• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility*

    2021-07-30 07:40:46ZhaoYongJiao焦照勇YiRanWang王怡然YongLiangGuo郭永亮andShuHongMa馬淑紅
    Chinese Physics B 2021年7期

    Zhao-Yong Jiao(焦照勇) Yi-Ran Wang(王怡然) Yong-Liang Guo(郭永亮) and Shu-Hong Ma(馬淑紅)

    1School of Physics,Henan Normal University,Xinxiang 453007,China

    2School of Science,Henan Institute of Technology,Xinxiang 453003,China

    Keywords: heterostructure,electronic and optical properties,first-principles calculation

    1. Introduction

    Since the advent of graphene, atomically thin twodimensional(2D)layered materials,such as insulating hexagonal boron nitride (h-BN), semiconducting molybdenum disulfide (MoS2), and conducting MXenes, have triggered world interest due to their superior properties[1,2]and the possibility of combining diverse atomic layers to create mechanically stacked heterostructures for manufacturing highperformance devices.[3-9]

    Owing to the atomically flat and inert surface, h-BN monolayer has proven to be beneficial to a variety of multifunctional devices consisting of graphene,[10-13]MoS2,[14-17]and others.[18-20]For example, the use of h-BN thin film as a substrate for monolayer MoS2can reduce the Coulombic charge scattering, lower the Schottky barrier height, and enhance the carrier mobility, showing excellent performance for optoelectronic device.[5,14,17,21]This has also been evidenced on another Gr/h-BN/MoSe2heterostructure by vertically stacking graphene (Gr) on the top of 2D h-BN and MoSe2.[3,22]

    Likewise, the semiconducting BC3monolayer, mimicking graphene in geometrical structure, has shown distinctive features such as a high elastic moduli (~256 N/m), an excellent thermal conductivity (~410 W/mK), a relatively high carrier mobility of hole (5.13×104cm2·V-1·s-1along the armchair direction), a favorable optical response to visible light,[23,24]and a strain-tunable electronic and optical properties,[23-26]improved optical responses via combining with C3N monolayer forming heterostructure,[27]which make it appealing to optoelectronic device design. Besides, the controllable properties via using an electric-field/strain have been predicted in a number of other van der Waals (vdW)heterostructures.[4,27-30]

    It is thus intriguing to make clear what the properties of the heterostructure vertically stacked by BC3and h-BN monolayers are,and how the heterostructure responds to an applied external electric field and strain. In this work, we study the feasibility of forming 2D heterostructure of h-BN/BC3,focusing on its stability,mechanical property,carrier mobility,electronic and optical properties, by performing first-principles calculation. Moreover, the electronic band structure of h-BN/BC3is evaluated under an applied electric field and external strain,and the optical properties are investigated as well.

    2. Computational details

    First-principles calculation was performed within the density functional theory (DFT) framework by using projector-augmented wave (PAW) pseudopotential, as implemented in VASP code,[31]in conjunction with the generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof(PBE)functional.[32]A plane wave basis set with a kinetic energy cutoff of 500 eV and the van der Waals(vdW)interaction with the DFT-D2 correction[33]were considered in the calculations. The optimized structures were obtained by relaxing all atomic positions through using the conjugate gradient scheme until the energy and force converged to 10-5eV and 0.01 eV/?A,respectively.

    The optimized lattice parameters of freestanding h-BN and BC3monolayer were 2.51 ?A and 5.17 ?A, respectively,which together with the interatomic bond lengths are shown in Fig. 1(a). Figure 1(a) also shows the comparison between our results and previous results in the literature.[22,25]The unit cell of the h-BN/BC3heterostructure with a small lattice mismatch of about 2.9%, was prepared with different stacking patterns by using a 2×2 supercell of h-BN monolayer and a primitive cell of BC3monolayer(see Figs.1(b)-1(e)),consisting of six boron atoms, six carbon atoms, and four nitrogen atoms,and a vacuum layer of 16 ?A.The Brillouin zone[34]was sampled with 7×7×1 and 11×11×1k-points for structural relaxation and electronic property calculations, respectively,and the charge transfers were obtained by the Bader charge method.[35]

    3. Results and discussion

    3.1. Equilibrium geometrical structure and stability

    Fig.1. (a)Top views of h-BN and BC3 primitive unit cells with their lattice parameters(a1,a2)and(b1,b2),and hexagonal Brillouin zone and three high-symmetry points, Γ, M, and K in reciprocal space with basis vectors g1 and g2. (b)-(e)) Top and side views for optimized configurations of h-BN/BC3 heterostructure. Corresponding bond distances,interlayer distances,and formation energies are also shown.

    Meanwhile, the most favorable configuration S1is also determined by the increased energy(ΔE)relative to the equilibrium configuration of h-BN/BC3as indicated in Fig. 2(a),which are obtained by examining the lateral displacements of the h-BN monolayer along the in-planexandydirections (δxy) in the h-BN/BC3interface, respectively. In the case of configuration S1, the binding energy (Ebind) defined byEbind= (Etotalh-BN-Etotalh-BN+BC3)/S, whereEtotalh-BN+BC3denotes the sum of the total energy of freestanding h-BN and BC3monolayer fixed in their corresponding heterostructure lattice,Sis the sectional area of h-BN/BC3, theEbindis estimated to be-22.04 meV/?A2,quite close to the C3N/graphene(-20.72 meV/?A2).[36]Besides,the excellent structural stability of configuration S1is shown in Fig. 2(b) by varying its binding energy with vertical interlayer spacing (d) between the h-BN sheet and BC3sheet. In the equilibrium geometry,the vertical interlayer distanced=3.15 ?A implies the absence of chemical bonds between the h-BN and BC3sheets, thus confirming the vdW interaction at the h-BN/BC3interface.

    Fig.2. (a)Evolution of total energy difference with displacement δxy of the BC3 layer relative to h-BN, with origin taken at the lowest energy confgiuration. (b) Binding energy per unit cell versus interlayer spacing d of h-BN/BC3 heterostructure. [(c),(d)]Molecular dynamics simulations for fnial structural confgiuration after 3000 fs and total energy fluctuations with time for h-BN/BC3 at T =300 K,respectively.

    Additionally,the good thermal stability of h-BN/BC3heterostructure at 300 K is verified by the slight energy fluctuation in a period of 3 ps in time steps of 1 fs and the well-retained final structure shown in Figs. 2(c) and 2(d), obtained by performing theab initiomolecular dynamics (AIMD) simulations with the constant particle number-volume-temperature(NVT)canonical ensemble.[37]All the features manifest a stable equilibrium geometry of configuration S1 for the vdW h-BN/BC3heterostructure.

    3.2. Mechanical properties

    According to the calculations in Table 1,the four independent elastic constants:C11,C22,C12, andC44(1.18 N/m)and the others fit well with Born’s mechanical stability criteria:[41]C44>0,C11>|C12|, and (C11+2C22)C33>2C213, displaying a good mechanical stability of the h-BN/BC3heterostructure. Moreover,the nearly identical elastic constants(C11(22)),the Young’s moduli, and the Poisson’s ratios along different directions show an isotropic behavior of the h-BN/BC3heterostructure, as well as similar compressibility, stretchability to its components due to the quite similar elastic constants. In contrast, the stiffness of the h-BN/BC3nanohybrid is greatly improved by nearly twice larger in elastic constants(C11=583.454 N/m andC22=580.59 N/m)and the Young’s moduli than its two isolated components. In comparison with the C3N/graphene heterostructure,[36]the h-BN/BC3is predicted to have a slightly less stiffness and a quite close Poisson’s ratio.

    Table 1. Calculated elastic constants Cxx(yy/xy) (N/m)(x=1,y=2),Young’s modulus Y2D x(y) (N/m),and Poisson’s ratio ν2Dx(y) for h-BN/BC3 nanohybrid in comparison with those of monolayer h-BN,BC3 and graphene.

    3.3. Electronic properties

    To gain more knowledge of the h-BN/BC3heterostructure,we calculate the electronic properties such as the electrostatic potential, electron charge redistribution and electronic band alignment. As shown in Fig. 3(a), the electrostaticpotential-well depths of its two isolated components are almost identical, giving rise to a rather weak electron charge redistribution occurring in the vdW gap.This is in good accordance with the plot of the three-dimensional(3D)charge density difference (CDD) and plot of thexy-plane average CDDversus zshown in Fig.3(b). A small number of 0.02 electrons are predicted to flow from h-BN side to BC3sheet. It is notable that all the band structures are calculated at GGA-PBE level and the obtained band-gaps are 4.65 eV and 0.67 eV for the freestanding h-BN and BC3sheet,respectively,which are in good agreement with other calculations.[27]In Fig.3(c),the projected band structures on h-BN(black dots)and BC3(red dots) monolayer display that the electronic states of h-BN in the h-BN/BC3composite are far from the Fermi level and that the electronic states of BC3monolayer are preserved as well as those of single-layer BC3. In other words,neither the conduction band minimum (CBM) nor the valence band maximum(VBM) of h-BN/BC3is disturbed by h-BN. The band-gap of h-BN/BC3gets narrower slightly down to 0.56 eV at PBE level(1.70 eV at HSE06 level) relative to that of monolayer BC3(0.67 eV at PBE level). Like h-BN/InSe,[42]the h-BN/BC3heterojunction exhibits type-I band alignment (see Fig. 3(d))due to the large band-gap discrepancy between the h-BN and BC3, which is useful for light-emitting diodes (LEDs) and optoelectronic devices requiring a quantum well structure.Meanwhile,the work function(Φ)defined byΦ=Evac-EF,withEvacandEFdenoting the vacuum level and Fermi level,respectively, is obtained to be 5.21 eV for h-BN/BC3, which is between those of monolayer h-BN (6.19 eV) and monolayer BC3(4.85 eV). All these characteristics show a weaker vdW interaction on forming the h-BN/BC3heterostructure and its electronic structure is mainly predominated by monolayer BC3.

    Further considering a heterostructure as an electronic device, we evaluate the electronic band structure of h-BN/BC3heterostructure under external electric field (E-field). As shown in Fig. 4, the appliedE-field has a slight effect on the electronic band structure, which retains an indirect semiconducting band. For instance,the tiny upshift(less than 0.1 eV)of the conductive band minimum, combining with a nearly constant valence band maximum, gives rise to the band-gap ranging from 0.51 eV to 0.61 eV under anE-field. What is notable is that the valence band edge atKpoint moves downward with the positiveE-field increasing,while under the action of a negativeE-field it shifts to higher energy and this upshift becomes more prominent withE-field turns more negative,finally the VBM moves away fromΓto K point under anE-field strength of-0.5 V/?A,quite approaching to the Fermi level (EF). Meanwhile, the further increasing of negativeEfield strength can narrow the band-gap to 0.28 eV under anEfield strength of-0.7 V/?A,by downshifting the CBM.Overall,the electronic band structure of h-BN/BC3heterostructure exhibits a slight variation under the appliedE-field with its strength less than 0.5 V/?A.

    Fig. 3. (a) Average electrostatic potential of h-BN/BC3 heterostructure versus z. (b) Planar average charge density difference (CDD) versus z of heterostructure,with insert showing 3D isosurface of CDD and the cyan/yellow region representing electron depletion/accumulation with an isosurface value of 0.0004 e/?A3. (c)Band structures(at PBE level)of monolayer h-BN,monolayer BC3, and h-BN/BC3 heterostructures, with Fermi level(EF)set to be zero. Contributions of BC3 and h-BN to the projected band structure are represented in red and black, respectively. (d) Band alignments of monolayer h-BN,monolayer BC3,and h-BN/BC3 heterostructures with respect to the vacuum level.

    Fig.4. Variation of(a)band-gap,(b)band-edge,and(c)electronic band structures of h-BN/BC3 heterostructure with external electric fields(E-field).(d)EF being set to be zero and applied E-field being defined,with the arrow indicating the forward direction.

    3.4. In-plane strain effect on heterostructure

    3.4.1. Carrier mobility under uniaxial strains

    Fig. 5. (a) Orthogonal supercell of h-BN/BC3 heterostructure, (b) band structure of h-BN/BC3 heterostructure, (c) band energies of the VBMs and CBMs versus uniaxial strain along armchair and zigzag direction for h-BN/BC3,and(d)total energy with respect to uniaxial strain relationship along x direction and y direction of h-BN/BC3.

    As displayed in Fig. 5(a), the orthogonal supercell of h-BN/BC3is used to calculate the carrier mobilities along thexdirection andydirection, and the related results are given in Table 2. Firstly, the effective mass in h-BN/BC3is predicted to be 0.18mefor electrons and 0.90mefor holes along thexdirection,1.68mefor electrons and 0.72mefor holes along theydirection in our studies. As for other two elements related to the carrier mobility, the DP constantE1is a parameter of the coupling strength of electron or hole to the acoustic phonon,which can be calculated by linearly fitting the data of compressing and stretching the lattice constants along thexdirection andydirection in Fig.5(d).Meanwhile,the mobile carries of monolayer BC3are listed in Table 2,which have a slight difference with previous calculations,[26]the possibility may be the PBE functional considered in our calculation while HSE06 functional employed in the work of Zhanget al. It can be seen that the calculated values ofE1along thex/ydirection for hole/electron in Table 2 for h-BN/BC3are different from those for the monolayer BC3.In particular,for the h-BN/BC3the absolute value ofE1along thexdirection for electron is nearly doubled and inversely, that of hole along the same direction is considerably lowered to 0.80. And the elastic modulusCis estimated at 583.45 N/m and 580.59 N/m along thexdirection andydirection for h-BN/BC3, nearly twice as much as that of monolayer BC3.[26]Comparing with BC3monolayer,the enhanced mobile carries in h-BN/BC3correspond to the narrower band-gap.

    Table 2. Calculated deformation potential constant E1,in-plane stiffness C,effective mass m*,and electron and hole mobility μ in x direction and y direction of h-BN/BC3 heterostructure at 300 K.

    Based on the above calculations, the carrier mobilities of h-BN/BC3at room temperature (300 K) are given in Table 2, which shows an anisotropic behavior and is nearly ten times larger than that of monolayer BC3, except for the lowered hole mobility along thexdirection. The obtained mobility for electrons is 4.86×103cm2·V-1·s-1and 1.07×103cm2·V-1·s-1along thexdirection andydirection, respectively, while that for holes along thexdirection goes up to 16.09×103cm2·V-1·s-1, twice as large as that along theydirection. The enhanced carrier mobility is quite vital for high-performance optoelectronic devices.

    3.4.2. Electronic and optical properties under biaxial strains

    A number of previous theoretical and experiment research studies show that the use of external strain is an effective method to modulate the electronic and optical properties of the 2D materials.[25,46]Hence, we also examine the effect of in-plane biaxial strain (ε‖) ranging from-6% to 6% as proposed previously[25]on the electronic and optical properties of h-BN/BC3,with the definitionε‖=(l-l0)/l0,withlandl0corresponding to the lattice constant with and without strain.At zero strain,a band-gap of 1.70 eV obtained at HSE06 level enable the h-BN/BC3heterostructure to be a promising photocatalyst with a visible-light absorption. Like the bilayer BC3,[25]an external strain is used to modify the electronic band structure of h-BN/BC3,i.e., band-gap expands with the tensile strain increasing due to an upshift of CBM at a high symmetryMpoint together with the almost unchanged VBM atΓpoint, and an inverse case under the compressive strains as shown in Fig. 6(a). A nearly linear increase of the bandgap with strain varying from-6% to 6% is observed from Fig. 6(b), except for a slight deviation under a compressive strain of 4%. Thus, it is feasible to moderately modulate the band gap of h-BN/BC3via applying an external strain. To evaluate the thermal stability,ab initiomolecular dynamics(AIMD) simulations are conducted for h-BN/BC3under 6%and-6%strains at 300 K.Figure 7 shows that the energy oscillates within a small range for h-BN/BC3during the period of AIMD simulation,and the final relaxed configuration has a slight deformation compared with the initial structure. Hence,it is confirmed that the h-BN/BC3possesses good stability under strain.

    The optical absorption properties are further evaluated by the complex dielectric functionε(ω)=ε1(ω)+iε2(ω). The imaginary partε2(ω)is obtained from the electronic structures by using the joint density of states and the optical matrix overlap,and the real partε1(ω)follows the Kramers-Kroning relationship. The obtained dielectric constants (see Fig. 6(c))show an optical gap of 2.05 eV for h-BN/BC3, confirming the visible-light absorption. Meanwhile, one can observe an enhanced intensity of peak and a prominent red shift in the imaginary part of dielectric function spectrum for h-BN/BC3under zero strain as compared with those for BC3monolayer.Especially, there are two absorption regions for h-BN/BC3,i.e., the high absorption region from 1.5 eV to 5.0 eV, and the low absorption region between 5.0 eV and 10.0 eV. The large area under theε2curve in the visible-light region from 1.5 eV to 5.0 eV with the highest peak of absorption spectrum at 2.73 eV, implies a high efficiency visible-light absorption and high absorption coefficient at these frequencies for h-BN/BC3. Additionally, under an applied tensile strain this heterostructure shows an optical response quite similar to pristine h-BN/BC3. In contrast, the applying of compressive strain(i.e.,-6%)can redshift the optical spectrum,with bandgap reducing 0.68 eV, and the peak intensity lowering about 3.80 eV.

    Fig. 6. Calculated results for h-BN/BC3 heterostructure under applied in-plane biaxial strain (ε‖). (a) Electronic band structure (at PBE level), (b)band-gap(at PBE/HSE06 level),and(c)imaginary part of dielectric function.

    Fig.7. Variations of energy with AIMD simulation time for h-BN/BC3 heterostructure under 6%and-6%strains with simulation lasting 5 ps at 300 K.And resulting structure is in the middle of the image.

    4. Conclusions

    By using first-principles calculation, we have studied the structural, mechanical and electronic properties of the h-BN/BC3heterostructure. The results indicate that the electronic properties of BC3monolayer are well preserved and the electron mobilities are enhanced by around ten times in the ultrahigh stiff van der Waals heterostructure. Moreover,the applying of an external electric field only induces its electronic band structure to be modified slightly, while an applied external strain can manipulate the electronic and optical properties of h-BN/BC3,especially under compressive strain. These findings manifest that the h-BN/BC3heterostructure can be used in BC3-based optoelectronic devices.

    女性生殖器流出的白浆| 国产一区二区激情短视频 | 精品人妻在线不人妻| 亚洲欧美日韩另类电影网站| 高清欧美精品videossex| 亚洲欧洲精品一区二区精品久久久 | 侵犯人妻中文字幕一二三四区| 日韩欧美精品免费久久| 午夜福利视频精品| 午夜久久久在线观看| 超色免费av| 交换朋友夫妻互换小说| 天天操日日干夜夜撸| 制服丝袜香蕉在线| 成人亚洲精品一区在线观看| 在线观看美女被高潮喷水网站| 久久久久久久久久久免费av| 午夜福利视频在线观看免费| 亚洲五月色婷婷综合| 欧美xxxx性猛交bbbb| 国产亚洲精品久久久com| 国产成人a∨麻豆精品| av天堂久久9| 欧美少妇被猛烈插入视频| 成人国语在线视频| www.色视频.com| 成人手机av| 日本av免费视频播放| 美女大奶头黄色视频| 久久久亚洲精品成人影院| 国产男女超爽视频在线观看| 少妇高潮的动态图| 亚洲性久久影院| 国产av一区二区精品久久| 青春草视频在线免费观看| 亚洲三级黄色毛片| 九九爱精品视频在线观看| 国产精品一二三区在线看| 韩国av在线不卡| 亚洲五月色婷婷综合| 狂野欧美激情性bbbbbb| 女性被躁到高潮视频| 熟女人妻精品中文字幕| 国产爽快片一区二区三区| 久久精品熟女亚洲av麻豆精品| 国产毛片在线视频| 大香蕉久久网| kizo精华| videosex国产| 边亲边吃奶的免费视频| 免费观看a级毛片全部| 精品一区二区免费观看| 精品一区二区免费观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品乱久久久久久| 又粗又硬又长又爽又黄的视频| 欧美性感艳星| 亚洲色图综合在线观看| 看免费av毛片| 黄色毛片三级朝国网站| 欧美日韩国产mv在线观看视频| 亚洲av.av天堂| 丰满饥渴人妻一区二区三| 国产成人精品一,二区| 国产精品蜜桃在线观看| 男女午夜视频在线观看 | 色婷婷久久久亚洲欧美| 高清欧美精品videossex| 国产精品99久久99久久久不卡 | 精品熟女少妇av免费看| 欧美精品一区二区大全| 亚洲精品视频女| 亚洲av国产av综合av卡| 精品熟女少妇av免费看| 国产精品一区二区在线观看99| 欧美最新免费一区二区三区| 老司机影院毛片| 日韩一本色道免费dvd| 亚洲精品日韩在线中文字幕| 69精品国产乱码久久久| 一区二区av电影网| 成人国语在线视频| 九色成人免费人妻av| 男女高潮啪啪啪动态图| 看免费av毛片| 国产av国产精品国产| 成人无遮挡网站| 欧美国产精品va在线观看不卡| 最近的中文字幕免费完整| 香蕉精品网在线| 亚洲精品一区蜜桃| 亚洲三级黄色毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99久国产av精品国产电影| 在现免费观看毛片| 国产精品一二三区在线看| 乱人伦中国视频| 亚洲三级黄色毛片| 在线天堂中文资源库| 亚洲第一区二区三区不卡| 久久久亚洲精品成人影院| 中文欧美无线码| 国产国语露脸激情在线看| 777米奇影视久久| 欧美少妇被猛烈插入视频| 亚洲欧美日韩卡通动漫| 亚洲高清免费不卡视频| 亚洲国产色片| 亚洲av男天堂| 精品国产一区二区三区久久久樱花| 久久久久久久久久人人人人人人| 精品国产一区二区三区四区第35| 亚洲人成网站在线观看播放| 成人免费观看视频高清| 男女免费视频国产| 亚洲激情五月婷婷啪啪| 国产精品成人在线| 亚洲天堂av无毛| 一本色道久久久久久精品综合| 一级毛片电影观看| 黄片播放在线免费| 2021少妇久久久久久久久久久| 99热全是精品| 黄网站色视频无遮挡免费观看| 女的被弄到高潮叫床怎么办| 成年女人在线观看亚洲视频| 97超碰精品成人国产| 看免费成人av毛片| 国产福利在线免费观看视频| 国产黄频视频在线观看| 最新中文字幕久久久久| 久久久精品94久久精品| 日日摸夜夜添夜夜爱| av电影中文网址| 丰满饥渴人妻一区二区三| 晚上一个人看的免费电影| 成人综合一区亚洲| 色5月婷婷丁香| 免费女性裸体啪啪无遮挡网站| 国产熟女午夜一区二区三区| 国产成人免费观看mmmm| av天堂久久9| 国产亚洲精品久久久com| 亚洲精品中文字幕在线视频| 高清在线视频一区二区三区| 80岁老熟妇乱子伦牲交| 看免费成人av毛片| 日本-黄色视频高清免费观看| 欧美精品一区二区免费开放| 中国三级夫妇交换| 久久久久人妻精品一区果冻| 男男h啪啪无遮挡| 曰老女人黄片| 中文字幕亚洲精品专区| 国产色爽女视频免费观看| 国产伦理片在线播放av一区| 九草在线视频观看| 久久人妻熟女aⅴ| 超色免费av| 成人国产av品久久久| 日本与韩国留学比较| 欧美人与性动交α欧美精品济南到 | 精品一区二区三区视频在线| 免费黄色在线免费观看| 999精品在线视频| 夜夜爽夜夜爽视频| 午夜福利,免费看| 90打野战视频偷拍视频| 一级毛片黄色毛片免费观看视频| 18在线观看网站| 看非洲黑人一级黄片| 菩萨蛮人人尽说江南好唐韦庄| 久久热在线av| 欧美日韩国产mv在线观看视频| 麻豆乱淫一区二区| 九九爱精品视频在线观看| 一级爰片在线观看| 高清视频免费观看一区二区| av.在线天堂| av福利片在线| 一本色道久久久久久精品综合| 在线观看免费高清a一片| 另类精品久久| 免费人成在线观看视频色| 伦理电影大哥的女人| 亚洲精品乱码久久久久久按摩| 草草在线视频免费看| 免费av中文字幕在线| 欧美日韩国产mv在线观看视频| 狂野欧美激情性bbbbbb| 丝袜喷水一区| 国产毛片在线视频| 国产精品久久久久久久电影| 久久久亚洲精品成人影院| 极品人妻少妇av视频| 狂野欧美激情性xxxx在线观看| 一级毛片我不卡| 狠狠精品人妻久久久久久综合| 少妇的逼水好多| 伦理电影大哥的女人| 久久免费观看电影| 日产精品乱码卡一卡2卡三| a级毛片在线看网站| 国产欧美另类精品又又久久亚洲欧美| 国产视频首页在线观看| 日本av手机在线免费观看| 国产精品一区www在线观看| 三上悠亚av全集在线观看| 亚洲精品久久成人aⅴ小说| 天堂中文最新版在线下载| 久久久久久伊人网av| 亚洲综合精品二区| 亚洲国产毛片av蜜桃av| 国产男女超爽视频在线观看| 免费高清在线观看视频在线观看| 欧美老熟妇乱子伦牲交| 日韩在线高清观看一区二区三区| 全区人妻精品视频| 两性夫妻黄色片 | 搡老乐熟女国产| av国产精品久久久久影院| 欧美人与性动交α欧美软件 | 狠狠婷婷综合久久久久久88av| 欧美日韩成人在线一区二区| 国产成人91sexporn| 中文字幕av电影在线播放| 亚洲人与动物交配视频| 精品国产一区二区三区四区第35| 性高湖久久久久久久久免费观看| 视频在线观看一区二区三区| 日日撸夜夜添| 热re99久久国产66热| 18禁动态无遮挡网站| 国产精品人妻久久久久久| 男的添女的下面高潮视频| 日韩中文字幕视频在线看片| 国产亚洲最大av| 美国免费a级毛片| 国产又爽黄色视频| 九九在线视频观看精品| 日本wwww免费看| 日日爽夜夜爽网站| 热99国产精品久久久久久7| 老熟女久久久| 色94色欧美一区二区| 99香蕉大伊视频| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区国产| 国产一区有黄有色的免费视频| 成年人免费黄色播放视频| 两性夫妻黄色片 | 午夜激情av网站| 成人综合一区亚洲| 国产精品久久久久久久电影| 国产极品粉嫩免费观看在线| 免费观看性生交大片5| 日韩一区二区三区影片| 少妇被粗大的猛进出69影院 | 激情五月婷婷亚洲| 国产成人免费无遮挡视频| av国产精品久久久久影院| 午夜精品国产一区二区电影| 90打野战视频偷拍视频| 亚洲av成人精品一二三区| 黄片播放在线免费| 国产无遮挡羞羞视频在线观看| 不卡视频在线观看欧美| 午夜av观看不卡| 9色porny在线观看| 精品一区二区三区视频在线| 日本欧美视频一区| 99国产综合亚洲精品| 99热网站在线观看| 亚洲成人手机| 成年av动漫网址| 在线天堂最新版资源| 国产精品一国产av| av天堂久久9| 人妻系列 视频| 国产精品国产av在线观看| 欧美精品人与动牲交sv欧美| 男女边吃奶边做爰视频| 久久久久网色| 秋霞伦理黄片| 午夜福利网站1000一区二区三区| 精品一区二区免费观看| 成人无遮挡网站| videos熟女内射| 你懂的网址亚洲精品在线观看| 亚洲美女视频黄频| 亚洲精品av麻豆狂野| 丝袜在线中文字幕| 国产一区二区三区综合在线观看 | 超碰97精品在线观看| 亚洲欧美成人精品一区二区| 国产极品天堂在线| 色哟哟·www| 亚洲欧美日韩另类电影网站| 中国美白少妇内射xxxbb| 制服诱惑二区| av在线播放精品| 天天躁夜夜躁狠狠躁躁| 捣出白浆h1v1| 中文欧美无线码| 在线观看美女被高潮喷水网站| 国产无遮挡羞羞视频在线观看| 色5月婷婷丁香| 午夜av观看不卡| 国产av国产精品国产| 国产深夜福利视频在线观看| 国产免费现黄频在线看| 99热国产这里只有精品6| 18禁在线无遮挡免费观看视频| 成年av动漫网址| 日韩熟女老妇一区二区性免费视频| 少妇人妻 视频| 咕卡用的链子| 国产成人精品一,二区| 精品福利永久在线观看| 午夜久久久在线观看| 婷婷色av中文字幕| 深夜精品福利| 精品一区二区三区四区五区乱码 | 伦理电影免费视频| 亚洲国产精品成人久久小说| 亚洲丝袜综合中文字幕| 亚洲精品日韩在线中文字幕| 亚洲欧洲精品一区二区精品久久久 | 秋霞在线观看毛片| 18+在线观看网站| 香蕉国产在线看| 黄片播放在线免费| 高清毛片免费看| 免费av不卡在线播放| 99热网站在线观看| 五月天丁香电影| 人人妻人人澡人人爽人人夜夜| 中文字幕人妻熟女乱码| 亚洲婷婷狠狠爱综合网| 亚洲欧美色中文字幕在线| 91午夜精品亚洲一区二区三区| 搡老乐熟女国产| 国产精品蜜桃在线观看| 五月开心婷婷网| 一本—道久久a久久精品蜜桃钙片| 成年人午夜在线观看视频| 日韩电影二区| 男女啪啪激烈高潮av片| 在线观看美女被高潮喷水网站| 精品99又大又爽又粗少妇毛片| 欧美最新免费一区二区三区| 一级片'在线观看视频| 97精品久久久久久久久久精品| 国产成人午夜福利电影在线观看| 如日韩欧美国产精品一区二区三区| 国产成人a∨麻豆精品| 国产色爽女视频免费观看| 久久久久久久久久久久大奶| 国产综合精华液| 晚上一个人看的免费电影| 亚洲av电影在线进入| 中文精品一卡2卡3卡4更新| 国产精品99久久99久久久不卡 | 国产精品久久久久久av不卡| 日本欧美视频一区| 91午夜精品亚洲一区二区三区| 一二三四中文在线观看免费高清| 国产一级毛片在线| 99国产综合亚洲精品| 午夜激情久久久久久久| 日韩一区二区三区影片| 亚洲性久久影院| 国产欧美日韩综合在线一区二区| 久久国内精品自在自线图片| 久久久精品免费免费高清| 亚洲精品久久久久久婷婷小说| 天堂8中文在线网| 久久久a久久爽久久v久久| 亚洲av国产av综合av卡| 成人漫画全彩无遮挡| 亚洲人与动物交配视频| 伦精品一区二区三区| 日韩伦理黄色片| 高清欧美精品videossex| 欧美变态另类bdsm刘玥| 国产精品偷伦视频观看了| 人人妻人人添人人爽欧美一区卜| 久热久热在线精品观看| videosex国产| av一本久久久久| 男人舔女人的私密视频| av.在线天堂| 久久综合国产亚洲精品| 久久久久久久国产电影| 永久网站在线| 午夜免费鲁丝| 亚洲av在线观看美女高潮| 天天躁夜夜躁狠狠久久av| 高清不卡的av网站| 免费少妇av软件| av在线观看视频网站免费| av天堂久久9| 国产亚洲av片在线观看秒播厂| 日产精品乱码卡一卡2卡三| 卡戴珊不雅视频在线播放| 国产又爽黄色视频| 日本av免费视频播放| 欧美 亚洲 国产 日韩一| 久久狼人影院| 国产欧美日韩综合在线一区二区| 日本欧美国产在线视频| 熟女av电影| 精品久久久久久电影网| a级毛片黄视频| 黄色一级大片看看| 亚洲精品乱久久久久久| 亚洲av综合色区一区| 最近最新中文字幕大全免费视频 | av天堂久久9| 久久精品久久久久久久性| 久久国产精品大桥未久av| 美女xxoo啪啪120秒动态图| 国产亚洲av片在线观看秒播厂| 成人手机av| 国产精品熟女久久久久浪| 亚洲国产日韩一区二区| 在线观看三级黄色| 妹子高潮喷水视频| 五月开心婷婷网| 自拍欧美九色日韩亚洲蝌蚪91| 飞空精品影院首页| 成人毛片a级毛片在线播放| 制服人妻中文乱码| 涩涩av久久男人的天堂| 亚洲激情五月婷婷啪啪| 99九九在线精品视频| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 韩国精品一区二区三区 | 黄色毛片三级朝国网站| 男人添女人高潮全过程视频| 婷婷色综合大香蕉| 国产精品熟女久久久久浪| 岛国毛片在线播放| 久久人人爽av亚洲精品天堂| 丁香六月天网| 伊人亚洲综合成人网| 男男h啪啪无遮挡| 日韩成人伦理影院| 亚洲一级一片aⅴ在线观看| 久久97久久精品| 成年美女黄网站色视频大全免费| 免费观看a级毛片全部| 一级片免费观看大全| av在线播放精品| 国产不卡av网站在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲精品中文字幕在线视频| 久久99一区二区三区| 人人澡人人妻人| 乱码一卡2卡4卡精品| 成人手机av| 欧美日韩av久久| 夫妻性生交免费视频一级片| 久久人人爽av亚洲精品天堂| 亚洲欧美色中文字幕在线| 亚洲精品,欧美精品| 国产免费一区二区三区四区乱码| 免费看不卡的av| 爱豆传媒免费全集在线观看| 黄色 视频免费看| 亚洲精品自拍成人| 亚洲欧美清纯卡通| 精品酒店卫生间| 精品一区在线观看国产| 国产一区有黄有色的免费视频| 99热国产这里只有精品6| 国产日韩欧美视频二区| 大陆偷拍与自拍| 夫妻午夜视频| 日本91视频免费播放| 亚洲精品视频女| 国产在视频线精品| 精品人妻熟女毛片av久久网站| 爱豆传媒免费全集在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品视频女| 老司机影院成人| 免费在线观看完整版高清| 成人影院久久| 久久精品国产亚洲av天美| 精品人妻偷拍中文字幕| 视频中文字幕在线观看| 日韩欧美一区视频在线观看| 中国三级夫妇交换| 自线自在国产av| 街头女战士在线观看网站| 精品一区二区三区视频在线| 国产精品一区二区在线观看99| 亚洲 欧美一区二区三区| 欧美变态另类bdsm刘玥| 高清av免费在线| 国产日韩欧美亚洲二区| 精品国产一区二区久久| 女的被弄到高潮叫床怎么办| 成人毛片a级毛片在线播放| av女优亚洲男人天堂| 亚洲欧美精品自产自拍| 2021少妇久久久久久久久久久| 国产成人精品在线电影| 亚洲精品av麻豆狂野| 久久久久国产网址| 国产成人精品婷婷| 日日啪夜夜爽| 国产 一区精品| 亚洲成人一二三区av| 亚洲成色77777| 午夜福利视频精品| 黄色配什么色好看| 日日摸夜夜添夜夜爱| 黄色一级大片看看| 久久久久久久精品精品| 91精品三级在线观看| 日韩成人av中文字幕在线观看| 日韩精品免费视频一区二区三区 | 精品第一国产精品| 日韩成人伦理影院| 久久综合国产亚洲精品| 成年动漫av网址| 十分钟在线观看高清视频www| 新久久久久国产一级毛片| 日韩不卡一区二区三区视频在线| 久久精品国产亚洲av天美| 又大又黄又爽视频免费| 在线亚洲精品国产二区图片欧美| 超色免费av| 欧美成人午夜精品| 亚洲精品久久久久久婷婷小说| 春色校园在线视频观看| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| 欧美日韩综合久久久久久| 性色avwww在线观看| 国产毛片在线视频| 久久99热这里只频精品6学生| 国产在线视频一区二区| xxxhd国产人妻xxx| 欧美日本中文国产一区发布| 国产av国产精品国产| 国产毛片在线视频| 亚洲情色 制服丝袜| 另类亚洲欧美激情| 国产高清国产精品国产三级| 国产成人午夜福利电影在线观看| 国产精品人妻久久久影院| 天天影视国产精品| 日韩中文字幕视频在线看片| 午夜影院在线不卡| 亚洲精品乱久久久久久| 国产又爽黄色视频| 大片电影免费在线观看免费| 国产免费又黄又爽又色| 久久久久视频综合| 日韩视频在线欧美| 2018国产大陆天天弄谢| 青春草视频在线免费观看| 黑人高潮一二区| 夜夜爽夜夜爽视频| 国产亚洲欧美精品永久| 老女人水多毛片| 国产极品粉嫩免费观看在线| av不卡在线播放| 高清视频免费观看一区二区| 成人手机av| 欧美性感艳星| 老司机影院成人| 涩涩av久久男人的天堂| 十八禁网站网址无遮挡| 香蕉丝袜av| 各种免费的搞黄视频| 纯流量卡能插随身wifi吗| 日本色播在线视频| 久久久久久久大尺度免费视频| 成人国产麻豆网| 久久久久网色| 免费av不卡在线播放| 亚洲精品国产av成人精品| 久久99一区二区三区| 51国产日韩欧美| 一区二区三区精品91| 建设人人有责人人尽责人人享有的| 亚洲天堂av无毛| 丝瓜视频免费看黄片| 日日撸夜夜添| 成年av动漫网址| 五月玫瑰六月丁香| 久热这里只有精品99| 国产成人av激情在线播放| 成人免费观看视频高清| 亚洲综合精品二区| 永久网站在线| a级毛片黄视频| 一级毛片黄色毛片免费观看视频| 国产亚洲精品久久久com| 亚洲一区二区三区欧美精品| 久热久热在线精品观看| 国产麻豆69| 久久精品国产鲁丝片午夜精品| 国产成人免费观看mmmm| 男人添女人高潮全过程视频| 欧美国产精品一级二级三级| 亚洲国产日韩一区二区| 久久午夜福利片| 国产一区二区激情短视频 | 午夜福利,免费看|