• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure*

    2021-07-30 07:40:30BowenZhang張博文ChaoAn安超XuliangChen陳緒亮YingZhou周穎YonghuiZhou周永惠YifangYuan袁亦方ChunhuaChen陳春華LiliZhang張麗麗XiaopingYang楊曉萍andZhaorongYang楊昭榮
    Chinese Physics B 2021年7期
    關(guān)鍵詞:周穎春華博文

    Bowen Zhang(張博文) Chao An(安超) Xuliang Chen(陳緒亮) Ying Zhou(周穎)Yonghui Zhou(周永惠) Yifang Yuan(袁亦方) Chunhua Chen(陳春華)Lili Zhang(張麗麗) Xiaoping Yang(楊曉萍) and Zhaorong Yang(楊昭榮)

    1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory,Chinese Academy of Sciences,Hefei 230031,China

    2Science Island Branch,Graduate School of University of Science and Technology of China,Hefei 230026,China

    3Information Materials and Intelligent Sensing Laboratory of Anhui Province,Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China

    4Key Laboratory of Structure and Functional Regulation of Hybrid Materials(Anhui University),Ministry of Education,Hefei 230601,China

    5Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 200031,China

    6High Magnetic Field Laboratory of Anhui Province,Hefei 230031,China

    Keywords: high pressure,charge density wave,crystal structure,electrical transport

    1. Introduction

    Rare-earth silver antimonidesRAgSb2(R=La-Nd,Sm,Gd-Tm) have attracted intense interests due to their peculiar physical properties,[1-11]such as anisotropic magnetism,[2,3]Dirac-cone-like band structure,[6,7]and charge density wave(CDW) order.[9-11]Among these antimonides, LaAgSb2has been paid special attention to because it hosts both CDW and Dirac fermions.[7,9]LaAgSb2crystallizes in a simple tetragonal ZrCuSi2-type structure(P4/nmm,No.129),with La atoms intercalating between Sb and AgSb layers.[6-8]As temperature decreases,LaAgSb2experiences two CDW transitions at~209 K and~185 K,respectively.[12]The former transition corresponds to a periodic charge/lattice modulation along theaaxis,while the latter one relates to a weaker modulation along thecaxis.[9]Accompanying with the CDW transitions,striking anomalies have been observed in electrical transport,magnetic susceptibility, thermoelectric power, and infrared spectroscopy measurements.[1,8,13]

    More recently, angle-resolved photoemission spectroscopy investigation and first-principle calculations consistently revealed that LaAgSb2possesses linear energy bands and a Dirac-cone-like structure near the Fermi level.[7]In particular,the segments of the Fermi surface pocket that is associated with the Dirac-cone-like structure are well nested with a small wave vector, documenting a close relationship of the Dirac cone to the CDW ordering.[7]Moreover, LaAgSb2exhibits a large linear magnetoresistance (MR) due to the existence of linear band dispersion, which disappears just above the CDW transition temperature of 207 K and provides additional evidence of the correlation between the Dirac cone and CDW ordering.[6,7]These unique properties make LaAgSb2a promising material for applications in CDW-based electronic devices.

    Applying external pressure and chemical substitution are two effective ways to tune the CDW order.[10,11,14]Based on earlier studies,elements doping in both La and Ag sites disfavors the CDW in LaAgSb2, which was partially attributed to the disorder generated by element substitution.[10,11]In contrast,without inducing additional impurities,applying external pressure provides a clean way for the modulation of the CDW.Previous electrical resistance measurements unveiled that the CDW is gradually suppressed by the applied pressure.[10,11,15]However, the highest pressure studied in the electrical transport measurements so far is limited to~3.8 GPa.[15]How the CDW involves and whether novel phenomena can be induced at higher pressures are not clear and deserve further investigation.

    Here,using pressure as a tuning knob,we systematically investigate the evolution of structural and electrical properties of LaAgSb2single crystals throughin-situsynchrotron x-ray diffraction (XRD), Raman spectroscopy, and electrical transport measurements under pressures up to 41.6-49.0 GPa,combined with first-principles calculation. With increasing pressure, the magnetoresistance is monotonically suppressed and completely disappears at 21.5 GPa. In addition, atPC~22 GPa,the sign change of the Hall coefficient is observed at 5 K. While no evident structural phase transition is observed via XRD, the simultaneous occurrence ofc/aanomaly and new Raman peak unravels a structural modification atPC.

    2. Experimental details

    Single crystals of LaAgSb2were grown by Sb self-flux method.[8]After removing the excessive Sb by centrifuging,plate-like crystals were obtained, as shown in the inset of Fig. S1(b). The temperature (T)-dependent electrical resistivity(ρxx)measurements at ambient pressure were conducted in a physical property measurements system(PPMS,Quantum Design Inc.).

    High-pressure electrical transport measurements were conducted in a screw-pressure-type diamond anvil cell(DAC)made of Be-Cu alloy. The culet size of the diamond was 300 μm. The T301 stainless-steel gasket was pre-indented from thickness of 200 μm to 30 μm and a hole of about 280 μm was drilled in the center of the pit. Platinum foil served as the electrical contact. Soft NaCl fine powder was used as the pressure-transmitting medium (PTM). A piece of cleaved single crystal with dimensions of~100×50×10 μm3together with some ruby powders was loaded into the chamber.ρxx(T)curve was measured by using standard four-probe method. The current was introduced along theabplane. Hall resistivityρxywas measured at 5 K via five-probe method with external magnetic field along thecaxis.

    High-pressure powder x-ray diffraction experiments were conducted at beamline 15U1,Shanghai Synchrotron Radiation Facility(SSRF)at room temperature. Pressure was generated by a Mao-Bell type symmetric DAC.The culet of the diamond was 300 μm in diameter. The Re gasket was pre-indented to thickness of 30 μm and a hole of 150 μm was drilled as sample chamber. LaAgSb2powders were obtained by crushing and grinding the as prepared LaAgSb2single crystals. Pressed powder (~50×50×10 μm3) together with some ruby balls was loaded in the chamber. Daphne 7373 oil was used as the PTM.A focused monochromatic x-ray beam with wavelength 0.6199 ?A was used for the angle-dispersive diffraction. The size of the focused x-ray beam at the sample position is 3 μm×2.5 μm. Two-dimensional area detector Mar165 CCD was used to collect the powder diffraction patterns.[16]The detector was 185.88 mm away from the sample. The Dioptas[17]and Rietica programs[18]were employed for image integrations and structure refinement,respectively.

    The high-pressure Raman spectrum measurement was performed at room temperature in a Mao-Bell type symmetric DAC using a commercial Renishaw Raman spectroscopy measurement system with a 532-nm laser excitation line. The diamond culet was 300 μm in diameter. The T301 stainless-steel gasket was pre-indented from thickness of 200 μm to 30 μm and a hole of about 150 μm was drilled as the sample chamber. Daphne 7373 oil served as the pressure medium. Pressure was calibrated by using the ruby fluorescence shift at room temperature for all above experiments.[19]

    3. Results and discussion

    Figure 1(a) displays the temperature-dependent resistivityρxx(T)measured at ambient pressure under 0 T and 14 T,respectively. One can see that accompanying with the formation of CDW order at around 210 K, the difference of resistivity Δρ=ρxx(H)-ρxx(0 T) starts to develop and becomes pronounced with decreasing temperature, in accordance with previous reports.[6,8]Due to the simultaneous occurrence of CDW and Δρ,the onset temperature of Δρ(T*)is equal to the CDW transition temperatureTCDWat ambient pressure,see the inset of Fig.1(a). To trace the evolution of CDW under compression,we measured theρxx(T)at each pressure under 0 T and 7 T,respectively. As seen from Figs.1(b)-1(f),the Δρis suppressed gradually with increasing pressure,meanwhile theT*decreases monotonically. Both the suppression of Δρa(bǔ)nd decrease ofT*are in line with the collapse of CDW order as reported in a previous study.[15]The Δρeventually disappears at 21.5 GPa. However, it should be noted that the CDW order was found to be suppressed completely around~3 GPa according to Ref. [15], which is much smaller than the critical pressurePC~21.5 GPa and may indicate the decoupling of Δρa(bǔ)nd CDW order under high pressure. Meanwhile, as shown in Fig.S3,it can be seen that the linear range of MR is monotonically reduced upon compression and the whole curve can be fitted by a quadratic-field relation abovePC. In addition,ρxxmaintains the metallic conduction behavior and no superconductivity is observed down to 1.8 K, see Fig. 1(g).The resistivity at 300 K initially decreases with increasing pressure up to 5.1 GPa and then persistently increases upon further compression, accompanying with a sudden jump between 18.6 GPa and 21.5 GPa[Fig.1(g)]. In general,the pressure enhances the band overlapping and the resistivity should decrease with increasing pressure. The abnormal enhancement of resistivity under high pressure could be attributed to different factors, such as non-hydrostatic compression, structural phase transition/electronic phase transition, and structural distortion.[20-24]

    Fig.1. (a)-(f)Temperature dependence of resistivity under 0 T(black line)and external magnetic field(red line)with H parallel to c axis at various pressures. Arrow marks the transition temperature TCDW at ambient pressure and T* under high pressure. The insets of(a)-(f)display temperature dependence of Δρ =ρ(H)-ρ(0 T).(g)Temperature-dependent electrical resistivity of LaAgSb2 in the pressure range of 0.7-44.0 GPa.

    Fig.2. (a)Field-dependent Hall resistivity ρxy of LaAgSb2 single crystal under various pressures at 5 K with H parallel to c axis.(b)Pressuredependent Hall coefficient RH. The RH is determined from the initial slope of ρxy at H →0.

    Figure 2(a) displays the magnetic field (H)-dependent Hall resistivityρxy(H) at 5 K and various pressures. At 0.7 GPa,ρxyshows a quadratic field dependence in the lowfield region while increases linearly at higher fields, consistent with the result at ambient pressure.[6]The nonmonotonic field dependence and positive slope ofρxy(H) indicate that LaAgSb2exhibits a multiband feature and the hole-type carriers dominate the transport behavior. Hall coefficientRHis extracted from the slope ofρxy(H) around zero field, as displayed in Fig. 2(b). Upon compression,RHdecreases monotonically and changes into negative at pressures above 21.5 GPa. The sign change ofRHdemonstrates that the holedominated conductivity maintains up to 21.5 GPa and is replaced by electron-dominated behavior at higher pressure. In general,the sign change of Hall coefficient directly reflects the modification of the Fermi surface, which could be caused by not only electronic phase transition,[25]but also the occurrence of structural instability.[26]

    We further investigate the structural stability of LaAgSb2under high pressure via synchrotron XRD measurement. Figure 3(a)shows the XRD patterns at selected pressures. Upon compression, all Bragg peaks shift to larger angles due to the lattice shrinkage without appearing extra peaks up to 41.6 GPa. The XRD pattern at each pressure can be well indexed by the space groupP4/nmm(No.129),see the representative refinements at 1.7 GPa and 41.6 GPa in Figs. 3(b) and 3(c). The volume versus pressure plotted in Fig.3(d)is fitted by the third-order Birch-Murnaghan formula,which yields the ambient pressure volumeV0=103.3(±0.2) ?A3,bulk modulusB0=84.3(±1.4) GPa with its first-order derivativeB′0being fixed as 4. The extracted lattice parameters(aandc)are displayed in Fig. 3(f). Without detecting an evident structural transition, it can be seen that bothaandcdecrease monotonically with the applied pressure. Nevertheless,the axis ratioc/a, a measure of the relative compressibility along different crystal axis, displays a clear kink at around 22 GPa.On one hand,such a feature can be caused by non-hydrostatic compression due to the solidification of pressure transmitting medium.[27,28]However,we used Daphne 7373 as the pressure medium in the high pressure XRD measurement, which normally leads to the kink anomaly in lattice ratioc/aat around 7-8 GPa.[27,28]On the other hand,we notice that characteristic pressure of 22 GPa agrees well with the critical pressure where the Hall coefficient changes sign,which indicates that change in the electronic state could be correlated with the modification of lattice degree of freedom.

    Fig.3. (a)Synchrotron radiation x-ray diffraction patterns of LaAgSb2 under various pressures(λ =0.6199 ?A).The XRD pattern upon decompression back to 5.0 GPa is denoted by d. (b),(c)The refinements at 1.7 GPa and 41.6 GPa were performed using RIETICA program with the Le Bail method.(d) The open symbols stand for unit volume. The solid red line is the fitting result based on the third-order Birch-Murnaghan equation of states. (e)Pressure dependence of the refined lattice parameters. The inset shows the lattice ratio of c/a as a function of pressure.

    As an effective and powerful tool in detecting lattice vibrations, Raman scattering is sensitive to the local lattice symmetry and can provide information including electronphonon coupling, weak lattice distortion, and structural transition.[29,30]For LaAgSb2, a factor-group analysis yields a total number of 24Γ-point phonons, of which 12 (4Eg⊕2A1g⊕2B1g) are Raman-active modes, 9 (3Eu⊕3A2u) are IR-active modes, and 3 (Eu⊕A2u) are acoustic modes. Both Egand Euare double degenerate modes. At ambient pressure(see Fig.S4(a)and Table SI in supplementary material),three prominent peaks with Lorentzian line shape are observed at~98.7 GPa,~108.1 GPa, and~126.3 GPa, which can be assigned to B11g, A11g, and A21gRaman vibrational modes, respectively. As displayed in Fig.S4(b),all these Raman modes represent out-of-plane atomic vibrations, with B1ginvolving Ag and Sb1 atoms while A1ginvolving La and Sb2 atoms.Figure 4 shows the room-temperature Raman spectra at various pressures up to 49.0 GPa.One can see that all three Raman modes move towards higher frequencies monotonically with increasing pressure. Strikingly, in line with the appearance ofc/aanomaly, a new peak (labeled as N) starts to appear at ca. 22.1 GPa and becomes prominent upon further compression. In principle, the emergence of new Raman modes normally involves a crystal symmetry breaking.[31-33]However,the XRD measurement indicates that the original tetragonal structure is maintained upon compression across the critical pressure. The discrepancy could be attributed to different sensitivity of the two methods. Comparing with XRD that is determined by the periodicity of crystal lattice, Raman spectrum depends on the point group symmetry and probes the structure on a local scale. Without detecting an evident structural transition by XRD, the simultaneous occurrence ofc/aanomaly and new Raman peak is reminiscent of a pressureinduced structural modification, such as isostructural transition or a weak structural phase transition.[34-41]Especially,if the lattice structure of the new phase is very similar to the initial one,this transition will be too weak to be detected due to peak broadening of XRD pattern under pressure. In addition to the appearance of the new Raman peak,the structural modification is also reflected in the pressure dependences of other Raman modes plotted in Fig. 5(a), which demonstrate slope changes around 22 GPa. Meanwhile, the full width at half maximum (FWHM) of A21gmode decreases initially and displays a minimum aroundPC[Fig.5(b)], rather than broadens monotonically. Recalling the sign change of Hall coefficient atPC,this structural modification should be the main reason.

    Fig.4. Room-temperature Raman spectra of LaAgSb2 single crystal in the pressure ranges of(a)1.2-18.9 GPa and(b)20.4-49.0 GPa,respectively. The blue solid dots and red diamonds indicate the appearance of new peak above 22.1 GPa. The Raman spectrum upon decompression back to 2.8 GPa is denoted by d.

    After constructing a phase diagram in Fig. 5(c), a vivid correlation between the electrical and structural properties presents in the pressurized LaAgSb2. The sign change of the Hall coefficient evidences the changes of the Fermi surface atPC. As the CDW in LaAgSb2originates from nesting of segments of the Fermi surface pocket associated with the Diraccone-like structure,the collapse of CDW should be concomitant with the disappearance of Dirac fermions. Along with the modulation in the Fermi surface, the structural modification and an abrupt increment of room temperature resistivity are detected at the same critical pressure. Accordingly,a question arises as what is the origin behind these changes.On one hand,the modulation of electronic state could be attributed to the structural modification. On the other hand,the structural modification might be caused by the reconstruction of the Fermi surface,which accords with a scenario of electronic topological transition(ETT)or Lifshitz transition.[42]The ETT or Lifshitz transition does not require the structural transition, but normally leads to anomalies in the phonon spectrum or anomalies inc/aratio.[43-47]

    Fig. 5. (a) Pressure dependence of Raman frequencies of LaAgSb2. Solid lines are linear fits to data. (b)FWHM of the A21g Raman mode as a function of pressure and solid line is drawn as guide to the eyes. (c) Pressuretemperature phase diagram of LaAgSb2. The left axis stands for the temperature T and the right axis corresponds to the resistivity ρxx.

    4. Conclusion

    In summary, the pressure effects on structural and electronic properties of single crystal LaAgSb2were investigated by combining electronic transport, XRD, and Raman experiments.With increasing pressure,the magnetoresistance is suppressed gradually. Both XRD and Raman experiments consistently uncover a structural modification atPC=22 GPa. The structural modification is characterized by a kink anomaly inc/aand a newly appeared Raman mode, and is accompanied by the sign change in the Hall coefficient.

    猜你喜歡
    周穎春華博文
    木碗
    最健康的烹飪方式——蒸
    第一次掙錢
    待到春華爛漫時(shí)
    黃河之聲(2020年5期)2020-05-21 08:24:38
    我們?cè)撊绾伪磉_(dá)苦難?——讀黃春華《扁腦殼》
    誰和誰好
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    春華而后秋實(shí)
    海峽姐妹(2015年3期)2015-02-27 15:10:04
    打電話2
    校園里的石榴樹
    亚洲精品影视一区二区三区av| 色5月婷婷丁香| 日日摸夜夜添夜夜爱| av福利片在线观看| ponron亚洲| 亚洲欧美精品自产自拍| 成人亚洲欧美一区二区av| 在线国产一区二区在线| 人体艺术视频欧美日本| 久久国产乱子免费精品| 男女边吃奶边做爰视频| 午夜亚洲福利在线播放| 1024手机看黄色片| 国产精品永久免费网站| 国产伦理片在线播放av一区 | 一进一出抽搐动态| 久久精品国产99精品国产亚洲性色| 日韩欧美国产在线观看| 看片在线看免费视频| 日本一本二区三区精品| 国产在线男女| 伦精品一区二区三区| av福利片在线观看| 亚洲欧美精品专区久久| 亚洲自偷自拍三级| 夜夜爽天天搞| 又爽又黄无遮挡网站| 天堂影院成人在线观看| 特级一级黄色大片| 成人毛片a级毛片在线播放| 亚洲成人中文字幕在线播放| 国产国拍精品亚洲av在线观看| 亚洲五月天丁香| 51国产日韩欧美| 国产乱人偷精品视频| 欧美潮喷喷水| 国产高清不卡午夜福利| 哪个播放器可以免费观看大片| 黑人高潮一二区| 日韩成人av中文字幕在线观看| 一进一出抽搐动态| 大又大粗又爽又黄少妇毛片口| 日本熟妇午夜| 亚洲真实伦在线观看| 久久精品国产清高在天天线| 国产黄色小视频在线观看| 国产精品美女特级片免费视频播放器| 十八禁国产超污无遮挡网站| 少妇高潮的动态图| 久久精品国产亚洲av香蕉五月| 97在线视频观看| 欧美激情在线99| 成人鲁丝片一二三区免费| 精品久久久久久久人妻蜜臀av| 亚洲欧美精品自产自拍| 亚洲精品色激情综合| а√天堂www在线а√下载| 亚洲欧美中文字幕日韩二区| 午夜久久久久精精品| 91狼人影院| 国产女主播在线喷水免费视频网站 | 欧美一区二区国产精品久久精品| 亚洲四区av| 精品日产1卡2卡| 日韩一区二区视频免费看| 伦理电影大哥的女人| 精品人妻偷拍中文字幕| 日韩三级伦理在线观看| 乱人视频在线观看| 日韩 亚洲 欧美在线| 99久久成人亚洲精品观看| 成人美女网站在线观看视频| 国产精品一区二区性色av| 色噜噜av男人的天堂激情| 少妇的逼好多水| 高清毛片免费观看视频网站| 精品人妻视频免费看| 国产私拍福利视频在线观看| 午夜老司机福利剧场| 欧美色欧美亚洲另类二区| 亚洲在线自拍视频| 中文亚洲av片在线观看爽| 亚洲成人精品中文字幕电影| 黄色视频,在线免费观看| 久久久久网色| 国产色婷婷99| 国内精品美女久久久久久| 九九久久精品国产亚洲av麻豆| 中国国产av一级| 亚洲四区av| 欧洲精品卡2卡3卡4卡5卡区| 色综合色国产| 欧美bdsm另类| 校园人妻丝袜中文字幕| 免费在线观看成人毛片| 中文字幕久久专区| 永久网站在线| 久久久久久久久久黄片| 一本久久精品| 日本在线视频免费播放| 全区人妻精品视频| 国产伦精品一区二区三区视频9| 亚洲欧美日韩卡通动漫| 欧美成人精品欧美一级黄| 成人午夜精彩视频在线观看| 老司机福利观看| 有码 亚洲区| 人人妻人人澡人人爽人人夜夜 | 久久综合国产亚洲精品| 2022亚洲国产成人精品| av国产免费在线观看| 亚洲精品国产成人久久av| av女优亚洲男人天堂| 久久久久久久亚洲中文字幕| 成人毛片60女人毛片免费| 亚洲欧洲国产日韩| 午夜福利视频1000在线观看| 亚洲av成人精品一区久久| 国内精品一区二区在线观看| 男女做爰动态图高潮gif福利片| 日本免费a在线| 中文字幕精品亚洲无线码一区| 最近最新中文字幕大全电影3| 99热6这里只有精品| 联通29元200g的流量卡| 国产高潮美女av| 美女国产视频在线观看| 成人无遮挡网站| 男人狂女人下面高潮的视频| 国产免费男女视频| 麻豆久久精品国产亚洲av| 国产一区二区在线观看日韩| 亚洲av熟女| 少妇人妻精品综合一区二区 | 身体一侧抽搐| 国产亚洲91精品色在线| 麻豆成人午夜福利视频| 日韩大尺度精品在线看网址| 色哟哟哟哟哟哟| 国产精品久久久久久精品电影| 亚洲精品色激情综合| 性插视频无遮挡在线免费观看| 少妇熟女欧美另类| 国产精品不卡视频一区二区| 亚洲激情五月婷婷啪啪| 波多野结衣高清作品| 日本爱情动作片www.在线观看| 亚洲四区av| 久久人人爽人人片av| 亚洲欧美日韩高清在线视频| ponron亚洲| 成人漫画全彩无遮挡| 久久精品夜色国产| 97超碰精品成人国产| 边亲边吃奶的免费视频| 一级二级三级毛片免费看| 五月玫瑰六月丁香| ponron亚洲| 亚洲高清免费不卡视频| 高清毛片免费观看视频网站| 嫩草影院精品99| 色吧在线观看| 免费观看精品视频网站| 国产黄色视频一区二区在线观看 | 国产精品电影一区二区三区| 午夜福利成人在线免费观看| 亚洲va在线va天堂va国产| av又黄又爽大尺度在线免费看 | 99久国产av精品| 精品久久国产蜜桃| 床上黄色一级片| 18禁在线播放成人免费| 少妇被粗大猛烈的视频| 1000部很黄的大片| 成年版毛片免费区| 亚洲中文字幕日韩| 悠悠久久av| 日本色播在线视频| eeuss影院久久| 舔av片在线| 久久6这里有精品| 综合色丁香网| 狂野欧美激情性xxxx在线观看| 欧美性感艳星| 国产精品美女特级片免费视频播放器| 99久久人妻综合| 亚洲在线观看片| 国产伦一二天堂av在线观看| 国产伦在线观看视频一区| 日韩成人伦理影院| 黄色配什么色好看| 人妻夜夜爽99麻豆av| 天堂中文最新版在线下载 | 中文字幕免费在线视频6| 一卡2卡三卡四卡精品乱码亚洲| 美女高潮的动态| 一卡2卡三卡四卡精品乱码亚洲| 国产伦精品一区二区三区四那| 特级一级黄色大片| 国产熟女欧美一区二区| 成人毛片a级毛片在线播放| 又粗又爽又猛毛片免费看| 成人国产麻豆网| 国产一区二区在线观看日韩| 色综合站精品国产| 国产一区二区三区在线臀色熟女| 欧美性猛交╳xxx乱大交人| 美女xxoo啪啪120秒动态图| 毛片一级片免费看久久久久| 一本久久精品| 欧美成人免费av一区二区三区| 国产欧美日韩精品一区二区| 久久久久久久久久成人| 国产熟女欧美一区二区| av天堂在线播放| 自拍偷自拍亚洲精品老妇| 日本成人三级电影网站| 欧美日韩国产亚洲二区| 黄色一级大片看看| 18+在线观看网站| 国产91av在线免费观看| 99久久精品国产国产毛片| 亚洲无线在线观看| 久久精品人妻少妇| av免费在线看不卡| 淫秽高清视频在线观看| 夜夜爽天天搞| 嫩草影院新地址| 国产亚洲91精品色在线| 欧美精品国产亚洲| 综合色av麻豆| 两个人视频免费观看高清| 六月丁香七月| 在线免费十八禁| 亚洲天堂国产精品一区在线| 国产精品综合久久久久久久免费| 日韩av在线大香蕉| 亚洲欧美日韩高清在线视频| av国产免费在线观看| 一级毛片我不卡| 啦啦啦韩国在线观看视频| 蜜臀久久99精品久久宅男| a级毛片免费高清观看在线播放| 中出人妻视频一区二区| 在线天堂最新版资源| 男人舔女人下体高潮全视频| 一本久久中文字幕| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 国产精品久久视频播放| 日韩一区二区视频免费看| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看| 亚洲天堂国产精品一区在线| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 在线播放无遮挡| 色噜噜av男人的天堂激情| 色综合亚洲欧美另类图片| ponron亚洲| 又粗又硬又长又爽又黄的视频 | 国产美女午夜福利| 国产色婷婷99| 免费看a级黄色片| 黄色视频,在线免费观看| 欧美丝袜亚洲另类| 天堂网av新在线| 白带黄色成豆腐渣| 草草在线视频免费看| 少妇裸体淫交视频免费看高清| 男插女下体视频免费在线播放| 久久久久久久亚洲中文字幕| 亚洲成人久久性| a级毛片免费高清观看在线播放| a级毛色黄片| 九草在线视频观看| 黄片wwwwww| 精品久久久久久久末码| 久久人妻av系列| av福利片在线观看| 精品国产三级普通话版| 日本免费a在线| 久久精品久久久久久久性| 亚洲欧美日韩高清在线视频| 黄色日韩在线| 亚洲精品成人久久久久久| 长腿黑丝高跟| 18禁裸乳无遮挡免费网站照片| 精品日产1卡2卡| 黄色一级大片看看| 床上黄色一级片| 啦啦啦啦在线视频资源| 九九在线视频观看精品| 噜噜噜噜噜久久久久久91| 亚洲美女搞黄在线观看| 日韩欧美 国产精品| 欧美性猛交╳xxx乱大交人| 尤物成人国产欧美一区二区三区| 免费看a级黄色片| 国模一区二区三区四区视频| 国产成人一区二区在线| av又黄又爽大尺度在线免费看 | 男人的好看免费观看在线视频| 大又大粗又爽又黄少妇毛片口| 国产三级中文精品| 午夜免费激情av| 亚洲欧美成人精品一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜激情欧美在线| av.在线天堂| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 2021天堂中文幕一二区在线观| 18禁裸乳无遮挡免费网站照片| 91精品一卡2卡3卡4卡| 免费av毛片视频| 美女内射精品一级片tv| 免费观看精品视频网站| 欧美日韩在线观看h| 男人的好看免费观看在线视频| 小蜜桃在线观看免费完整版高清| avwww免费| 国产真实乱freesex| 成年版毛片免费区| 一级毛片久久久久久久久女| 日韩欧美在线乱码| 亚洲18禁久久av| 三级毛片av免费| 99视频精品全部免费 在线| 久久综合国产亚洲精品| kizo精华| 变态另类丝袜制服| 又爽又黄a免费视频| 亚洲自拍偷在线| 久久精品国产亚洲网站| 国内精品美女久久久久久| 一个人观看的视频www高清免费观看| 精品久久久久久久人妻蜜臀av| 久久久久久久久大av| 国产精品伦人一区二区| 在线观看av片永久免费下载| 男插女下体视频免费在线播放| 看免费成人av毛片| 黄色视频,在线免费观看| 欧美一级a爱片免费观看看| 两个人的视频大全免费| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 一级二级三级毛片免费看| 国产成人精品一,二区 | 欧美成人免费av一区二区三区| 一区二区三区高清视频在线| 国产精品久久久久久av不卡| 久久久久久久久中文| 我的女老师完整版在线观看| 成人亚洲精品av一区二区| 国产女主播在线喷水免费视频网站 | 免费人成在线观看视频色| 亚洲美女视频黄频| 国产一级毛片在线| 2022亚洲国产成人精品| 人妻少妇偷人精品九色| 九九在线视频观看精品| 久久韩国三级中文字幕| 成人高潮视频无遮挡免费网站| 床上黄色一级片| 日韩欧美国产在线观看| 最新中文字幕久久久久| 中文字幕精品亚洲无线码一区| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频 | 嫩草影院精品99| 在线播放国产精品三级| 色噜噜av男人的天堂激情| 麻豆精品久久久久久蜜桃| 天堂中文最新版在线下载 | 亚洲国产色片| 在线观看av片永久免费下载| 日本撒尿小便嘘嘘汇集6| 蜜臀久久99精品久久宅男| a级毛色黄片| 亚洲乱码一区二区免费版| 欧美色欧美亚洲另类二区| 日本五十路高清| 色视频www国产| 亚洲乱码一区二区免费版| 干丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 国产精品蜜桃在线观看 | 青春草国产在线视频 | 亚洲成人久久爱视频| 成人毛片a级毛片在线播放| 乱系列少妇在线播放| 日韩一本色道免费dvd| 中文字幕精品亚洲无线码一区| 亚洲精品久久久久久婷婷小说 | 久久精品国产亚洲av天美| 国产精品av视频在线免费观看| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区视频9| 麻豆国产97在线/欧美| 亚洲欧美日韩高清在线视频| 中文精品一卡2卡3卡4更新| 国产色爽女视频免费观看| 国产精品一区二区三区四区久久| 波多野结衣巨乳人妻| 乱人视频在线观看| 久久精品国产亚洲av涩爱 | 亚洲中文字幕日韩| 成人性生交大片免费视频hd| 最好的美女福利视频网| 一卡2卡三卡四卡精品乱码亚洲| 国产精品av视频在线免费观看| 尤物成人国产欧美一区二区三区| 波多野结衣高清作品| 亚洲三级黄色毛片| 嫩草影院精品99| 搞女人的毛片| 99久久无色码亚洲精品果冻| 欧美三级亚洲精品| 可以在线观看的亚洲视频| 99国产极品粉嫩在线观看| 性欧美人与动物交配| 婷婷色综合大香蕉| 亚洲天堂国产精品一区在线| 国产精品人妻久久久影院| 啦啦啦观看免费观看视频高清| 成年女人永久免费观看视频| 天堂av国产一区二区熟女人妻| 国产精品,欧美在线| 色尼玛亚洲综合影院| 美女黄网站色视频| 波多野结衣巨乳人妻| 免费大片18禁| 免费av不卡在线播放| 给我免费播放毛片高清在线观看| 日韩精品青青久久久久久| 性欧美人与动物交配| 久久亚洲精品不卡| 国产高清三级在线| 久久精品综合一区二区三区| 日韩国内少妇激情av| 欧美在线一区亚洲| av福利片在线观看| 国产精品久久久久久精品电影小说 | 免费av毛片视频| 国产亚洲精品久久久com| 一个人看视频在线观看www免费| 长腿黑丝高跟| 欧美xxxx性猛交bbbb| 国产又黄又爽又无遮挡在线| 中文字幕av成人在线电影| 欧美性猛交╳xxx乱大交人| 99久国产av精品| 身体一侧抽搐| а√天堂www在线а√下载| 一级av片app| 国产精品.久久久| 国产成人精品婷婷| 免费看av在线观看网站| 国产精品久久久久久久电影| 美女内射精品一级片tv| 精品不卡国产一区二区三区| 午夜福利在线观看吧| 欧美区成人在线视频| 中文亚洲av片在线观看爽| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲av涩爱 | 国产精品精品国产色婷婷| 久久久久久久久久成人| 两个人视频免费观看高清| 国产毛片a区久久久久| 一本久久精品| 麻豆成人av视频| 18禁在线无遮挡免费观看视频| 日韩,欧美,国产一区二区三区 | 亚洲国产色片| 一进一出抽搐gif免费好疼| 国产精品美女特级片免费视频播放器| 国产精品久久久久久亚洲av鲁大| 极品教师在线视频| 草草在线视频免费看| 直男gayav资源| 午夜a级毛片| 国产色婷婷99| 日韩强制内射视频| 欧美人与善性xxx| 91久久精品国产一区二区成人| 99久久九九国产精品国产免费| 欧美在线一区亚洲| 日本成人三级电影网站| 99在线视频只有这里精品首页| 人人妻人人澡欧美一区二区| 特大巨黑吊av在线直播| 一区福利在线观看| 极品教师在线视频| 看非洲黑人一级黄片| 在线免费观看不下载黄p国产| 男人舔奶头视频| 人妻系列 视频| 免费看a级黄色片| 久久久国产成人精品二区| 成人三级黄色视频| 最近2019中文字幕mv第一页| 在线天堂最新版资源| 在现免费观看毛片| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 两性午夜刺激爽爽歪歪视频在线观看| 欧美在线一区亚洲| 国产老妇女一区| 久久久色成人| 我的老师免费观看完整版| 麻豆国产av国片精品| 亚洲精品乱码久久久久久按摩| 久久精品国产亚洲网站| 亚洲欧美日韩无卡精品| 亚洲久久久久久中文字幕| 久久久久久久久大av| 男女那种视频在线观看| 精品午夜福利在线看| 午夜精品一区二区三区免费看| 长腿黑丝高跟| 麻豆一二三区av精品| 淫秽高清视频在线观看| 国产成人一区二区在线| av在线播放精品| 免费无遮挡裸体视频| 欧美激情在线99| 国产高清不卡午夜福利| 免费观看的影片在线观看| 精品一区二区三区人妻视频| 一进一出抽搐动态| 亚洲真实伦在线观看| 日本黄色片子视频| 少妇被粗大猛烈的视频| 亚洲国产精品国产精品| 丰满人妻一区二区三区视频av| 亚洲在线观看片| 国产成人福利小说| 精品久久久久久久久久免费视频| 日韩精品有码人妻一区| 中国美女看黄片| 久久欧美精品欧美久久欧美| 九草在线视频观看| 成年女人永久免费观看视频| 久久久久久久久久久丰满| 2022亚洲国产成人精品| 一本一本综合久久| 成年版毛片免费区| 少妇人妻精品综合一区二区 | 国产成人精品一,二区 | 国产综合懂色| 2021天堂中文幕一二区在线观| 亚洲av不卡在线观看| 免费av毛片视频| 99热这里只有是精品50| 亚洲内射少妇av| 亚洲国产日韩欧美精品在线观看| 久久6这里有精品| 小说图片视频综合网站| 亚洲成人久久爱视频| 精华霜和精华液先用哪个| 亚洲天堂国产精品一区在线| 亚州av有码| 熟妇人妻久久中文字幕3abv| 免费搜索国产男女视频| 三级经典国产精品| 99久国产av精品国产电影| 久久国产乱子免费精品| 级片在线观看| 亚洲精品粉嫩美女一区| 欧美激情国产日韩精品一区| 欧美激情在线99| 22中文网久久字幕| 中出人妻视频一区二区| 丰满人妻一区二区三区视频av| 欧美潮喷喷水| 18禁在线无遮挡免费观看视频| 三级国产精品欧美在线观看| 成年av动漫网址| 亚洲欧洲日产国产| 亚洲国产精品合色在线| 免费观看的影片在线观看| 99久久久亚洲精品蜜臀av| 99热这里只有精品一区| 久久精品影院6| 欧美+日韩+精品| 91久久精品国产一区二区成人| 中文字幕av成人在线电影| 女的被弄到高潮叫床怎么办| 99热只有精品国产| 日本一本二区三区精品| 久久综合国产亚洲精品| av在线蜜桃| 亚洲图色成人| 日日干狠狠操夜夜爽| 精品一区二区三区人妻视频| 国产亚洲欧美98| 免费不卡的大黄色大毛片视频在线观看 | 97人妻精品一区二区三区麻豆| 国产精华一区二区三区| 国产成人a区在线观看| 久久久精品94久久精品| 国产av一区在线观看免费| 国产精品一区二区三区四区久久| 国产激情偷乱视频一区二区| a级毛片a级免费在线| 大香蕉久久网| 最后的刺客免费高清国语| 国产一级毛片七仙女欲春2| 麻豆精品久久久久久蜜桃| 国产精品久久久久久精品电影| 一级毛片aaaaaa免费看小| 一夜夜www|