• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverted V-shaped evolution of superconducting temperature in SrBC under pressure*

    2021-07-30 07:40:34RuYiZhao趙如意XunWangYan閆循旺andMiaoGao高淼
    Chinese Physics B 2021年7期

    Ru-Yi Zhao(趙如意) Xun-Wang Yan(閆循旺) and Miao Gao(高淼)

    1Department of Physics,School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

    2College of Physics and Engineering,Qufu Normal University,Qufu 273165,China

    Keywords: SrBC,phonon-mediated superconductivity,anisotropic Eliashberg theory,first-principles calculation,maximally localized Wannier functions

    1. Introduction

    The outstanding superconductivity of MgB2stems from its unique electronic structure, whereas both theσ-bonding bands andπ-bonding band cross the Fermi level simultaneously.[1-3]The underlying superconducting mechanism in MgB2has been well understood by the strong-coupling anisotropic Migdal-Eliashberg theory. The consensus is that MgB2is a two-gap phonon-mediated superconductor.[4,5]Finding MgB2-type superconductor has drawn lots of attention both theoretically and experimentally.A fascinating analogue is hole-doped LiBC, namely, LixBC.By introducing Li vacancies, theσbands were predicted to be partially filled, leading to a highTcabout 100 K.[6]However, the Li vacancies cause significant lattice distortion,which impedes the metallization of theσbands.[7]As a result,no superconducting transition was observed in LixBC.[8-11]To avoid the formation of Li vacancies, introducing excess boron was proposed to be an alternative way to realize hole doping of LiBC, for example, Li2B3C, Li3B4C2,[12]and Li4B5C3.[13]We further systematically studied the electronphonon coupling (EPC) in free-standing and strained trilayer film LiB2C2.[14]It was found that the highestTccan be achieved is 125 K for LiB2C2film under biaxial tensile strain of 8%.

    In addition to doping holes, Haqueet al. suggested that doping electrons into LiBC by replacing Li with alkalineearth metalM(M=Mg, Ca, Sr, or Ba) may induce superconducting states.[15]For example, theTcwas estimated to be 51 K for MgBC with McMillan-Allen-Dynes formula.[15]It was shown by first-principles calculation thatMBC has two energy bands crossing the Fermi level, similar to the case in MgB2. Hence, it is necessary to determine theTcthrough self-consistently solving the anisotropic Eliashberg equations, rather than using the semi-empirical McMillan-Allen-Dynes formula. Very recently,utilizing the CALYPSO structure prediction method, SrBC was found to be stable at 50 GPa.[16]In particular,SrBC has been successfully synthesized in experiment.[16]It is thus quite interesting to accurately investigate the phonon-mediated superconductivity in SrBC and its evolution under pressure. Especially, whether the two metallic bands of SrBC can give rise to the high-Tctwo-gap superconductivity as in MgB2.

    In this work, the electronic structure, lattice dynamics,EPC,and superconductivity in SrBC are studied from ambient pressure to 100 GPa by means of the first-principles calculations. The lattice constants of SrBC show excellent isotropy during compression. This most likely originates from the appearance of interstitial electronic states between two boroncarbon sheets. B-2pzorbital and the interstitial states contribute mostly to the density of states around the Fermi level.We find that Sr phonons possess strong coupling with B-2pzorbital and interstitial states. Through Wannier interpolation technique, the EPC constantλis accurately calculated to be 0.709 at ambient pressure. Interestingly, there is a domelike feature forλwith the increase of the applied pressure.This can be explained by the competition between enhanced electron-phonon matrix element and hardened phonons. By solving the anisotropic Eliashberg equations, SrBC is determined to be a two-gap superconductor. TheTcshows an inverted V-shaped relationship with pressure. SrBC can achieve its maximalTcof 22 K under 50 GPa. Below 50 GPa,Tcalmost increases linearly, with a positive rate of 0.18 K/GPa.Contrarily,a negative slope of-0.08 K/GPa is found beyond 50 GPa. The slightly different pressure dependence forλandTcis due to the enlarged energy scale of electron pairing, as indicated by the characteristic phonon frequency.

    2. Methods

    In our calculations, the first-principles package,Quantum-ESPRESSO, was adopted.[17]We calculated the electronic states and phonon perturbation potentials[18]using the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhoff formula[19]and the optimized normconserving Vanderbilt pseudopotentials.[20]After convergence test, the kinetic energy cut-off and the charge density cutoff were chosen to be 80 Ry and 320 Ry, respectively. The charge densities were calculated on akmesh of 24×24×12 points in combination with a Methfessel-Paxton smearing[21]of 0.02 Ry. The dynamical matrices and the perturbation potentials were computed on a 8×8×4 mesh, based on the density-functional perturbation theory.[22]Ten randomlycentered s-type Gaussian functions were used as the initial guess to construct the maximally localized Wannier functions(MLWFs).[23]When checking the convergence of EPC constantλ,the phonon grid was fixed to 24×24×12 points,the electron grid was extended from 24×24×12,to 36×36×18,to 48×48×24, and finally to 72×72×36 points.[24]The Diracδ-functions for electrons and phonons were smeared out by a Gaussian function with the widths of 80 meV and 0.5 meV, respectively. An electron grid of 48×48×24 points was employed in solving the anisotropic Eliashberg equations.[24-26]The number of Matsubara frequency grid points was chosen to be 300. The highest temperature with non-zero superconducting gap corresponds to the transition temperature. In practice,the threshold value for nonvanishing gap was set to 0.01 meV during the numerical iterations.

    3. Results and discussion

    SrBC is isostructural to LiBC,in which the boron-carbon sheet forms a honeycomb lattice, while Sr atoms occupy the hollow sites between two adjacent boron-carbon sheets. At ambient pressure, the lattice constants are optimized asa=3.0122 ?A andc=8.9909 ?A,in excellent agreement with previous results.[15,16]The band structure of SrBC is shown in Fig. 1(a). Unlike semiconducting LiBC, SrBC is a metal, in which two bands crossing the Fermi level. Particularly, the energy gap that found in LiBC is absent near the Fermi level.Thus, the electronic structure of SrBC can not be simply regraded as the rigid shift of Fermi level of LiBC.There is strong hybridization among the 2pxand 2pyorbitals of boron and carbon atoms, as revealed by the peak of the orbital-resolved density of states (DOS) around-3.5 eV [Fig. 1(b)]. The hybridization that occurs in the two-dimensional honeycomb sheet will generate bondingσand antibondingσ*bands. The maximum of theσbands is about-1.4 eV,corresponding to the dispersionless bands alongΓ-Aline. While,the energy of theσ*bands is well above the Fermi level. As a consequence,the contribution toN(0) (DOS at the Fermi level) from 2pxand 2pyorbitals of boron and carbon atoms is tiny. The overlapping between the 2pzorbitals of carbon and boron atoms will engenderπandπ*bands. As we see, there is a pseudo gap for pz-related DOS, roughly around-1.5 eV [Fig. 1(b)].These bands can be respectively assigned toπandπ*bands below and above the pseudo gap. Therefore, theπ*bands(mainly from the B-2pzorbital) make a large contribution toN(0). Moreover,Sr-5s orbital occupies nonnegligible proportion ofN(0). These observations are different from the conclusion drawn in Ref.[15],in which the partially filled energy bands were assigned toσandπbands,respectively.

    Detailed analysis shows that the summation of orbitalresolved DOS does not match the total DOS near the Fermi level[Fig.1(c)]. Specifically,the orbital-resolved DOS is just about 58.8% of the total DOS. This indicates that there exist copious interstitial states.As confirmed by the integrated local DOS, abundant charge accumulation can be clearly observed in the middle region of two neighboring boron-carbon sheets[Fig.1(g)].We further project the weights of B-2pz,C-2pz,Sr-5s, and interstitial states onto the Fermi surfaces [Figs. 1(h)-1(k)]. The two incompletely filled energy bands yield two Fermi surfaces. The Fermi-surface states close to theKpoint mainly comprise of the B-2pzorbital [see the bottom panel of Fig. 1(h)]. Sr-5s orbital contributes mostly to the Fermi pocket surrounding theΓpoint. The interstitial states dominate the contribution to the hexagonal cylinder-like Fermi surface and states near theMpoint. We also map thek-resolved EPC constant,i.e.,λknon the Fermi surfaces. Obviously,the interstitial states on the hexagonal cylinder-like Fermi surface strongly couple with phonons[Fig.1(l)].

    Under 50 GPa, the lattice constants of SrBC are calculated to bea=2.7900 ?A andc=8.3331 ?A.Interestingly,aandcshrink about 7.38%and 7.32%,respectively,compared with the data obtained at ambient pressure.This means that SrBC is almost isotropic in compressibility. The isotropy of compressibility can at least retain to 100 GPa, under which the lattice constants are compressed by 11.2%and 11.1%alongaandcaxes,respectively. It is known that layered compounds always exhibit large anisotropy in compressibility, which reflects the bonding nature along different directions in the material. For instance,the compressibility along thecaxis is five times that along theaaxis for LiBC.[27]Similar situation was also reported in MgB2, where the lattice constantcdecreases faster with pressure thana.[28]The greater stiffness along thecaxis of SrBC compared to LiBC is closely related to the presence of interstitial states between boron-carbon sheets. After applying pressure,the band becomes more dispersive[Fig.1(d)]. Consequently, the sharp peaks in DOS are broadened [Fig. 1(e)].There still exist substantial interstitial states,which contribute 38.0% ofN(0) [Fig. 1(f)]. Due to the enlarged band widths,the Fermi pocket around theΓpoint disappears. The weights of B-2pz,C-2pz,Sr-5s,and interstitial states on the Fermi surfaces behavior similarly to the case under ambient pressure[Figs. 1(m)-1(p)]. Remarkably, the EPC is enhanced significantly[Fig.1(q)].

    Fig. 1. Electronic structure for SrBC. (a) Band structure under ambient pressure. The red lines and blue circles denote the bands obtained by first-principles calculation and interpolating the real-space Hamiltonian, respectively. The Fermi level is set to zero. (b) Orbital-resolved DOS.(c)Total DOS.(d)Band structure under 50 GPa. (e)Orbital resolved and(f)total DOS under 50 GPa. (g)Isosurface of integrated local density of states from -0.1 eV to 0.1 eV under ambient pressure. The isovalue is selected as 1.0×10-3 e/Bohr3. (h)-(q) The weights of B 2pz, C 2pz, Sr 5s,interstitial states,and momentum-resolved EPC constants on the Fermi surfaces. Here(h)-(l)correspond to the results under ambient pressure,(m)-(q)stand for the datum of 50 GPa.

    Figure 2 shows the lattice dynamics of SrBC. Although,SrBC was proved to be stable above 50 GPa,there is no imaginary phonon frequency under ambient pressure[Fig.2(a)]. A small frequency gap at about 25 meV is found. Below the gap,there are six branches of phonons, which can be assigned to the vibration of Sr,due to its greater atomic mass than those of boron and carbon. This is confirmed by the projected phonon DOSF(ω) [Fig. 2(b)]. As reflected byλqν, Sr-associated phonons have strong coupling with electrons, especially the interstitial states. Under 50 GPa,the phonons show markedly hardening[Fig.2(c)],owing to the enhanced interatomic force constants. For example,the highest frequency is amplified by 36.5% with respect to the ambient pressure. Similar to the electronic DOS,the peaks of projectedF(ω)are evidently reduced[Fig.2(d)].The number of Sr-associated phonon modes with sizeableλqνincreases. This will lead to enlarged EPC constant,self-consistent with Fig.1(q).

    The Eliashberg spectral functionα2F(ω), totalF(ω),and accumulatedλ(ω)are shown in Fig.3. At ambient pressure,α2F(ω) displays multi-peak characteristics [Fig. 3(a)].Two peaks locate below the frequency gap. By integratingα2F(ω), the EPC constantλis accurately determined to be 0.709. Under 50 GPa, all these peaks ofα2F(ω) are blueshifted, combined with obvious broadening [Fig. 3(b)]. Suppose that the phonon linewidth is unaffected by pressure,thenλqν∝ω-2qν, thus the hardened phonons will cause abatement of EPC. Surprisingly, the heights of the low-frequency peaks abnormally increase. As a result, the EPC constantλis boosted to 0.783,slightly larger than that in MgB2acquired by Wannier interpolation technique.[26,29,30]The low-frequency two peaks dominate the EPC process,since Sr-related phonons already take 80.7% and 86.1% of the totalλunder ambient pressure and 50 GPa,respectively,as marked by the black arrows(Fig.3).

    Fig. 2. Lattice dynamics of SrBC. (a) Phonon spectrum with a color representation of λqv and (b) projected phonon DOS generated by quasiharmonic approximation,under ambient pressure. (c)Phonon spectrum and(d)projected phonon DOS under 50 GPa.

    Fig. 3. The Eliashberg spectral function α2F(ω), total F(ω), and accumulated λ(ω) under ambient p?ressure (a) and 50 GPa (b). Here λ(ω) is computed using the formula 2α2F(ω′)dω′. Black arrows roughly point out the highest frequencies of Sr phonons under different pressures.

    To clarify the physical reason for abnormal rise ofλunder 50 GPa,we calculated the Fermi surface nesting functionξ(q), EPC matrix element weighted nesting functionγ(q),andq-resolved EPC constantλ(q).ξ(q) andγ(q) are computed through

    Firstly,we can rule out the nesting functionξ(q)as the main factor that causes amplifiedλ, sinceξ(q) shows overall reduction with the increase of pressure[Fig.4(a)]. Interestingly,γ(q)is significantly improved,especially under 50 GPa,compared with that at ambient pressure [Fig. 4(b)]. It has been demonstrated that the phonons are hardened under pressure.This is harmful to the enlargement of EPC constantλ,according to Eq.(3), whereasωqνis the denominator. As shown in Fig.4(c), the preponderance inγ(q)under pressure is gradually condensed inλ(q).However,the EPC strength ofλunder 50 GPa still overwhelms that under ambient pressure. Hence,the increase ofλunder 50 GPa can be attributed to the enhancement of EPC matrix elements close to the Fermi level,i.e.,γ(q). While, the maximal phonon frequency reaches 159.0 meV under 100 GPa. This means that there will be a drop inλat higher pressure, due to the competition between increscentγ(q) and diminished[see Eqs. (2) and (3)].This is just the case for 100 GPa. The detailed change rule ofλis given in Fig.6.

    Fig. 4. Comparisons of nesting function ξ(q), EPC matrix element weighted nesting function γ(q), and q-resolved EPC constant λ(q) under different pressures.

    By solving the anisotropic Eliashberg equations, we can obtain the superconducting transition temperature and the distribution of superconducting gaps on the Fermi surfaces[Fig. 5]. Here, the Coulomb pseudopotentialμ*was set to a standard value of 0.10.[31,32]SrBC is a two-gap superconductor,whoseTcis about 13 K under ambient pressure[Fig.5(a)].At 5 K,the average values for these two superconducting gaps are computed to be 1.98 meV and 1.14 meV,respectively. The higher superconducting gap mainly locates on the hexagonal cylinder-like Fermi surface [Fig. 5(c)]. While, the lower gap stems from the Fermi surface close to the boundaries of the Brillouin zone [Fig. 5(d)]. The distributions of Δknare in agreement with the weights ofλkn[Fig.1(l)]. Under 50 GPa,these two gaps are enlarged to 3.79 meV and 2.38 meV, respectively [Fig. 5(b)], resulting in a boostedTcof 22 K. The distributions of Δknare similar to those under ambient pressure[Figs.5(e)and 5(f)].

    Fig. 5. Temperature dependence of gap values Δkn on the Fermi surface for SrBC under ambient pressure (a) and 50 GPa (b). The distribution of superconducting gaps on the Fermi surfaces at 5 K for SrBC under ambient pressure(c)-(d)and 50 GPa(e)-(f).

    Fig. 6. Calculated superconducting transition temperatures of SrBC under different pressures. Here and represent the critical temperatures determined by solving the anisotropic Eliashberg equations and the McMillan-Allen-Dynes formula,respectively. The pressure dependence of EPC constant λ is also given.

    The pressure dependence ofTcfor SrBC is infrequent among phonon-mediated superconductors. For MgB2,Tcdecreases quasi-linearly under low pressure with solpe dTc/dPbetween-0.8 K/GPa and-2.0 K/GPa.[34-37]Under higher pressure, it was found that theTcfollows a purely quadratic drop.[34]Especially, theTcof MgB2has already been reduced to 20.9 K at 19.2 GPa.[38]The physical reason for degressiveTccan by explained by a combination of hardened phonons and depressedN(0), particularly the phonons.[39]In contrast, an enhancement ofTcwas reported in MgB2due to phonon softening under tensile strain.[40]The transition temperatures of elemental superconductors,examplified by Al[41]and Pb,[42]also decrease monotonically with pressure. Ca and Y are not superconductive under ambient pressure. While,superconducting transitions in Ca and Y show positive dependence on high pressure. In particular, the transition temperatures can achieve 19.5 K[43]and 25 K,[44]under 115 GPa and 161 GPa,respectively.The superconductivity of rare-earth metals under high pressure has also been extensively studied,such as in La. Under ambient pressure,La takes either double hexagonal-close-packed (dhcp) phase or face-centered cubic(fcc) phase, withTcbeing 5 K and 6 K.[45,46]However, the behavior ofTcis more complicated under pressure,closely related to the phase transition. For example,theTcis firstly enhanced after the occurrence of structural phase transition into a distorted fcc structure near 5.4 GPa. Notable oscillation inTccan be observed for the distorted fcc phase,with the highestTcbeing about 13 K.[47,48]Further increasing the pressure,La undergos distorted fcc to fcc, and fcc to another distorted fcc phase transitions. The transition temperature basically shows monotone decline above 50 GPa, and finally goes down to 2.2 K at 140 GPa.[49]

    For MgB2, it was suggested that the enlargement of lattice constant along thecaxis can increaseN(0) and shift theσband upward.[50]Correspondingly, the hole number in theσband increases and a higherTccan be expected. Moreover, reducing the lattice constant alongaaxis has similar effect with enlarging thecaxis. Since SrBC achieves its highestTcunder 50 GPa. Followed the prediction in MgB2,we further examine the possibility to enhance theTcby respectively modulating the lattice constants along different directions. For simplicity, the lattice constants of SrBC under 50 GPa are labelled asa0andc0. Specifically, we systematically investigate the phonon-mediated superconductivity under four situations, i.e.,c=1.15c0,c=0.90c0,a=1.15a0,anda=0.85a0. When adjusting the lattice constant along thecaxis,thea-axis cell parameter is unchanged,and vice versa.Similar to the case of MgB2,we find that the maximum ofσbands increases by 0.47 meV and 0.61 meV forc=1.15c0anda=0.85a0,respectively. While,it decreases by 0.45 meV and 0.43 meV forc=0.90c0anda=1.15a0. Theσbands are still completely filled for all these cases. In particular,we find that the dependence ofTcin SrBC on the lattice constants is more complicated than that in MgB2. Interestingly, onlyc=0.90c0can boost theTcto a higher value of 31 K among the studied four situations. According to our calculations,we find thatN(0)=0.961 states/spin/eV/cell,λ=1.052,andωlog=25.66 meV forc=0.90c0.The enhancedTcis probably related to the aggrandizement ofN(0).

    4. Conclusion

    In summary, we have presented the first-principles results of electronic structure, lattice dynamics, EPC, and phonon-mediated superconductivity for layered SrBC. Although, SrBC is isostructural to LiBC,significant differences are unmasked by our calculations. For instance, SrBC is inherently metallic with two partially filled energy bands, in comparison with the insulating nature of LiBC. The electronic states around the Fermi level mainly consist of B-2pzorbital and considerable interstitial states. Moreover,SrBC is isotropic in compression, contrast sharply to LiBC.Based on these observations,SrBC can not be concluded as an electrondoped LiBC-like compound with rigid Fermi-level shifting.The EPC strengthλis accurately determined to be 0.709 under atmospheric pressure. Based on anisotropic Eliashberg theory and Wannier interpolation,we find that SrBC is a two-gap superconductor withTcof 13 K, which is evidently smaller with respect to MgB2. This is because that low-frequency Sr phonons govern the EPC process of SrBC rather than highfrequency bond-stretching boron-related phonon modes as in MgB2.Since SrBC is stable above 50 GPa,we have systematically examined the evolution of superconductivity under pressure. In particular, an inverted V-shaped evolution ofTcis revealed,with the highestTcbeing 22 K at 50 GPa. This phenomenon is scarce among phonon-mediated superconductors,and stems from the balance between enhanced EPC matrix element and hardened phonons.

    在线观看舔阴道视频| 高清毛片免费观看视频网站| 在线观看一区二区三区| 午夜福利高清视频| 在线a可以看的网站| 757午夜福利合集在线观看| 91老司机精品| 欧洲精品卡2卡3卡4卡5卡区| av女优亚洲男人天堂 | 日韩大尺度精品在线看网址| 国产精品 欧美亚洲| 亚洲欧美精品综合久久99| 国产淫片久久久久久久久 | 国产激情欧美一区二区| 老司机福利观看| 久久久久国产一级毛片高清牌| 久久精品国产99精品国产亚洲性色| 免费在线观看成人毛片| 香蕉国产在线看| 别揉我奶头~嗯~啊~动态视频| 一本一本综合久久| 18美女黄网站色大片免费观看| 亚洲精品中文字幕一二三四区| 久久精品aⅴ一区二区三区四区| 国产伦一二天堂av在线观看| 男人的好看免费观看在线视频| 18禁黄网站禁片免费观看直播| 欧美乱码精品一区二区三区| 精品欧美国产一区二区三| av欧美777| 国产亚洲精品一区二区www| 后天国语完整版免费观看| 在线免费观看的www视频| 超碰成人久久| 日本撒尿小便嘘嘘汇集6| 麻豆国产97在线/欧美| 中文亚洲av片在线观看爽| 婷婷亚洲欧美| 无限看片的www在线观看| 少妇熟女aⅴ在线视频| 国产成+人综合+亚洲专区| 免费在线观看视频国产中文字幕亚洲| 一个人看视频在线观看www免费 | 美女被艹到高潮喷水动态| 91老司机精品| 怎么达到女性高潮| 亚洲性夜色夜夜综合| 在线免费观看的www视频| 国产免费av片在线观看野外av| 久久久成人免费电影| 热99在线观看视频| 精品国产美女av久久久久小说| 美女免费视频网站| 少妇人妻一区二区三区视频| 国产精品影院久久| 久久久久久九九精品二区国产| 我的老师免费观看完整版| 一区二区三区高清视频在线| 日韩精品青青久久久久久| 久久国产乱子伦精品免费另类| 18禁黄网站禁片免费观看直播| 色在线成人网| 午夜影院日韩av| 少妇丰满av| 男女做爰动态图高潮gif福利片| 男女做爰动态图高潮gif福利片| 99久久精品热视频| 久久精品aⅴ一区二区三区四区| 午夜福利欧美成人| 亚洲美女黄片视频| 成人国产一区最新在线观看| 欧美日韩黄片免| 好男人电影高清在线观看| 亚洲精品在线美女| 麻豆久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 免费看a级黄色片| 午夜福利欧美成人| 日本 av在线| 欧美午夜高清在线| 他把我摸到了高潮在线观看| 国产成年人精品一区二区| 九色成人免费人妻av| 九九热线精品视视频播放| 久久中文字幕人妻熟女| 两个人视频免费观看高清| 99国产综合亚洲精品| 男女之事视频高清在线观看| 欧美日韩中文字幕国产精品一区二区三区| 哪里可以看免费的av片| 淫秽高清视频在线观看| 19禁男女啪啪无遮挡网站| 国产精品九九99| 亚洲精品美女久久av网站| 国产成人福利小说| 亚洲av电影在线进入| 最近最新中文字幕大全免费视频| 亚洲国产精品成人综合色| 欧美xxxx黑人xx丫x性爽| 久久九九热精品免费| 国产成人一区二区三区免费视频网站| 免费在线观看亚洲国产| 日本在线视频免费播放| 亚洲在线观看片| 国产成人精品久久二区二区免费| 搡老熟女国产l中国老女人| av福利片在线观看| 999久久久国产精品视频| 午夜影院日韩av| 巨乳人妻的诱惑在线观看| 18禁国产床啪视频网站| 国产成人福利小说| 久久精品综合一区二区三区| 久久久久久大精品| 国产精品日韩av在线免费观看| 香蕉丝袜av| 国产精品 国内视频| 国产美女午夜福利| 成人鲁丝片一二三区免费| 亚洲第一电影网av| 国产伦精品一区二区三区四那| 老司机深夜福利视频在线观看| 亚洲专区国产一区二区| 久久久久久九九精品二区国产| 精品久久久久久,| 欧美午夜高清在线| 中文字幕人妻丝袜一区二区| 搡老妇女老女人老熟妇| 一个人免费在线观看的高清视频| 色综合站精品国产| 黄频高清免费视频| 啪啪无遮挡十八禁网站| 久久九九热精品免费| 亚洲一区高清亚洲精品| 久久人妻av系列| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区mp4| 欧美一区二区精品小视频在线| 亚洲成人中文字幕在线播放| 岛国视频午夜一区免费看| 久久久久久大精品| 亚洲国产欧美一区二区综合| 国产成人aa在线观看| 国产成人啪精品午夜网站| 高潮久久久久久久久久久不卡| 欧美日韩瑟瑟在线播放| 日本免费一区二区三区高清不卡| 日韩 欧美 亚洲 中文字幕| 波多野结衣高清作品| 免费大片18禁| 好男人在线观看高清免费视频| 女同久久另类99精品国产91| 变态另类成人亚洲欧美熟女| 亚洲一区二区三区色噜噜| 国产不卡一卡二| 欧美性猛交黑人性爽| 这个男人来自地球电影免费观看| 精品一区二区三区四区五区乱码| 精品久久久久久久久久久久久| 亚洲国产日韩欧美精品在线观看 | 亚洲av五月六月丁香网| 国产精品亚洲一级av第二区| 午夜视频精品福利| 国产精品av视频在线免费观看| 亚洲无线在线观看| 久久精品91无色码中文字幕| 操出白浆在线播放| 伦理电影免费视频| 国产成人精品久久二区二区免费| 在线观看66精品国产| 免费在线观看影片大全网站| av欧美777| 成在线人永久免费视频| 久久午夜亚洲精品久久| 特大巨黑吊av在线直播| 一级毛片精品| av天堂中文字幕网| 日韩中文字幕欧美一区二区| 亚洲 国产 在线| 最新中文字幕久久久久 | 香蕉国产在线看| 久久伊人香网站| 亚洲av成人精品一区久久| 色综合婷婷激情| 一区二区三区激情视频| 亚洲国产精品999在线| 亚洲国产欧洲综合997久久,| 男女视频在线观看网站免费| 女人被狂操c到高潮| 国产高清videossex| 免费在线观看日本一区| av福利片在线观看| 亚洲国产精品999在线| 国产精品日韩av在线免费观看| 18禁裸乳无遮挡免费网站照片| 少妇的丰满在线观看| 窝窝影院91人妻| 岛国在线观看网站| 成年女人看的毛片在线观看| 午夜免费成人在线视频| 88av欧美| 十八禁人妻一区二区| 亚洲第一电影网av| 两性午夜刺激爽爽歪歪视频在线观看| 999精品在线视频| 美女大奶头视频| 综合色av麻豆| 久久九九热精品免费| 欧美国产日韩亚洲一区| 久久久久久久久中文| 我的老师免费观看完整版| 1024香蕉在线观看| 国产精品精品国产色婷婷| 久久九九热精品免费| 亚洲av电影不卡..在线观看| 可以在线观看毛片的网站| 成年版毛片免费区| 国产av在哪里看| 日本精品一区二区三区蜜桃| 一个人免费在线观看电影 | 国内精品美女久久久久久| 免费av毛片视频| 国产精品爽爽va在线观看网站| 禁无遮挡网站| 亚洲第一电影网av| 国产乱人伦免费视频| 午夜免费成人在线视频| 亚洲av成人av| 最近最新免费中文字幕在线| 美女高潮的动态| 窝窝影院91人妻| 99久久久亚洲精品蜜臀av| 丰满人妻一区二区三区视频av | 18禁黄网站禁片免费观看直播| 岛国视频午夜一区免费看| 在线观看美女被高潮喷水网站 | 久久久久久久精品吃奶| av在线天堂中文字幕| 欧美日韩福利视频一区二区| 国产久久久一区二区三区| 精品久久久久久久人妻蜜臀av| 12—13女人毛片做爰片一| 丰满的人妻完整版| 啪啪无遮挡十八禁网站| 久久精品国产99精品国产亚洲性色| 中文字幕久久专区| 黄色成人免费大全| 亚洲国产精品sss在线观看| 久久中文字幕人妻熟女| 美女 人体艺术 gogo| 中文字幕久久专区| 日韩免费av在线播放| 一二三四社区在线视频社区8| 高清毛片免费观看视频网站| 国产综合懂色| 夜夜看夜夜爽夜夜摸| 美女黄网站色视频| 中亚洲国语对白在线视频| 精品一区二区三区四区五区乱码| 久久久精品大字幕| 色老头精品视频在线观看| 人人妻人人澡欧美一区二区| 国产精品日韩av在线免费观看| 久久午夜亚洲精品久久| 狂野欧美白嫩少妇大欣赏| 亚洲天堂国产精品一区在线| 国产精品亚洲美女久久久| 亚洲自拍偷在线| www.999成人在线观看| 1024手机看黄色片| 亚洲精品456在线播放app | 国产1区2区3区精品| 日本黄大片高清| 国产精品,欧美在线| 一个人观看的视频www高清免费观看 | 国产一区二区在线av高清观看| 亚洲av第一区精品v没综合| e午夜精品久久久久久久| 成人精品一区二区免费| 91字幕亚洲| 亚洲中文av在线| 后天国语完整版免费观看| 精品99又大又爽又粗少妇毛片 | 香蕉久久夜色| 999久久久国产精品视频| 亚洲熟妇熟女久久| 午夜免费激情av| 日本三级黄在线观看| 天天一区二区日本电影三级| 18禁观看日本| 深夜精品福利| 国产亚洲精品久久久com| 美女扒开内裤让男人捅视频| 两性午夜刺激爽爽歪歪视频在线观看| 人人妻人人澡欧美一区二区| 淫秽高清视频在线观看| 精品欧美国产一区二区三| 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 叶爱在线成人免费视频播放| 国产视频内射| 亚洲av成人精品一区久久| 午夜久久久久精精品| 欧美日韩国产亚洲二区| 亚洲激情在线av| 亚洲人成伊人成综合网2020| 9191精品国产免费久久| 精华霜和精华液先用哪个| 91久久精品国产一区二区成人 | 这个男人来自地球电影免费观看| 夜夜躁狠狠躁天天躁| 亚洲熟女毛片儿| 九色成人免费人妻av| 欧美丝袜亚洲另类 | 亚洲自拍偷在线| 精品久久久久久久末码| 亚洲欧洲精品一区二区精品久久久| 每晚都被弄得嗷嗷叫到高潮| 极品教师在线免费播放| 国产综合懂色| 国产精品久久久av美女十八| 午夜精品久久久久久毛片777| 国语自产精品视频在线第100页| 久久久久久大精品| av黄色大香蕉| 在线视频色国产色| 搡老妇女老女人老熟妇| 高潮久久久久久久久久久不卡| 色在线成人网| a在线观看视频网站| 搡老熟女国产l中国老女人| 欧美黑人欧美精品刺激| 成人鲁丝片一二三区免费| 国产精品久久久久久久电影 | 精品久久久久久,| 757午夜福利合集在线观看| 老熟妇仑乱视频hdxx| 国产精品日韩av在线免费观看| 中文字幕精品亚洲无线码一区| 亚洲av片天天在线观看| 精品人妻1区二区| 国产伦人伦偷精品视频| 亚洲一区高清亚洲精品| 老司机深夜福利视频在线观看| 在线视频色国产色| 国产成人精品久久二区二区91| 亚洲国产中文字幕在线视频| h日本视频在线播放| 国产不卡一卡二| 男人的好看免费观看在线视频| av黄色大香蕉| 999久久久精品免费观看国产| 国产91精品成人一区二区三区| 国产一区二区在线av高清观看| 午夜免费激情av| 国内精品久久久久精免费| 日本熟妇午夜| 亚洲美女视频黄频| 18禁裸乳无遮挡免费网站照片| 国产激情偷乱视频一区二区| 欧美+亚洲+日韩+国产| 九九热线精品视视频播放| 精品久久蜜臀av无| 白带黄色成豆腐渣| 宅男免费午夜| 99热6这里只有精品| 岛国在线观看网站| 黄片小视频在线播放| 午夜激情福利司机影院| 白带黄色成豆腐渣| 亚洲av免费在线观看| 十八禁人妻一区二区| 亚洲午夜理论影院| 婷婷精品国产亚洲av在线| av视频在线观看入口| 狂野欧美激情性xxxx| 精品不卡国产一区二区三区| 天堂动漫精品| 国产美女午夜福利| 国产黄片美女视频| 亚洲av免费在线观看| 色视频www国产| 国语自产精品视频在线第100页| 亚洲国产欧美人成| 久久久国产成人精品二区| 亚洲国产高清在线一区二区三| 免费大片18禁| 一级a爱片免费观看的视频| 亚洲黑人精品在线| 一级毛片精品| 婷婷六月久久综合丁香| 久久午夜亚洲精品久久| 中文字幕av在线有码专区| 九九久久精品国产亚洲av麻豆 | 欧美极品一区二区三区四区| 动漫黄色视频在线观看| 免费看美女性在线毛片视频| 男女那种视频在线观看| 搡老岳熟女国产| 亚洲成av人片免费观看| 不卡av一区二区三区| 中文字幕人妻丝袜一区二区| 精品久久蜜臀av无| 日韩免费av在线播放| 亚洲精华国产精华精| 成人欧美大片| 午夜a级毛片| 国产成人av教育| 婷婷精品国产亚洲av| 国产精品爽爽va在线观看网站| 欧美国产日韩亚洲一区| 女人高潮潮喷娇喘18禁视频| 中国美女看黄片| 搡老熟女国产l中国老女人| 美女黄网站色视频| 成熟少妇高潮喷水视频| 亚洲专区中文字幕在线| 日本 欧美在线| 久久精品国产综合久久久| 免费av毛片视频| 亚洲一区高清亚洲精品| 精品一区二区三区视频在线观看免费| 国产黄色小视频在线观看| 人妻丰满熟妇av一区二区三区| 国产不卡一卡二| 99久久国产精品久久久| 精品不卡国产一区二区三区| 性色av乱码一区二区三区2| 一级毛片女人18水好多| 美女午夜性视频免费| 亚洲欧美日韩高清专用| 又黄又爽又免费观看的视频| 亚洲中文av在线| 国产人伦9x9x在线观看| 大型黄色视频在线免费观看| 搡老妇女老女人老熟妇| 免费观看精品视频网站| 午夜福利欧美成人| 国产精品美女特级片免费视频播放器 | 免费av不卡在线播放| 亚洲狠狠婷婷综合久久图片| 黄色丝袜av网址大全| 国产精品久久久久久亚洲av鲁大| 国模一区二区三区四区视频 | 亚洲熟妇中文字幕五十中出| 久久久国产成人精品二区| 999久久久精品免费观看国产| 99国产极品粉嫩在线观看| 精品国产美女av久久久久小说| 热99re8久久精品国产| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 又黄又爽又免费观看的视频| 久久精品综合一区二区三区| 观看免费一级毛片| 精华霜和精华液先用哪个| 国内精品久久久久久久电影| 精品一区二区三区视频在线观看免费| 一个人观看的视频www高清免费观看 | 夜夜躁狠狠躁天天躁| 国产主播在线观看一区二区| 精品一区二区三区四区五区乱码| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人综合色| 国产成+人综合+亚洲专区| www.999成人在线观看| 成人18禁在线播放| 成人三级黄色视频| 可以在线观看的亚洲视频| 日韩中文字幕欧美一区二区| cao死你这个sao货| 久久精品亚洲精品国产色婷小说| 19禁男女啪啪无遮挡网站| 99久久成人亚洲精品观看| 国产真人三级小视频在线观看| 日韩有码中文字幕| 日韩中文字幕欧美一区二区| 亚洲五月天丁香| 又黄又粗又硬又大视频| 久久香蕉国产精品| 亚洲人成网站高清观看| 亚洲激情在线av| 久久伊人香网站| 精品国产超薄肉色丝袜足j| 午夜福利18| 操出白浆在线播放| 精品电影一区二区在线| 欧美色视频一区免费| 身体一侧抽搐| 午夜精品久久久久久毛片777| 国产一区二区三区视频了| 俺也久久电影网| 99精品久久久久人妻精品| 免费看光身美女| 成年女人永久免费观看视频| 久久国产精品人妻蜜桃| 一a级毛片在线观看| www国产在线视频色| 好男人电影高清在线观看| 最近在线观看免费完整版| 国产亚洲精品久久久久久毛片| 国产黄色小视频在线观看| 国产高清三级在线| 嫩草影视91久久| 成人午夜高清在线视频| 久久这里只有精品19| 欧美日本视频| 12—13女人毛片做爰片一| 九九久久精品国产亚洲av麻豆 | 国产精品av视频在线免费观看| 日韩高清综合在线| 好看av亚洲va欧美ⅴa在| 成人特级av手机在线观看| 看免费av毛片| 久久精品影院6| 国内精品久久久久精免费| 日本精品一区二区三区蜜桃| 欧美极品一区二区三区四区| 国产乱人视频| 禁无遮挡网站| 国产极品精品免费视频能看的| 青草久久国产| 国产一级毛片七仙女欲春2| 国产精华一区二区三区| 日本成人三级电影网站| 十八禁人妻一区二区| 成人三级做爰电影| 亚洲精品一区av在线观看| 97超级碰碰碰精品色视频在线观看| 男人舔奶头视频| 在线看三级毛片| 日韩欧美国产一区二区入口| 国产美女午夜福利| 久久久久亚洲av毛片大全| 精品一区二区三区四区五区乱码| 久久久久久九九精品二区国产| 欧美色视频一区免费| 日韩免费av在线播放| 美女 人体艺术 gogo| 女人高潮潮喷娇喘18禁视频| 欧美色欧美亚洲另类二区| av中文乱码字幕在线| 老司机午夜十八禁免费视频| 午夜福利18| 亚洲欧美精品综合久久99| 亚洲国产看品久久| svipshipincom国产片| 99久久精品热视频| 国产综合懂色| 国产欧美日韩精品亚洲av| 脱女人内裤的视频| 麻豆国产97在线/欧美| 一级毛片高清免费大全| 亚洲中文av在线| 欧美高清成人免费视频www| 听说在线观看完整版免费高清| 欧美乱码精品一区二区三区| 日韩欧美免费精品| 欧美不卡视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 在线观看免费视频日本深夜| 成年人黄色毛片网站| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| www.自偷自拍.com| e午夜精品久久久久久久| 在线视频色国产色| 欧美另类亚洲清纯唯美| 九九久久精品国产亚洲av麻豆 | 黄色日韩在线| www.www免费av| 不卡一级毛片| 国产亚洲精品久久久com| 欧美一区二区精品小视频在线| 欧美色欧美亚洲另类二区| 999久久久国产精品视频| e午夜精品久久久久久久| 精华霜和精华液先用哪个| svipshipincom国产片| 欧美黑人欧美精品刺激| 99久久精品一区二区三区| 色综合站精品国产| 国产伦一二天堂av在线观看| 亚洲精品中文字幕一二三四区| av天堂中文字幕网| 香蕉国产在线看| 日韩免费av在线播放| 国产视频内射| 国产不卡一卡二| 天堂影院成人在线观看| 国产成年人精品一区二区| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 免费看光身美女| 中国美女看黄片| 人妻夜夜爽99麻豆av| 亚洲成人久久爱视频| 精品久久久久久,| 日韩欧美在线二视频| 五月玫瑰六月丁香| 日韩欧美在线乱码| а√天堂www在线а√下载| av天堂中文字幕网| 一本一本综合久久| 亚洲av成人不卡在线观看播放网| 成年免费大片在线观看| 丁香欧美五月| 精品久久久久久久久久久久久| 亚洲av成人av| 国产成人精品久久二区二区免费| 亚洲av熟女| 亚洲中文字幕日韩| 午夜激情欧美在线| 亚洲美女黄片视频| 亚洲男人的天堂狠狠|