• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature*

    2021-07-30 07:40:52RuiHuang黃瑞TianLan蘭天ChongLi李沖JingLi李景andZhiyongWang王智勇
    Chinese Physics B 2021年7期
    關(guān)鍵詞:蘭天智勇

    Rui Huang(黃瑞) Tian Lan(蘭天) Chong Li(李沖) Jing Li(李景) and Zhiyong Wang(王智勇)

    1Institute of Advanced Technology on Semiconductor Optics&Electronics,Institute of Laser Engineering,Beijing University of Technology,Beijing 100124,China

    2College of Microelectronics,Beijing University of Technology,Beijing 100124,China

    Keywords: surface-activation bonding,energy-dispersive x-ray spectroscopy,intermix,point defects

    1. Introduction

    Gallium arsenide (GaAs) is an attractive semiconductor material with excellent physical, chemical and mechanical properties. Bulk GaAs is a direct bandgap semiconductor material with a cubic zinc-blende structure, a lattice constant of 5.6419 ?A and a bandgap of 1.428 eV at room temperature.[1]Due to the high electron mobility of GaAs,its electron mobility is about five times higher than that of Si,and its operational speed is much higher than those of Si devices, so it can be used to fabricate high-speed or microwave semiconductor devices.[2]GaAs is also used to make hightemperature-resistant,radiation-resistant or low-noise devices,near-infrared light-emitting diodes (LEDs) and laser diodes(LDs), as well as photocathode materials.[3-6]More importantly, it has become the basic material for the future development of ultra-high-speed semiconductor integrated circuits. Over the last ten years, with the development of molecular-beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), it has become possible to fabricate heterojunction and superlattice structures on GaAs substrates. Power electronic semiconductor devices, such as high-power electron-mobility transistor(HEMTs)and heterojunction bipolar transistors(HBTs),have engendered broader prospects for the application of GaAs material.[7,8]

    Traditional silicon-based substrates (such as SiO2-on-Si and Si) are suitable for micro/nano manufacturing technologies. The combination of single-crystal GaAs with silicon oxide can produce a GaAs-on-insulator(GaAsOI,GaAs/SiO2/Si)structure, which can replace the Si-on-insulator (SOI) structure, improve the modulation speed and reduce parasitic effects.[9]The formation of a GaAs/Si structure can create ohmic interfaces which are beneficial to the fabrication of Si-based GaAs solar cells.[10-12]When GaAs is epitaxially grown on the surface of a Si wafer at temperatures between 500°C and 700°C, crystal defects such as dislocations and cracks appear. These defects reduce the device’s lifetime and affect its performance. Surface-activated bonding (SAB) can overcome the difficulties caused by the lattice and thermal expansion coefficient mismatches.[13]Yeoet al.[14]reported that the highest bonding energy of GaAs/Si was 478 mJ/m2under Ar fast atom beam(FAB)treatment conditions of 30 s, 120 mTorr and 200 W. Additionally, in order to fabricate low-resistance GaAs/Si heterointerfaces, Yutaka Ohnoet al.[15]optimized the surface-activation bonding and subsequent annealing conditions. In this method, the wafer surface was irradiated by an FAB of Ar before bonding. Heterojunctions realized by SAB,such as Si/GaAs,[14]Si/InP,[16]Si/SiC,[17]Si/GaN,[18]GaAs/GaN,[19]LiNbO3/SiC,[20]and diamond/Si,[21]have been widely studied. In addition, the electrical properties of the bonding interface can be changed by annealing.[22]

    Aberration-corrected scanning transmission electron microscopy (AC-STEM) can be used to study the nanostructures at the bonding interface. It has been reported that an amorphous-type transition layer can be observed at the bonding interface.[23,24]Although the electrical properties of the interface are likely to be strongly influenced by its chemical properties,[22]the chemical properties at the interface or the properties of the chemical atomic bonds have not been fully understood. Consequently, it is necessary to study the chemical properties of the chemical atomic bonds at the GaAs/SiO2/Si and GaAs/Si bonding interfaces at the atomic level.

    In this work, bonding interfaces between GaAs/SiO2/Si and GaAs/Si have been realized by surface-activated bonding(SAB) and subsequent annealing at RT. The bonding rate is observed using scanning acoustic microscopy(SAM),and the nanostructure of the bonding interface is studied by transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy(EDX).The thickness of the interface transition layer is estimated,and the atomic composition at the bonding interface of the sample is analyzed.

    2. Experimental methods

    2.1. Materials

    In this work, 4-inch double-sided polished P-type Bdoped Si (100) wafers with a thickness of 525 μm are used.For the SiO2/Si substrate,a SiO2layer about 300 nm thick is thermally oxidized on the surface of the Si wafer. Four-inch N-type Si-doped GaAs(100)wafers with a double-sided polishing thickness of 625 μm are used in the study.Before wafer activation, all substrates are successively soaked and cleaned using ethanol and deionized water.

    2.2. Surface activation and bonding procedures

    The GaAs,Si,and SiO2/Si substrates are activated by an Ar fast-atom beam (FAB). When the air pressure in the vacuum chamber is reduced to 2×10-6Pa, different substrates are activated for 60 s by the inert Ar-FAB at a voltage of 2 kV and a current of 60 mA (with a corresponding dose of 2×1018atoms/cm2at the atomic energy of 2 keV). The Ar-FAB reaches the surface at an angle of approximately 45°. After activation,the substrates are placed in a wafer bonder(EVG 520,EV Group,Austria). Under high-vacuum conditions(below 5×10-5Pa) and at RT, the bonding force and time are 10 kN and 5 min,respectively.

    2.3. Surface and interface characterizations

    After bonding,GaAs/SiO2/Si and GaAs/Si bonded wafer pairs are observed using SAM (SAM 301, PVA TePla, Germany). The frequency is set to 250 MHz and the scanning speed is 5 mm/s. GaAs/SiO2/Si and GaAs/Si wafer pairs are cut into dies with sizes of 10×10 mm2. The GaAs/SiO2/Si and GaAs/Si dies are then further cut into 500×500 μm2square islets with a depth of 725 μm. The specific process flow is shown in Fig. 1. It can be seen from the inset that the GaAs remains attached to the top of the die. The dies are annealed at 200°C for 1 min. Cross-sectional samples are then prepared by double beam FIB/SEM (JIB-4700F,Japan). During the thinning of the wafers, a carbon layer is deposited on the top of the samples in order to protect the areas to be studied. Ga+ions are accelerated at 2-30 kV to suppress the defects at the interface caused by the FIB process. Scanning electron microscopy (SEM) provides evidence of the uniform thickness of the FIB samples at the interfaces. The structural properties and chemical composition of the interface are determined by high angle annular dark field (HAADF) and energy dispersive x-ray spectroscopy(EDX)using aberration-corrected TEM(JEM-ARM 300F,Japan). The surface roughness of the bonded surface is a key factor for direct bonding at RT.The surface roughness of the GaAs, Si, and SiO2/Si substrates after Ar-FAB treatment is measured by atomic force microscopy(AFM,Bruker,Germany). The scanning area of the AFM is 10×10 μm2,and the resolution is 256×256 pixels.

    Fig.1. A schematic diagram of the bonding process using an Ar-FAB.

    3. Results and discussion

    3.1. Surface roughness after Ar-FAB treatment

    As a key factor affecting the bonding quality at RT, the surface roughness of the bonding surface is directly related to the structural damage (cracks, bubbles, or holes) formed at the interface. A smooth wafer surface, with fewer defects induced by atomic bombardment and a surface saturated by-OH dangling bonds is favorable for direct bonding. The surface roughnesses of the GaAs, Si, and SiO2/Si substrates before and after Ar-FAB bombardment are measured by AFM.Figure 2 shows the AFM images and root-mean-square values(RMS)of the surface roughnesses of the GaAs,Si and SiO2/Si substrates after Ar-FAB bombardment. Before bombardment,the RMS roughnesses of the GaAs, Si and SiO2/Si substrates are 0.35,0.22 and 0.30 nm,respectively.The values after bombardment are 0.372,0.25 and 0.44 nm,respectively. Although sputtering during wafer bombardment can make the substrate surfaces rougher, the contact area and dangling bonds on the wafer surface can be increased by activation.[25]After the surface is cleaned with deionized water,the existence of dangling bonds can contribute to the formation of more silanol hydroxyl groups(Si-OH).

    Fig. 2. Three-dimensional surface morphologies of (a) GaAs, (b) Si and(c)SiO2 after Ar-FAB treatment for 60 s.

    3.2. Bonding strength and interface performance

    3.2.1. Strength of GaAs/Si-based material bonding interfaces

    The interfaces of the bonded GaAs/SiO2/Si and GaAs/Si wafer pairs are observed using SAM.The scanning results are shown in Figs. 3(a) and 3(b). The black areas represent areas with good bonding, while the white areas indicate the areas without bonding. Although it can be seen in Fig. 3 that the edge area is not bonded, the unbonded area is due to surface contaminants. There are a lot of contaminant particles on the edge of the wafer, which are mainly caused by the processes of atomic bombardment and wafer clamping. Particles are more likely to accumulate at the edge of the wafer. After the bonded wafer pairs are stored at RT for 24 h, the bonding energy is quantitatively measured by the blade-insertion method. A schematic diagram of the“crack-opening”method is shown in Fig. 4. The blade is inserted along the edge of the bonded pairs. The opening length is measured by SAM.The heterogeneous surface energy (γ) is calculated using the following equation:[26]

    whereESiandEGaAsare the Young’s moduli for Si (1.30×1011Pa)and GaAs(8.5×1010Pa),respectively,tSiandtGaAsare the thicknesses of the Si and GaAs wafers, successively,tbis the blade thickness (tb= 80 μm), andlcis the crack propagation length. The measured surface energies of the GaAs/SiO2/Si and GaAs/Si bonded pairs are 0.7 J/m2and 0.6 J/m2,respectively. In addition,the bonded pairs are fixed to a glass plate using paraffin wax, and the bonded pairs are then cut into small pieces 10×10 mm2in size by a chip cutting machine. The cutting surface is the GaAs side. A small piece is then taken out and fixed onto the glass plate again using paraffin wax. GaAs islets are cut to a size of 500×500 μm2and a depth of 725 μm from the small piece by the chip cutting machine. The GaAs islets are not detached, which indicates that the bonded pairs have high bonding quality.

    Fig. 3. (a) GaAs/SiO2/Si waferbonding pairs; (b) GaAs/Si waferbonding pairs.

    Fig.4. A schematic diagram of measuring the wafer bonding energy by the blade insertion method.

    3.2.2. The 200 °C annealed GaAs/SiO2/Si bonding interface

    In Fig. 5, STEM-HAADF images of the GaAs/SiO2/Si bonding interface are displayed. It can be seen from Fig.5(a)that a gap-free GaAs/SiO2/Si sandwich interface morphology is formed by the Ar atom activation treatment, and the thickness of the SiO2layer is about 300 nm. In Fig. 5(a), a small number of pollutant particles are attached to the SiO2layer,which is due to the need to deposit a carbon-powder protective layer on the surface before thinning. During the thinning process, carbon powder is attached to the interface. By capturing a high-resolution TEM image of the marked area in Fig.5(a),it can be seen that the interface is atomically bonded and free of structural damage, which confirms that the lower damage position is formed across the surface and the interface.As presented in Fig.5(b), there is an amorphous layer with a thickness of about 2 nm at the interface. On the left side of the amorphous layer,the GaAs lattice is damaged by Ar atom bombardment, resulting in an irregular lattice arrangement at the bonding interface. In order to further study the element composition at the interface,an element analysis for As,Ga,O and Si is conducted using EDX.The element distribution maps are shown in Figs.5(c)-5(f).It can be seen from Figs.5(c)and 5(d) that the As and Ga elements are diffused into the entire 2 nm-thick transition layer. In Figs. 5(e) and 5(f), some O and Si elements are distributed on the GaAs side. Because Si is harder than GaAs, when the bonding pairs are thinned by the FIB process, the Si material is above the GaAs material. Therefore, when the Si material is thinned first, a small portion of the Si and O elements are attached to the GaAs below. Figure 6 shows the percentage distributions of As,Ga,O and Si atoms across the bonding interface determined by EDX analysis. The horizontal and vertical axes represent the position of the bonding interface and the percentage of each atom,respectively. At a depth of 2 nm on the GaAs side of the bonding pair, the content of As is significantly higher than that of Ga.

    Fig. 5. (a), (b) Cross-sectional TEM images of the GaAs/SiO2/Si bonding interface after annealing at 200 °C. Element maps of As, Ga, O and Si are displayed in(c),(d),(e)and(f),respectively.

    Fig. 6. Element analysis across the GaAs/SiO2/Si interface by EDX line scanning.

    Fig.7.(a),(b)Cross-sectional TEM images of the GaAs/Si bonding interface after annealing at 200 °C.Element maps of As, Ga, O and Si are displayed in(c),(d),(e)and(f),respectively.

    Fig.8. Element analysis across the GaAs/Si interface by EDX line scanning.

    3.2.3. The 200°C annealed GaAs/Si bonding interface

    Figure 7 shows a HAADF-STEM image of the GaAs/Si heterostructure interface after annealing at 200°C. By capturing a high-resolution TEM image from the marked area in Fig.7(a),it is observed that the interface is atomically bonded and free from structural damage. An amorphous layer with a thickness of about 7 nm is formed at the bonding interface,and the amorphous layer is relatively uniform, as shown in Fig.7(b). The amorphous layer at the interface is the result of activation treatment. The characteristic of Ar-FAB activation treatment is that two ultra-thin oxygen-rich layers are formed at the interface.Before activation,there is a natural oxide layer with a thickness of approximately 3-4 nm on the surfaces of both Si and GaAs substrates. Although the activation time is sufficiently long, only some of the natural oxides (such as Ga2O3or As2O3)can be removed. The element composition distribution of the bonding interface is revealed by EDX analysis in Figs.7(c)-7(f). It can be seen from the element distribution curve in Fig.8 that the intermediate amorphous layer is mainly composed of Ga,As,O and Si elements. The presence of oxides will inevitably interfere with current transmission at the GaAs/Si interface,thereby affecting the performance of solar cells.

    3.3. Bonding mechanism

    The influence of activation on GaAs/SiO2/Si and GaAs/Si bonded pairs can now be described,based on the observations and the analysis results.High-power atomic activation is likely to cause damage to the primary oxides of Si and GaAs, so it is deemed that there is a high degree of strain and reactivity on their surfaces. This may lead to a large amount of hydroxyl (GaAs-OH) on the surfaces of the GaAs and Si-OH groups.[27,28]Upon annealing, they can then polymerize in a similar fashion to that shown below:

    A high number of interfacial covalent oxygen bridges are produced between the GaAs and the Si(GaAs-O-Si). In order to contain peeling stress during annealing and prevent debonding failures,a large number of interfacial GaAs-O-Si bridges is needed,especially in a very thermally mismatched bonding system. In addition, when the bonding surface is not sufficiently activated, the energy of most of the Ar atoms is too low to destroy and alter the surface chemistry of the Si and GaAs surfaces.Therefore,a smaller number of surface GaAs-OH and Si-OH groups appear,and lower H2O outward diffusion efficiency occurs,resulting in an ultimate decrease in the amount of GaAs-O-Si at the interface.[14]When the GaAs/Si wafer is not annealed, the diffusion of atoms such as Ga, As,O and Si at the interface is reduced. Due to the large amount of H2O that collects at the interface,it cannot diffuse into the Si and GaAs substrates. Therefore,the oxygen content at the interface increases,as shown in Fig.9.

    Fig. 9. Element analysis across the unannealed GaAs/Si interface by EDX line scanning.

    Through reaction(2),strong covalent bonds are formed at the interface and play a leading role in robust bonding. After bonding, the bonded pairs are subjected to high-temperature annealing in a quartz furnace. High-temperature annealing accelerates the movement of water molecules produced by the reaction(2).Water molecules not only diffuse in the horizontal direction but also in the vertical direction. For GaAs/SiO2/Si and GaAs/Si bonded pairs, the water generated diffuses into the bulk Si through the oxide layer,and H2bubbles are formed at the interface,according to reaction[29]

    The distribution of Ar atoms on the GaAs surface can be simulated by SRIM software,[30]and the density of the residual Ar atoms reaches a peak at a depth of 3 nm. The simulation also indicates that high-density vacancies are introduced at a depth of 2 nm.Quite a few point defects are produced by the interaction of fast Ar atoms with the GaAs surface. Sadanaet al.[31]confirmed that the displacement damage caused by atomic bombardment of GaAs can be dynamically annealed when the substrate temperature is higher than 100°C. The increase of temperature promotes the diffusion of defects,[32]which can eliminate the defects and prevent the formation of defect cascades. The element distribution curves of the interface obtained by EDX analysis in Figs.6 and 8 show that atomic intermixing occurs at the interface during bonding and subsequent annealing.

    On the GaAs side of the bonded pairs,an amorphous layer is introduced,and lattice fringes can be observed,even in the vicinity of the interfaces, as shown in Fig. 6(a). Due to the introduction of point defects during the process of surface activation, transient diffusion is enhanced, as observed in implanted GaAs wafers. Vacancy agglomerates about 1 nm in size can be observed near the interfaces. Due to the formation of Frenkel-type defects on the As sites, the density ratio between the As and the Ga (As/Ga), is less than 1 down to a depth of 2 nm from the interface, and it is higher than 1 in the depth range from 2 nm to 6 nm. On the Si side of the wafer adjacent to the interface,an amorphous layer a few nm thick is formed. The density of various atoms at the interface changes gradually, resulting in a 4-8 nm-thick intermediate layer with a gradient composition. On the one hand,the layers are formed in such a way that the lattice mismatch between the interfaces of GaAs/SiO2/Si and GaAs/Si does not lead to highenergy and high-defect interfaces. This can reduce the elastic energy around the interfaces. On the other hand, a gradient layer can be formed due to the effect of roughness on the activated surface. In the bonding process,in order to maximize the chemical bond at the interface,atoms need to diffuse to fill the rough bonding interface. Through the surface activation process,the tough heterogeneous interface can be prepared at a low temperature. Therefore, the surface activation process not only needs to remove the surface oxide and produce the dangling bond, but also requires the enhancement of atomic diffusivity.

    4. Conclusion

    In this paper,GaAs/SiO2/Si and GaAs/Si heterointerfaces were fabricated by surface-activated bonding at room temperature. Cross-section scanning electron microscopy and dispersive x-ray spectroscopy (EDX) were used to confirm the presence of atomic intermixing at the bonding interface,which was mainly caused by the point defects introduced during the surface activation process. On the one hand,the point-defectassisted atomic diffusion can reduce the elastic energy around the heterogeneous interface. On the other hand, it can fill the rough bonding interface, so that tough heterogeneous interfaces between different materials can be prepared at room temperature. Therefore,the surface activation bonding conditions ought to be optimized to achieve bonding between different materials.

    猜你喜歡
    蘭天智勇
    禮縣蘭天系小麥品種對(duì)比試驗(yàn)初報(bào)
    《禾木之晨》
    High-performance and fabrication friendly polarization demultiplexer
    8個(gè)冬小麥新品種在莊浪縣引種試驗(yàn)研究初報(bào)
    冬小麥新品種比較試驗(yàn)初報(bào)
    康樂(lè)縣冬小麥新品種引種比較試驗(yàn)
    Existence of Periodic Solutions for a Class of Damped Vibration Problems
    楊智勇藝術(shù)作品欣賞
    禮縣冬小麥品比試驗(yàn)初報(bào)
    身家50億的智勇堅(jiān)守
    丝瓜视频免费看黄片| 色婷婷av一区二区三区视频| 中文字幕av电影在线播放| 亚洲人与动物交配视频| 免费人成在线观看视频色| 成人无遮挡网站| 欧美成人精品欧美一级黄| 国产不卡av网站在线观看| 免费观看在线日韩| 日韩中文字幕视频在线看片| 一本一本综合久久| 国产日韩欧美在线精品| 国产熟女欧美一区二区| 亚洲精品色激情综合| 伦理电影免费视频| 毛片一级片免费看久久久久| 性色av一级| 晚上一个人看的免费电影| 久久亚洲国产成人精品v| 制服丝袜香蕉在线| 一级毛片 在线播放| 国产成人a∨麻豆精品| 天堂俺去俺来也www色官网| 午夜免费观看性视频| 天堂中文最新版在线下载| 精品一区二区免费观看| 亚洲精品国产av成人精品| 新久久久久国产一级毛片| av有码第一页| 色婷婷av一区二区三区视频| 老司机亚洲免费影院| 国产亚洲精品第一综合不卡 | 国产精品一区二区在线观看99| 国产 一区精品| 在线观看国产h片| 五月天丁香电影| av在线老鸭窝| 中文天堂在线官网| 久久ye,这里只有精品| 日韩亚洲欧美综合| 男女无遮挡免费网站观看| 亚洲欧美精品自产自拍| √禁漫天堂资源中文www| 国产老妇伦熟女老妇高清| 亚洲av成人精品一区久久| 全区人妻精品视频| 九色成人免费人妻av| 色婷婷久久久亚洲欧美| 人妻 亚洲 视频| 中文天堂在线官网| 久久综合国产亚洲精品| 丝瓜视频免费看黄片| 人人妻人人澡人人爽人人夜夜| 久久精品国产自在天天线| 久久99热这里只频精品6学生| 另类精品久久| 尾随美女入室| 少妇被粗大猛烈的视频| 欧美日韩国产mv在线观看视频| 高清毛片免费看| 亚洲中文av在线| 欧美日韩精品成人综合77777| 日韩成人av中文字幕在线观看| 超碰97精品在线观看| 欧美人与善性xxx| 蜜臀久久99精品久久宅男| 国产片内射在线| 免费黄色在线免费观看| 十八禁网站网址无遮挡| 亚洲怡红院男人天堂| 99热网站在线观看| 亚洲,一卡二卡三卡| 美女视频免费永久观看网站| 黑丝袜美女国产一区| av免费在线看不卡| a 毛片基地| 亚洲丝袜综合中文字幕| 只有这里有精品99| 国产成人免费无遮挡视频| 亚洲精品国产av蜜桃| av有码第一页| 亚洲av福利一区| 亚洲国产精品成人久久小说| 中国美白少妇内射xxxbb| 久久99精品国语久久久| 91久久精品国产一区二区成人| 午夜精品国产一区二区电影| 亚洲欧美一区二区三区黑人 | 我要看黄色一级片免费的| 久久久国产欧美日韩av| 亚洲精品乱码久久久久久按摩| √禁漫天堂资源中文www| 亚洲精品第二区| 欧美老熟妇乱子伦牲交| 免费播放大片免费观看视频在线观看| 18禁在线无遮挡免费观看视频| 99久久人妻综合| 亚洲成人av在线免费| 亚洲av.av天堂| 国产在视频线精品| 久久毛片免费看一区二区三区| 最新的欧美精品一区二区| 亚洲国产精品一区三区| 蜜桃久久精品国产亚洲av| 亚洲经典国产精华液单| √禁漫天堂资源中文www| 熟女人妻精品中文字幕| 十八禁网站网址无遮挡| 黑人高潮一二区| 五月天丁香电影| 80岁老熟妇乱子伦牲交| 大香蕉久久成人网| 一区二区三区免费毛片| tube8黄色片| 亚洲第一区二区三区不卡| 又粗又硬又长又爽又黄的视频| 黄色视频在线播放观看不卡| 黄色配什么色好看| 七月丁香在线播放| 99热6这里只有精品| 精品少妇黑人巨大在线播放| 99久久中文字幕三级久久日本| 高清欧美精品videossex| 久久国产精品男人的天堂亚洲 | 精品一区在线观看国产| 青春草国产在线视频| 一个人看视频在线观看www免费| 日韩伦理黄色片| 最后的刺客免费高清国语| 欧美一级a爱片免费观看看| 欧美精品人与动牲交sv欧美| 免费观看无遮挡的男女| 男人添女人高潮全过程视频| av免费观看日本| 丝袜美足系列| 久久国产精品男人的天堂亚洲 | 亚洲情色 制服丝袜| 欧美成人精品欧美一级黄| 欧美日韩综合久久久久久| 777米奇影视久久| 欧美xxxx性猛交bbbb| 色5月婷婷丁香| 国产国语露脸激情在线看| 免费观看的影片在线观看| av专区在线播放| 亚洲精品,欧美精品| 精品少妇久久久久久888优播| 国产爽快片一区二区三区| 精品国产露脸久久av麻豆| 久久人人爽人人爽人人片va| 在线观看www视频免费| 少妇高潮的动态图| 欧美另类一区| 黑人巨大精品欧美一区二区蜜桃 | 国产精品人妻久久久影院| 九色亚洲精品在线播放| 夫妻性生交免费视频一级片| av一本久久久久| 婷婷色av中文字幕| 在线天堂最新版资源| 黑人猛操日本美女一级片| 如何舔出高潮| 天天操日日干夜夜撸| 中国国产av一级| 中文字幕免费在线视频6| 国产av码专区亚洲av| 午夜久久久在线观看| 另类精品久久| av网站免费在线观看视频| 色视频在线一区二区三区| 久久精品国产a三级三级三级| 天天操日日干夜夜撸| 人人澡人人妻人| 91成人精品电影| 日韩一本色道免费dvd| xxxhd国产人妻xxx| 久久婷婷青草| 国产熟女午夜一区二区三区 | 亚洲av中文av极速乱| 91久久精品国产一区二区成人| 日本欧美视频一区| 美女主播在线视频| 午夜激情av网站| 成年人免费黄色播放视频| 国产欧美另类精品又又久久亚洲欧美| 久久精品久久久久久久性| 大陆偷拍与自拍| 少妇的逼好多水| 国语对白做爰xxxⅹ性视频网站| 国产亚洲av片在线观看秒播厂| 国产男女超爽视频在线观看| 精品一区二区免费观看| 妹子高潮喷水视频| 22中文网久久字幕| 亚洲国产最新在线播放| 欧美+日韩+精品| 亚洲伊人久久精品综合| 性色av一级| 全区人妻精品视频| 日日爽夜夜爽网站| 午夜视频国产福利| 最近最新中文字幕免费大全7| 最近的中文字幕免费完整| av有码第一页| 美女xxoo啪啪120秒动态图| 亚洲国产精品国产精品| 国产 一区精品| 国产精品熟女久久久久浪| 亚洲,欧美,日韩| 色吧在线观看| 女的被弄到高潮叫床怎么办| 亚洲av日韩在线播放| 天堂8中文在线网| 免费黄频网站在线观看国产| 少妇被粗大猛烈的视频| 丰满饥渴人妻一区二区三| 99精国产麻豆久久婷婷| 啦啦啦中文免费视频观看日本| 国产高清三级在线| 少妇丰满av| 51国产日韩欧美| 成人亚洲精品一区在线观看| 国产成人av激情在线播放 | 成人国产麻豆网| 欧美xxxx性猛交bbbb| 国产精品一区二区在线观看99| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av天美| 午夜日本视频在线| 老司机亚洲免费影院| 日韩,欧美,国产一区二区三区| 国产男人的电影天堂91| 涩涩av久久男人的天堂| 久久精品国产自在天天线| 国产精品99久久99久久久不卡 | 18+在线观看网站| 亚洲av成人精品一二三区| 午夜激情福利司机影院| 大陆偷拍与自拍| 黄片播放在线免费| 考比视频在线观看| 国产男人的电影天堂91| 乱码一卡2卡4卡精品| 日本色播在线视频| a 毛片基地| 免费高清在线观看日韩| 久久青草综合色| 亚洲精品久久成人aⅴ小说 | 久久久久久人妻| 免费观看av网站的网址| 成人国产av品久久久| 狠狠婷婷综合久久久久久88av| 观看美女的网站| 国产免费又黄又爽又色| 久久久久久久久大av| 热re99久久精品国产66热6| 人妻夜夜爽99麻豆av| 啦啦啦视频在线资源免费观看| 另类亚洲欧美激情| 亚洲国产欧美在线一区| 日本91视频免费播放| 国产一区二区三区av在线| 欧美日韩av久久| 精品国产一区二区三区久久久樱花| 黄片播放在线免费| 国产又色又爽无遮挡免| 97在线视频观看| 十八禁高潮呻吟视频| 国产黄频视频在线观看| 99热全是精品| 国产成人精品久久久久久| 一二三四中文在线观看免费高清| 欧美+日韩+精品| 97在线视频观看| 一个人免费看片子| 日韩精品有码人妻一区| 亚洲精品456在线播放app| 国产女主播在线喷水免费视频网站| 亚洲高清免费不卡视频| 欧美日本中文国产一区发布| 人人澡人人妻人| 秋霞伦理黄片| 一本色道久久久久久精品综合| 女的被弄到高潮叫床怎么办| 亚洲天堂av无毛| 在线免费观看不下载黄p国产| 全区人妻精品视频| 性色avwww在线观看| 91精品三级在线观看| 精品一区在线观看国产| 成年女人在线观看亚洲视频| 国产精品国产三级国产av玫瑰| 18禁动态无遮挡网站| 亚洲精品日韩在线中文字幕| 国产精品一区www在线观看| 国产有黄有色有爽视频| 欧美日韩国产mv在线观看视频| 国产一区二区三区综合在线观看 | 三级国产精品片| 91久久精品电影网| 日韩亚洲欧美综合| 在线看a的网站| 精品卡一卡二卡四卡免费| 免费看光身美女| 亚洲av电影在线观看一区二区三区| h视频一区二区三区| 亚洲av.av天堂| 蜜桃久久精品国产亚洲av| 男人操女人黄网站| 成人二区视频| 男人操女人黄网站| 嘟嘟电影网在线观看| 男女边摸边吃奶| 免费日韩欧美在线观看| 亚洲av日韩在线播放| 最后的刺客免费高清国语| 成人免费观看视频高清| 精品少妇内射三级| videosex国产| 丝袜美足系列| 久久久久久久久久人人人人人人| 丝袜美足系列| 国产男女超爽视频在线观看| av国产久精品久网站免费入址| 五月开心婷婷网| 欧美日韩视频高清一区二区三区二| 久久久精品免费免费高清| 日韩中文字幕视频在线看片| 国产日韩欧美亚洲二区| 色婷婷av一区二区三区视频| 丁香六月天网| 最近最新中文字幕免费大全7| 黑人巨大精品欧美一区二区蜜桃 | 国产成人a∨麻豆精品| 日韩,欧美,国产一区二区三区| 黑人欧美特级aaaaaa片| 午夜福利,免费看| 在线观看国产h片| 午夜免费男女啪啪视频观看| 夫妻午夜视频| 精品一品国产午夜福利视频| 久久久精品94久久精品| 18+在线观看网站| 男女高潮啪啪啪动态图| 日韩在线高清观看一区二区三区| 丰满迷人的少妇在线观看| 亚洲人成网站在线观看播放| 久久午夜综合久久蜜桃| 亚洲,欧美,日韩| 青青草视频在线视频观看| 国产不卡av网站在线观看| 久久久精品94久久精品| 尾随美女入室| 视频中文字幕在线观看| 国产探花极品一区二区| 国产成人免费无遮挡视频| 人妻制服诱惑在线中文字幕| 91精品伊人久久大香线蕉| 欧美激情极品国产一区二区三区 | 高清毛片免费看| 日韩精品有码人妻一区| 高清在线视频一区二区三区| 七月丁香在线播放| 天天影视国产精品| 国产亚洲午夜精品一区二区久久| 成人午夜精彩视频在线观看| 国产亚洲最大av| 亚洲精品久久成人aⅴ小说 | 日韩电影二区| 欧美另类一区| 人妻一区二区av| 中国国产av一级| 国产伦理片在线播放av一区| 亚洲人与动物交配视频| 欧美三级亚洲精品| 老司机亚洲免费影院| 男女免费视频国产| 亚洲国产精品成人久久小说| 亚洲一区二区三区欧美精品| 欧美丝袜亚洲另类| 26uuu在线亚洲综合色| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 欧美精品高潮呻吟av久久| 爱豆传媒免费全集在线观看| 国产色爽女视频免费观看| 一本—道久久a久久精品蜜桃钙片| 免费黄频网站在线观看国产| 少妇的逼好多水| 日韩一区二区视频免费看| √禁漫天堂资源中文www| 国产av一区二区精品久久| 国产精品欧美亚洲77777| 国产午夜精品一二区理论片| 成人漫画全彩无遮挡| 亚洲无线观看免费| 久久 成人 亚洲| 女人久久www免费人成看片| 一二三四中文在线观看免费高清| 国产av精品麻豆| 欧美 亚洲 国产 日韩一| 午夜福利在线观看免费完整高清在| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在| 日韩亚洲欧美综合| 男女啪啪激烈高潮av片| 三级国产精品片| 午夜av观看不卡| 久久久久久久国产电影| 亚洲国产精品专区欧美| 嫩草影院入口| 免费观看在线日韩| 狂野欧美白嫩少妇大欣赏| 午夜日本视频在线| 欧美成人精品欧美一级黄| 又大又黄又爽视频免费| videos熟女内射| 日韩三级伦理在线观看| 亚洲精品久久成人aⅴ小说 | 人妻 亚洲 视频| 在线观看国产h片| 精品人妻熟女毛片av久久网站| 久久精品久久精品一区二区三区| 黑丝袜美女国产一区| 国产亚洲精品久久久com| 女性生殖器流出的白浆| 人人澡人人妻人| 99国产精品免费福利视频| 黄色怎么调成土黄色| 99久久精品一区二区三区| 国产成人免费观看mmmm| 大又大粗又爽又黄少妇毛片口| 激情五月婷婷亚洲| 国产成人freesex在线| 国产精品一区二区在线不卡| 99久久精品一区二区三区| 亚洲av福利一区| 国产片特级美女逼逼视频| 十八禁高潮呻吟视频| av福利片在线| 亚洲成人一二三区av| 女性生殖器流出的白浆| 日日爽夜夜爽网站| 久久久久久久久久成人| 国产高清国产精品国产三级| 日韩欧美一区视频在线观看| 老司机影院毛片| 男男h啪啪无遮挡| 国产在线免费精品| 天堂8中文在线网| a级片在线免费高清观看视频| 国产精品免费大片| 中文字幕久久专区| 亚洲av.av天堂| 自线自在国产av| 少妇被粗大猛烈的视频| 免费看av在线观看网站| 亚洲精品亚洲一区二区| 亚洲成人一二三区av| 亚洲国产av新网站| 青春草视频在线免费观看| 久久久久人妻精品一区果冻| 性高湖久久久久久久久免费观看| 99久久精品国产国产毛片| 亚洲精品自拍成人| 特大巨黑吊av在线直播| 日韩三级伦理在线观看| 日韩电影二区| 国产成人精品婷婷| 一个人免费看片子| 国产欧美另类精品又又久久亚洲欧美| 亚洲五月色婷婷综合| 日产精品乱码卡一卡2卡三| 欧美亚洲日本最大视频资源| 成人国产av品久久久| 99热国产这里只有精品6| tube8黄色片| 国产亚洲最大av| 岛国毛片在线播放| 2021少妇久久久久久久久久久| 久久免费观看电影| 久久久久久久国产电影| 久久久国产一区二区| 中国美白少妇内射xxxbb| 精品少妇内射三级| av网站免费在线观看视频| 国产精品久久久久久精品古装| 亚洲综合色惰| 赤兔流量卡办理| 黄色毛片三级朝国网站| 国产成人精品无人区| 国产精品国产三级国产专区5o| 国产国语露脸激情在线看| 夜夜爽夜夜爽视频| 日本av手机在线免费观看| 亚洲人成77777在线视频| 成年人午夜在线观看视频| 免费高清在线观看视频在线观看| 久久精品国产鲁丝片午夜精品| 亚洲内射少妇av| 99国产精品免费福利视频| 日韩免费高清中文字幕av| 久久久亚洲精品成人影院| 午夜精品国产一区二区电影| 高清av免费在线| 国产一区二区三区综合在线观看 | 欧美一级a爱片免费观看看| 欧美性感艳星| 夜夜看夜夜爽夜夜摸| 在线免费观看不下载黄p国产| 视频区图区小说| 日韩视频在线欧美| av国产精品久久久久影院| 日本免费在线观看一区| a级毛色黄片| 七月丁香在线播放| 日日摸夜夜添夜夜添av毛片| 午夜福利影视在线免费观看| 18在线观看网站| 乱人伦中国视频| 精品一区在线观看国产| 老司机影院毛片| 免费黄色在线免费观看| www.色视频.com| 18+在线观看网站| videossex国产| freevideosex欧美| 丁香六月天网| 亚洲情色 制服丝袜| 夜夜看夜夜爽夜夜摸| 欧美丝袜亚洲另类| 精品久久蜜臀av无| 欧美日本中文国产一区发布| 中文乱码字字幕精品一区二区三区| 国产熟女午夜一区二区三区 | 色视频在线一区二区三区| 精品熟女少妇av免费看| 蜜桃国产av成人99| 精品久久蜜臀av无| 日韩,欧美,国产一区二区三区| 久久久久网色| av福利片在线| 日韩一区二区视频免费看| 久久韩国三级中文字幕| 精品人妻偷拍中文字幕| 国产在线一区二区三区精| 久久ye,这里只有精品| 国产av精品麻豆| 国产亚洲一区二区精品| 久久久久视频综合| 在线精品无人区一区二区三| 亚洲精品日本国产第一区| 看非洲黑人一级黄片| 日韩欧美一区视频在线观看| 亚洲高清免费不卡视频| 免费高清在线观看视频在线观看| 免费黄频网站在线观看国产| 日本av手机在线免费观看| 国产免费一级a男人的天堂| 狠狠精品人妻久久久久久综合| 亚洲内射少妇av| 成人亚洲精品一区在线观看| 少妇熟女欧美另类| 成人国产av品久久久| 免费观看无遮挡的男女| 久久免费观看电影| 国产日韩欧美亚洲二区| 综合色丁香网| 大话2 男鬼变身卡| 蜜桃久久精品国产亚洲av| 久久ye,这里只有精品| 国产精品久久久久久久电影| 国产精品久久久久久久久免| 男女边吃奶边做爰视频| 欧美日韩综合久久久久久| 欧美3d第一页| 国产精品免费大片| 老司机影院毛片| 妹子高潮喷水视频| 国产男女内射视频| 国产高清不卡午夜福利| 久久99热6这里只有精品| 自拍欧美九色日韩亚洲蝌蚪91| 少妇高潮的动态图| 久久精品国产亚洲网站| 大码成人一级视频| www.av在线官网国产| 国产成人aa在线观看| 菩萨蛮人人尽说江南好唐韦庄| 高清视频免费观看一区二区| 男人爽女人下面视频在线观看| 日韩精品有码人妻一区| 中国美白少妇内射xxxbb| 国产精品嫩草影院av在线观看| 少妇被粗大猛烈的视频| 97超碰精品成人国产| 国产精品久久久久成人av| 观看av在线不卡| 日韩欧美一区视频在线观看| 一区二区三区乱码不卡18| 男人操女人黄网站| 午夜视频国产福利| 我要看黄色一级片免费的| 99热国产这里只有精品6| 日韩在线高清观看一区二区三区| 热99国产精品久久久久久7| 少妇丰满av| 国产伦理片在线播放av一区| 美女国产高潮福利片在线看| 国产成人91sexporn| 亚洲精品美女久久av网站| 亚洲精品第二区| 欧美精品国产亚洲| 成人亚洲欧美一区二区av| 晚上一个人看的免费电影|