短视频| 老司机午夜十八禁免费视频| 久久久久免费精品人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美一区二区综合| 狂野欧美激情性xxxx| h日本视频在线播放| 亚洲精品在线美女| 床上黄色一级片| 精品久久蜜臀av无| 国内精品一区二区在线观看| 舔av片在线| 精品99又大又爽又粗少妇毛片 | 中文亚洲av片在线观看爽| 丰满的人妻完整版| 1024手机看黄色片| 国产成人精品久久二区二区免费| 午夜影院日韩av| 亚洲五月天丁香| 真实男女啪啪啪动态图| 日韩免费av在线播放| 亚洲av美国av| 精品一区二区三区视频在线 | 他把我摸到了高潮在线观看| 99国产综合亚洲精品| 亚洲欧美激情综合另类| 三级男女做爰猛烈吃奶摸视频| 色综合亚洲欧美另类图片| 真人一进一出gif抽搐免费| 国产精品亚洲一级av第二区| 国产一区二区在线av高清观看| 国内精品久久久久久久电影| av天堂中文字幕网| 成年女人永久免费观看视频| 成年免费大片在线观看| 搞女人的毛片| 深夜精品福利| 美女高潮的动态| 黄色日韩在线| 波多野结衣高清作品| 国产v大片淫在线免费观看| 日本黄大片高清| 十八禁网站免费在线| 别揉我奶头~嗯~啊~动态视频| 国产伦在线观看视频一区| 久久天堂一区二区三区四区| 在线免费观看不下载黄p国产 | 久久久久亚洲av毛片大全| 免费搜索国产男女视频| 精品一区二区三区av网在线观看| 此物有八面人人有两片| 欧美zozozo另类| 天堂影院成人在线观看| 国产一级毛片七仙女欲春2| 在线观看美女被高潮喷水网站 | 亚洲欧美日韩高清专用| 一级毛片高清免费大全| 色噜噜av男人的天堂激情| 久久九九热精品免费| 国产精品99久久久久久久久| www.999成人在线观看| 日本黄色片子视频| 中文亚洲av片在线观看爽| 我要搜黄色片| 一本精品99久久精品77| 国产精品综合久久久久久久免费| 制服丝袜大香蕉在线| 国产精品永久免费网站| 他把我摸到了高潮在线观看| 国产成人一区二区三区免费视频网站| 日本熟妇午夜| 国产高清视频在线观看网站| 成年免费大片在线观看| 黑人巨大精品欧美一区二区mp4| 国产一区二区三区在线臀色熟女| 久久这里只有精品19| 99国产精品一区二区三区| 色吧在线观看| 99久久综合精品五月天人人| 久久精品人妻少妇| 午夜福利在线观看吧| 看片在线看免费视频| 搡老岳熟女国产| 好男人在线观看高清免费视频| 不卡av一区二区三区| 99热只有精品国产| e午夜精品久久久久久久| 麻豆成人av在线观看| 给我免费播放毛片高清在线观看| av福利片在线观看| 日本免费一区二区三区高清不卡| 69av精品久久久久久| 亚洲av成人精品一区久久| 日韩 欧美 亚洲 中文字幕| 日韩高清综合在线| 国产免费男女视频| 97超视频在线观看视频| 一本一本综合久久| 一级毛片高清免费大全| 久久99热这里只有精品18| 老司机午夜十八禁免费视频| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久| 在线看三级毛片| 国产亚洲av高清不卡| 91在线精品国自产拍蜜月 | 国产精品久久久人人做人人爽| 成人av在线播放网站| 真人做人爱边吃奶动态| 午夜福利欧美成人| 别揉我奶头~嗯~啊~动态视频| 欧美精品啪啪一区二区三区| 波多野结衣高清作品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 国产 在线| 亚洲五月天丁香| 色综合婷婷激情| 亚洲片人在线观看| 精品无人区乱码1区二区| 中文亚洲av片在线观看爽| 欧美性猛交╳xxx乱大交人| 97超级碰碰碰精品色视频在线观看| 国内精品一区二区在线观看| 国产精品爽爽va在线观看网站| 国产 一区 欧美 日韩| av国产免费在线观看| 午夜激情福利司机影院| 亚洲中文字幕日韩| 亚洲精品中文字幕一二三四区| 精品久久久久久久人妻蜜臀av| 久久婷婷人人爽人人干人人爱| xxxwww97欧美| 12—13女人毛片做爰片一| 亚洲av电影在线进入| 日日摸夜夜添夜夜添小说| 久久精品夜夜夜夜夜久久蜜豆| 国产成人一区二区三区免费视频网站| 女同久久另类99精品国产91| 两个人视频免费观看高清| 怎么达到女性高潮| 日本 av在线| 狂野欧美激情性xxxx| 一进一出抽搐gif免费好疼|