• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel two-dimensional SiO sheet with high-stability,strain tunable electronic structure,and excellent mechanical properties*

    2021-07-30 07:40:04ShijieLiu劉世杰andHuiDu杜慧
    Chinese Physics B 2021年7期

    Shijie Liu(劉世杰) and Hui Du(杜慧)

    1Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications,School of Physics and Engineering,Henan University of Science and Technology,Luoyang 471023,China

    2State Key Laboratory of Superhard Materials,Jilin University,Changchun 130012,China

    Keywords: 2D material,SiO sheet,first-principles method,strain

    1. Introduction

    Generally speaking, a two-dimensional (2D) material refers to a material with one or several atomic layers in a certain dimension, and the movement of electrons in this dimension is greatly restricted. Due to the uniqueness of the structure, 2D materials have different electronic,magnetic, and optical properties from three-dimensional(3D) materials, one-dimensional (1D) materials, and zerodimensional materials,[1,2]In recent years, 2D material has gradually become one of the most attractive research hotspots.With the deepening of research on 2D materials, more and more new 2D materials have been discovered, including metals,[3-7]semi-metals,[8-11]semiconductors,[12-17]and insulators,[18-21]which have application prospects in many fields. These achievements greatly motivate the investigation of other new 2D material.

    With the increasing demand for energy, the design and manufacture of high-efficiency photovoltaic devices to convert solar energy into electricity has become an effective way to alleviate the energy crisis. Due to the stability and abundant reserves, traditional silicon-based materials has become the main material of manufacturing solar cells in industry. However,the indirect band gap limits the light absorption and photoelectric conversion efficiency.[22]Because 2D materials have lower dimensions, and also may have adjustable band gaps and excellent mechanical properties,people have turned their attention to 2D photovoltaic systems, making them a new favorite in the photovoltaic field. For an ideal 2D photovoltaic material,it should have a direct band gap and a moderate band gap value about 1.2 eV-1.6 eV.[23]Although many 2D materials have been discovered or predicted in the past, it is very rare to have both properties at the same time. Therefore,looking for new 2D materials with adjustable band gap and excellent mechanical properties will have important research significance.

    Here, we conduct a systematic 2D material research on the SiO system and predict a new type of 2D structure P2. The calculation of phonon spectrum shows that the 2D P2 is dynamic stable under ambient pressure. MD simulations show that the structure can still exist stably at a high temperature of 1000 K,indicating that the 2D P2 has application potential in high-temperature environment. The intrinsic 2D P2 structure has a quasi-direct band gap of 3.2 eV.The 2D P2 can be transformed into a direct band gap by a small strain, and has an ideal band gap value about 1.5 eV as a photovoltaic material.

    2. Methods

    We use the CALYPSO code[24,25]based on particle swarm optimization(PSO)to perform crystal structure search.In order to ensure the accuracy of the search, 2-6 times the chemical formula SiO per unit cell are used. We use the Perdew-Burke-Ernzerhof(PBE)[26]exchange-correlation functional and the projector augmented wave (PAW) potential within the Viennaab initiosimulation package (VASP)code[27-29]for self-consistent energy calculation and structural optimization. The plane-wave energy cutoff is set to 800 eV.All the geometry structures are fully relaxed until energy and force are converged to 10-8eV and 0.002 eV/?A,respectively.The Brillouin zone is integrated using the tetrahedral method with Bl¨ochl correction. In all calculations, a 15-?A vacuum layer is used. We use the hybrid functional of Heyd,Scuseria,and Ernzerhof(HSE06)[30]method to calculate the band structure to get a more accurate band gap value than PBE method.Phonon dispersion curves are calculated by using a supercell approach as implemented in the Phonopy package.[31]In order to ensure the accuracy of the calculation,a 4×6×1 supercell of 96 atoms is employed. Convergence criteria employed for the total energy are set to 10-8eV.

    3. Result and discussion

    Using the CALYPSO code based on the PSO algorithm,we conduct a systematic structure search on the SiO system,and we find a new 2D structure with the space group of P2,as shown in Fig. 1. The structure is composed of many tenmembered rings,and each ten-membered ring is formed by 4 oxygen atoms and 6 silicon atoms. In the 10-membered ring structure unit,6 Si atoms and 2 O atoms are in one plane,while the other 2 O atoms out of the plane. We have made the electronic localization function (ELF) of the structure, as shown in Figs. 1(c) and 1(d). It can be seen from the ELF data that the protruding plane oxygen atom forms a covalent bond with two adjacent silicon atoms,and two silicon atoms also form a covalent bond with another silicon atom or oxygen atom. The reason why the oxygen atom protrudes from the 2D plane is that the local charge around the oxygen atom and the local charge in the Si-Si bond repel each other. All silicon atoms in the structure form 4-coordination, while oxygen atoms form 2-coordination.

    Fig.1. Equilibrium 2D monolayer SiO of 2D P2 in both top(a)and side(b)views; the calculated ELF of 2D P2 structure [(c)-(d)]. Blue and red balls are Si and O atoms,respectively.

    Dynamic stability is an important basis for judging whether a structure can be stable. In order to characterize the dynamic stability of the 2D P2 structure, we use the finite displacement method to calculate the phonon spectrum of the 2D P2 structure. As shown in the Fig. 2, the calculated phonon spectrum has no imaginary frequencies in the Brillouin zone, which shows that the structure has dynamic stability. In order to characterize the relative stability of 2D P2 structure, we calculate its cohesive energy by the expression:Ecoh=(xESi+xEO-ESiO)/2x.ESi,EO, andESiOrepresent the total energies of a single Si atom,a single O atom,and one unit cell of the monolayer, respectively. Thexis the number of Si or O atoms in unitcell. The cohesive energy of 2D P2 is positive with 6.29 eV/atom,which suggests that the 2D P2 structure is formed by strongly bonds.

    Fig.2. Phonon dispersions of 2D P2 structure.

    Fig.3. Snapshots for the equilibrium structures of 2D P2 structure at 300 K[(a)and(b)],1000 K[(c)and(d)]at the end of 10-ps AIMD simulations.

    In order to characterize the thermal stability of 2D P2,we use the NVT ensemble to perform molecular dynamics(MD)simulations of the 2D P2 structure in a temperature range of 300 K-1000 K with a step size of 100 K,as shown in Fig.3.In the process of calculation,we establish a super cell of 5×7×1(140 atoms) as a structural model to ensure the accuracy of MD simulation. Firstly,we calculate the molecular dynamics at 300 K, and the top and side views of the 2D P2 structure as shown in Fig.3. The results show that each atom oscillates slightly at the equilibrium position and Si-O and Si-Si are still maintained,which indicates that the structure can exist stably at 300 K. As the temperature increases, the wrinkles and deformation of the 2D P2 structure gradually increase. When the temperature rises to 1000 K, Si-O and Si-Si in the P2 structure are still maintained, and no chemical bond breakage occurs. Besides, the curves of total energyversussimulation time at 300 K and 1000 K are shown in Fig. S1. The total energy fluctuates around a certain energy value at 300 K and 1000 K,which also shows that the structure can exist stably at 300 K and 1000 K.The above analysis shows that the 2D P2 structure has excellent thermal stability and can remain stable even under high temperature conditions of 1000 K,which also shows that the material has the prospect of application in high temperature environments.

    In order to further characterize the electronic properties of the 2D material, we calculate its band structure and DOS,as shown in Fig.4. First, we calculated the band structure of the 2D P2 structure using the PBE method (the black curve in Fig. 4(a)). From Fig. 4(a), we can see that the bottom of the conduction band and the top of the valence band of 2D P2 structure are located very close in the reciprocal space coordinates, and the band gap value is 2.23 eV. Therefore, this structure can be classified as a quasi-direct band gap semiconductor. Similar band structures have also been reported in other materials.[32,33]In general, the band gap calculated by the PBE method is smaller than the actual band gap value,while the HSE06 method is currently one of the most accurate methods for the calculation of band gap. In order to obtain a more accurate band gap value, we use the HSE06 method to calculate the band structure of the 2D P2 structure, as shown by the red line in Fig. 4(a). The band structure calculated by the HSE06 and PBE methods has a similar shape,except that the bottom of the conduction band shifts upward,and the band gap value is expanded to 3.23 eV.We then calculate the DOS of the 2D P2 material,as shown in Fig.4(b). The results show that Si p and O p orbitals have similar shapes around the Fermi energy,indicating that the Si p and O p orbitals of this material have a strong coupling effect.

    Fig.4. The calculated(a)band structures of P2 monolayer structure by using PBE (black) and HSE06 (red) methods and (b) density of states (DOS) by using PBE method.

    For ideal nano-materials, excellent strain strength is essential, and the stress-strain curve is an extremely important physical quantity that characterizes the mechanical properties of materials. Therefore,we calculate the stress-strain curve of the 2D P2 structure. Since theaandbaxes of the 2D P2 structure are not equal,we calculated the uniaxial and biaxial strain curves, and the results are shown in Fig. 5. The strain is defined as(a-a0)/a0,whereaanda0are the lattice parameters of the phase with and without strain, respectively. From the figure, we can see that when uniaxial strain is applied to the structure,the strain corresponding to the maximum stress that the structure can withstand is 16%,while for biaxial strain,the corresponding strain value is 10%.When compressive strain is applied,the monolayer can sustain a max stress with the corresponding uniaxial strain of-26%and biaxial strain of-14%,indicating the high mechanical strength of the 2D SiO monolayer. The above data shows that the structure can withstand at least 16%and 10%strain in uniaxial and biaxial directions,which also shows that the structure has very excellent mechanical properties.

    Fig.5. Stress in the 2D P2 subjected to biaxial and uniaxial strains.

    Strain is an effective method to control the electronic properties of 2D materials.[34-39]In order to further study the regulation of strain on the 2D P2, we conduct a study on the regulation of strain on electronic properties. Firstly, we conduct a study on the adjustment of the electronic properties of the 2D structure by uniaxial strain along theadirection, as shown in Fig. 6(a) and Fig. S2. Through the above analysis,the intrinsic 2D P2 structure is an indirect band gap semiconductor. When a tensile strain is applied to the structure along thea-axis direction to 8%, it begins to transform into a direct band gap semiconductor with band gap of 1.65 eV at PBE level and 2.54 eV at HES06 level, and as the tensile strain gradually increases, the band gap gradually decreases.When the increased strain reaches the maximum tensile strain of 16%, the structural band gap is about 0.52 eV using PBE method(1.13 eV using HSE06). When the compressive strain is applied to-8%, the 2D P2 structure can also be transformed into a direct band gap semiconductor with band gap of 2.29 eV at PBE level and 3.30 eV at HSE06 level. The band gap value gradually decreases as the compressive strain gradually increases,and it is about 0.56 eV using PBE method and 1.51 eV using HSE06 at-26%. Subsequently, we conduct a study on the regulation of the band gap by biaxial strain, as shown in Fig.6(b)and Fig.S2. When a tensile strain of 8%is applied,the 2D P2 structure undergoes a phase transition from an indirect band gap semiconductor to a direct band gap semiconductor. When compressive strain is applied, the band gap gradually increases.It is worth emphasizing that at a compressive strain of-6%, the band gap has a maximum value, and the 2D P2 structure changes from an indirect band gap semiconductor to a direct band gap semiconductor with band gap of 2.72 eV at PBE level and 3.74 eV at HES06 level. As the compressive strain continues to increase,the band gap value of the 2D P2 structure begins to decrease,and it is about 1.38 eV using PBE method and 2.46 eV using HES06 at-14%. Similarly,we also calculate the uniaxial strain along thebdirection.There is also a regulation effect of strain on the band gap,but we do not observe the transformation of the structure into a direct band gap. Therefore,the 2D P2 structure can be transformed into a direct band gap semiconductor with appropriate strain,and the band gap value can be adjusted to 1.2 eV-1.6 eV,which is the ideal band gap value for photovoltaic materials.This also shows that the material has potential application in photovoltaic materials.

    Fig.6. Variation of band gap with in-plane uniaxial strain along the a direction(a)and biaxial strain(b)for the 2D P2 monolayer using the PBE method.

    4. Conclusion and perspectives

    We conduct a systematic 2D material research on the SiO system and discover a new 2D P2 structure by using the structure search of PSO algorithm combined with DFT. The calculation of phonon spectrum show that the structure have dynamic stability under ambient pressure. Molecular dynamics simulations show that the structure can still exist stably at a high temperature of 1000 K, indicating that the structure has application potential in high-temperature environments. The intrinsic 2D P2 structure has a quasi-direct band gap of 3.2 eV.When appropriate strain is applied, the 2D P2 structure can be transformed into a direct band gap semiconductor,and the band gap value can be adjusted to 1.5 eV, which is the ideal band gap value for photovoltaic materials. These unique properties of the 2D P2 structure make it expected to have potential applications in nanomechanics and nanoelectronics.

    Acknowledgments

    The authors sincerely thank Prof. Yanming Ma for providing us with the CALYPSO(Crystal structure AnaLYsis by Particle Swarm Optimization)code. We acknowledge the use of computing facilities at the High Performance Computing Center of Jilin University.

    亚洲成人中文字幕在线播放| 国产综合懂色| 国产高清三级在线| 国产精品久久久久久人妻精品电影| 精品久久蜜臀av无| e午夜精品久久久久久久| 国产淫片久久久久久久久 | 18禁黄网站禁片午夜丰满| 18禁黄网站禁片免费观看直播| 一级毛片精品| 久久久国产成人免费| 欧美一区二区国产精品久久精品| 亚洲精品一区av在线观看| 国产精品99久久99久久久不卡| 国产激情久久老熟女| 精品无人区乱码1区二区| 欧美色欧美亚洲另类二区| 1024香蕉在线观看| 在线十欧美十亚洲十日本专区| 99精品欧美一区二区三区四区| 欧美一区二区精品小视频在线| 曰老女人黄片| 国产探花在线观看一区二区| 校园春色视频在线观看| 老司机午夜十八禁免费视频| 男人和女人高潮做爰伦理| www.www免费av| 亚洲无线在线观看| 国产欧美日韩一区二区三| 成人三级黄色视频| 亚洲精品美女久久久久99蜜臀| 久久99热这里只有精品18| 中文亚洲av片在线观看爽| 久久精品国产综合久久久| 日韩欧美国产在线观看| 久久久久精品国产欧美久久久| 国产v大片淫在线免费观看| 在线观看午夜福利视频| 国产主播在线观看一区二区| 午夜福利欧美成人| 亚洲av成人av| 亚洲熟妇熟女久久| 男女床上黄色一级片免费看| 国内少妇人妻偷人精品xxx网站 | 午夜影院日韩av| 91av网一区二区| 超碰成人久久| 亚洲无线观看免费| 国产精品1区2区在线观看.| 国产精品亚洲美女久久久| 少妇熟女aⅴ在线视频| 麻豆久久精品国产亚洲av| 国产精品一区二区精品视频观看| 在线观看舔阴道视频| 久久久久免费精品人妻一区二区| 麻豆一二三区av精品| 两个人看的免费小视频| 亚洲国产日韩欧美精品在线观看 | 日韩大尺度精品在线看网址| 国产精品久久电影中文字幕| 成人三级做爰电影| 老司机午夜福利在线观看视频| 久久香蕉国产精品| 丰满的人妻完整版| 精品不卡国产一区二区三区| 99国产精品99久久久久| 岛国在线免费视频观看| 亚洲九九香蕉| 成年女人永久免费观看视频| 精品久久久久久久毛片微露脸| 亚洲五月婷婷丁香| 日韩有码中文字幕| 国产成人一区二区三区免费视频网站| 免费在线观看亚洲国产| 最近最新免费中文字幕在线| 18美女黄网站色大片免费观看| 久久精品国产99精品国产亚洲性色| 成人av在线播放网站| 可以在线观看毛片的网站| 欧美黑人巨大hd| 国产精品久久久久久人妻精品电影| 麻豆av在线久日| 亚洲精品美女久久av网站| 九色成人免费人妻av| 亚洲欧美日韩无卡精品| 又爽又黄无遮挡网站| 少妇的丰满在线观看| 欧美成人免费av一区二区三区| 国产精品永久免费网站| 高清在线国产一区| 亚洲av片天天在线观看| 一级毛片高清免费大全| 国产亚洲精品综合一区在线观看| 国产精品一区二区三区四区免费观看 | 亚洲人成网站高清观看| 九色国产91popny在线| 婷婷亚洲欧美| 久久欧美精品欧美久久欧美| 少妇人妻一区二区三区视频| 亚洲熟妇熟女久久| 嫩草影院精品99| 在线观看美女被高潮喷水网站 | 国产麻豆成人av免费视频| 老司机福利观看| 国产人伦9x9x在线观看| 丰满人妻熟妇乱又伦精品不卡| www国产在线视频色| 老司机在亚洲福利影院| 欧美一级毛片孕妇| 国产亚洲欧美98| 久久久国产成人精品二区| xxxwww97欧美| xxxwww97欧美| 精品99又大又爽又粗少妇毛片 | 国产精品电影一区二区三区| 亚洲在线观看片| 国产精品野战在线观看| 亚洲av中文字字幕乱码综合| 一个人看视频在线观看www免费 | 999久久久精品免费观看国产| 伊人久久大香线蕉亚洲五| av中文乱码字幕在线| 国产精品av视频在线免费观看| 国产黄a三级三级三级人| 欧美一区二区精品小视频在线| 999精品在线视频| 亚洲精品一区av在线观看| 久久久久久久久久黄片| 床上黄色一级片| 狠狠狠狠99中文字幕| 免费看十八禁软件| 国产淫片久久久久久久久 | 国内少妇人妻偷人精品xxx网站 | 亚洲成人免费电影在线观看| 国产亚洲欧美在线一区二区| 亚洲avbb在线观看| 免费在线观看影片大全网站| 91在线精品国自产拍蜜月 | 熟女电影av网| 久久中文字幕一级| 99热这里只有是精品50| 91av网一区二区| 中国美女看黄片| 国内精品久久久久精免费| 日韩免费av在线播放| or卡值多少钱| 午夜激情欧美在线| 久久草成人影院| 成人av一区二区三区在线看| 大型黄色视频在线免费观看| 19禁男女啪啪无遮挡网站| 亚洲黑人精品在线| 两人在一起打扑克的视频| 国产亚洲精品av在线| 精品人妻1区二区| 久久久久久久久久黄片| 18美女黄网站色大片免费观看| 女警被强在线播放| 天堂av国产一区二区熟女人妻| 色哟哟哟哟哟哟| 亚洲av成人av| 国产成人av教育| 国内精品久久久久精免费| 大型黄色视频在线免费观看| 精品久久久久久久毛片微露脸| 国产成人一区二区三区免费视频网站| 成人欧美大片| 人人妻,人人澡人人爽秒播| 成人特级av手机在线观看| 国产亚洲精品久久久com| 欧美一级a爱片免费观看看| 精品一区二区三区视频在线观看免费| 精品国产美女av久久久久小说| 狠狠狠狠99中文字幕| 国产v大片淫在线免费观看| 久久久久免费精品人妻一区二区| 波多野结衣高清无吗| 亚洲精品美女久久av网站| 中国美女看黄片| 午夜激情福利司机影院| 午夜成年电影在线免费观看| 97碰自拍视频| 青草久久国产| 成人国产综合亚洲| 美女高潮喷水抽搐中文字幕| 亚洲欧美精品综合久久99| 99视频精品全部免费 在线 | 日韩欧美在线乱码| 88av欧美| 成人亚洲精品av一区二区| 欧美三级亚洲精品| 99国产综合亚洲精品| 国产精品永久免费网站| 无遮挡黄片免费观看| 亚洲精品久久国产高清桃花| 午夜日韩欧美国产| 男女床上黄色一级片免费看| 国产精品久久电影中文字幕| 亚洲精品一区av在线观看| 性色avwww在线观看| 在线国产一区二区在线| 国产高清视频在线观看网站| 国产成人啪精品午夜网站| ponron亚洲| 国产精品久久久久久人妻精品电影| 免费在线观看日本一区| 国产一区在线观看成人免费| 亚洲人成伊人成综合网2020| 动漫黄色视频在线观看| 欧美在线一区亚洲| 小蜜桃在线观看免费完整版高清| 日韩欧美三级三区| 国产成人啪精品午夜网站| 日韩人妻高清精品专区| 18禁裸乳无遮挡免费网站照片| 欧美高清成人免费视频www| 他把我摸到了高潮在线观看| 两人在一起打扑克的视频| 一区二区三区激情视频| 久久久久久久精品吃奶| 真人做人爱边吃奶动态| 丰满的人妻完整版| 欧美丝袜亚洲另类 | 成人av在线播放网站| 老熟妇乱子伦视频在线观看| 我要搜黄色片| 真人做人爱边吃奶动态| 波多野结衣高清作品| 特大巨黑吊av在线直播| 神马国产精品三级电影在线观看| 又爽又黄无遮挡网站| 国产亚洲精品av在线| 精品国产美女av久久久久小说| 国产麻豆成人av免费视频| 久久国产精品影院| cao死你这个sao货| 国产成+人综合+亚洲专区| 国产高清视频在线观看网站| av黄色大香蕉| 国产精品香港三级国产av潘金莲| 亚洲成a人片在线一区二区| 亚洲电影在线观看av| 欧美日韩乱码在线| 亚洲成av人片在线播放无| 午夜免费观看网址| 国产久久久一区二区三区| www.自偷自拍.com| 真人一进一出gif抽搐免费| 少妇熟女aⅴ在线视频| 麻豆国产97在线/欧美| 蜜桃久久精品国产亚洲av| 久久久久亚洲av毛片大全| 午夜免费激情av| 国产亚洲精品综合一区在线观看| 亚洲熟妇中文字幕五十中出| www.熟女人妻精品国产| 亚洲国产看品久久| 无人区码免费观看不卡| 日本黄大片高清| 亚洲国产精品成人综合色| 日韩欧美在线乱码| 国产精品九九99| svipshipincom国产片| 国产野战对白在线观看| 国产成人一区二区三区免费视频网站| 成人av一区二区三区在线看| 中国美女看黄片| 欧美绝顶高潮抽搐喷水| 中文字幕熟女人妻在线| 免费一级毛片在线播放高清视频| 深夜精品福利| 一本精品99久久精品77| 久久精品夜夜夜夜夜久久蜜豆| 97超级碰碰碰精品色视频在线观看| 亚洲电影在线观看av| 91久久精品国产一区二区成人 | 手机成人av网站| 最近视频中文字幕2019在线8| 黑人欧美特级aaaaaa片| 宅男免费午夜| 国内久久婷婷六月综合欲色啪| 久久国产乱子伦精品免费另类| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人看人人澡| 亚洲精品美女久久久久99蜜臀| 色尼玛亚洲综合影院| 美女大奶头视频| 精品无人区乱码1区二区| 国产一区二区三区视频了| 亚洲五月天丁香| 欧美绝顶高潮抽搐喷水| 日本免费a在线| 美女被艹到高潮喷水动态| 免费电影在线观看免费观看| 欧美国产日韩亚洲一区| 一区福利在线观看| 精品99又大又爽又粗少妇毛片 | 91老司机精品| 色吧在线观看| 色av中文字幕| 色噜噜av男人的天堂激情| 色视频www国产| 午夜福利高清视频| 欧美日韩一级在线毛片| 黄色 视频免费看| 俺也久久电影网| 婷婷精品国产亚洲av| 91av网站免费观看| 好看av亚洲va欧美ⅴa在| 久久久久久国产a免费观看| 久久人妻av系列| 热99在线观看视频| 美女扒开内裤让男人捅视频| www日本黄色视频网| 夜夜夜夜夜久久久久| 久久精品人妻少妇| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| aaaaa片日本免费| 亚洲专区中文字幕在线| 99久久国产精品久久久| 黄色 视频免费看| 给我免费播放毛片高清在线观看| 动漫黄色视频在线观看| 亚洲色图 男人天堂 中文字幕| 日本成人三级电影网站| 又大又爽又粗| 午夜两性在线视频| 午夜福利视频1000在线观看| 999久久久精品免费观看国产| 十八禁人妻一区二区| 网址你懂的国产日韩在线| 国产高清有码在线观看视频| 亚洲最大成人中文| 日韩av在线大香蕉| av福利片在线观看| 这个男人来自地球电影免费观看| 精品不卡国产一区二区三区| 这个男人来自地球电影免费观看| 亚洲中文字幕日韩| 国产精华一区二区三区| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 夜夜看夜夜爽夜夜摸| 亚洲精品久久国产高清桃花| 亚洲国产高清在线一区二区三| www.www免费av| 精品不卡国产一区二区三区| 国产精华一区二区三区| 黄色 视频免费看| 亚洲色图 男人天堂 中文字幕| 日本黄色视频三级网站网址| 1024手机看黄色片| 成年女人看的毛片在线观看| 偷拍熟女少妇极品色| 国内精品久久久久久久电影| 黄频高清免费视频| 麻豆成人午夜福利视频| 日本在线视频免费播放| 精品福利观看| 午夜福利欧美成人| 99riav亚洲国产免费| 一区二区三区国产精品乱码| 国产亚洲精品综合一区在线观看| 国产蜜桃级精品一区二区三区| 在线免费观看不下载黄p国产 | 此物有八面人人有两片| 亚洲精品久久国产高清桃花| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 欧美另类亚洲清纯唯美| www.自偷自拍.com| 一本久久中文字幕| www日本在线高清视频| 女生性感内裤真人,穿戴方法视频| 色尼玛亚洲综合影院| 在线十欧美十亚洲十日本专区| 日韩欧美国产一区二区入口| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 99久久精品国产亚洲精品| 日本黄色片子视频| 国内精品一区二区在线观看| 午夜免费观看网址| 亚洲五月婷婷丁香| 国产高清三级在线| 久久久精品大字幕| 我的老师免费观看完整版| 欧美午夜高清在线| 一二三四社区在线视频社区8| 国产精品九九99| 老司机福利观看| 色老头精品视频在线观看| 99re在线观看精品视频| 欧美成人性av电影在线观看| 给我免费播放毛片高清在线观看| 一本精品99久久精品77| 我的老师免费观看完整版| 久久久精品欧美日韩精品| 欧美成人免费av一区二区三区| 国产黄片美女视频| 色综合亚洲欧美另类图片| а√天堂www在线а√下载| 日韩欧美在线二视频| 国产亚洲精品久久久久久毛片| 最新中文字幕久久久久 | 国语自产精品视频在线第100页| 日韩精品青青久久久久久| 国产蜜桃级精品一区二区三区| 精品乱码久久久久久99久播| tocl精华| 国产熟女xx| 18禁国产床啪视频网站| tocl精华| 色综合婷婷激情| 18禁黄网站禁片免费观看直播| 久久久久国内视频| 国产激情欧美一区二区| 最好的美女福利视频网| 天天躁日日操中文字幕| 亚洲av成人精品一区久久| 午夜福利在线在线| 69av精品久久久久久| 黑人欧美特级aaaaaa片| 国产三级中文精品| 亚洲中文av在线| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 99久国产av精品| 老司机深夜福利视频在线观看| 一级a爱片免费观看的视频| 亚洲五月天丁香| 在线免费观看的www视频| 黄色视频,在线免费观看| 久久久久国产一级毛片高清牌| 成年版毛片免费区| 日韩欧美三级三区| 精品无人区乱码1区二区| 免费看光身美女| 99热只有精品国产| 无人区码免费观看不卡| 99国产精品一区二区三区| av欧美777| 亚洲人成伊人成综合网2020| 精品久久久久久,| 欧美成人免费av一区二区三区| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 欧美黄色片欧美黄色片| 国产欧美日韩精品一区二区| 我要搜黄色片| 精品福利观看| 禁无遮挡网站| 久久精品人妻少妇| 婷婷丁香在线五月| 啦啦啦免费观看视频1| 午夜激情欧美在线| 成人av一区二区三区在线看| 免费在线观看成人毛片| 久久久久亚洲av毛片大全| 久久久色成人| 欧美日韩黄片免| 欧美激情在线99| 黑人欧美特级aaaaaa片| 亚洲成人免费电影在线观看| 一级a爱片免费观看的视频| 成年人黄色毛片网站| 欧美乱色亚洲激情| 午夜免费观看网址| 日本一二三区视频观看| 成人欧美大片| 波多野结衣高清无吗| 亚洲国产欧美人成| 嫩草影视91久久| 欧美成人性av电影在线观看| 免费在线观看日本一区| 91av网一区二区| 又大又爽又粗| 国产成人精品久久二区二区免费| av国产免费在线观看| 麻豆成人午夜福利视频| 欧美日韩瑟瑟在线播放| 九色成人免费人妻av| 99久久成人亚洲精品观看| 国产野战对白在线观看| 日本一二三区视频观看| 白带黄色成豆腐渣| 成年女人永久免费观看视频| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久亚洲av鲁大| 一边摸一边抽搐一进一小说| 国产欧美日韩精品一区二区| 久久久久亚洲av毛片大全| 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| 90打野战视频偷拍视频| 国产毛片a区久久久久| 俺也久久电影网| 日韩欧美国产一区二区入口| 亚洲国产中文字幕在线视频| 国产精品一区二区三区四区久久| 9191精品国产免费久久| 中亚洲国语对白在线视频| 欧美日韩黄片免| 成年免费大片在线观看| 国产精品一及| 黑人操中国人逼视频| 老鸭窝网址在线观看| 国产午夜福利久久久久久| 97超级碰碰碰精品色视频在线观看| 男人舔女人下体高潮全视频| 脱女人内裤的视频| 国产高清有码在线观看视频| 亚洲国产高清在线一区二区三| 99久久国产精品久久久| 午夜福利欧美成人| 欧美一级a爱片免费观看看| a级毛片a级免费在线| 久久久久国产精品人妻aⅴ院| 俺也久久电影网| av天堂在线播放| 国产成人啪精品午夜网站| www.999成人在线观看| 91九色精品人成在线观看| 天天躁日日操中文字幕| 久久精品人妻少妇| 日本在线视频免费播放| 成年女人永久免费观看视频| 老司机在亚洲福利影院| 国产精品美女特级片免费视频播放器 | 国产野战对白在线观看| 国产aⅴ精品一区二区三区波| 19禁男女啪啪无遮挡网站| 国内精品一区二区在线观看| 亚洲国产色片| 啦啦啦免费观看视频1| 怎么达到女性高潮| 成人午夜高清在线视频| 欧美一区二区精品小视频在线| 欧美3d第一页| 亚洲,欧美精品.| 欧美高清成人免费视频www| 国产精品久久视频播放| 成人国产一区最新在线观看| 蜜桃久久精品国产亚洲av| 久久久久久国产a免费观看| 国内精品一区二区在线观看| 在线观看日韩欧美| 国产主播在线观看一区二区| 最近最新中文字幕大全电影3| 国产精品久久久av美女十八| 亚洲欧美日韩高清专用| 中文资源天堂在线| 97超视频在线观看视频| 欧美3d第一页| 国产99白浆流出| 日韩欧美免费精品| 久久伊人香网站| 每晚都被弄得嗷嗷叫到高潮| 日韩高清综合在线| 网址你懂的国产日韩在线| 51午夜福利影视在线观看| 人人妻人人看人人澡| 国产欧美日韩精品亚洲av| 国产高清videossex| 久久精品夜夜夜夜夜久久蜜豆| 欧美丝袜亚洲另类 | 国产极品精品免费视频能看的| 国产精品 国内视频| 免费看光身美女| 在线观看美女被高潮喷水网站 | 女警被强在线播放| 亚洲美女视频黄频| 小蜜桃在线观看免费完整版高清| 中国美女看黄片| 国产野战对白在线观看| 欧美一级a爱片免费观看看| 69av精品久久久久久| 伊人久久大香线蕉亚洲五| 亚洲精品乱码久久久v下载方式 | 夜夜夜夜夜久久久久| 国产91精品成人一区二区三区| 欧美乱码精品一区二区三区| 久久午夜亚洲精品久久| 五月伊人婷婷丁香| 成人欧美大片| 成人无遮挡网站| 亚洲真实伦在线观看| 夜夜躁狠狠躁天天躁| 色播亚洲综合网| 成人国产一区最新在线观看| 国产aⅴ精品一区二区三区波| 国产黄色小视频在线观看| 人妻夜夜爽99麻豆av| 人妻久久中文字幕网| 亚洲中文av在线| 国产亚洲精品久久久久久毛片| 免费看日本二区| 久久久水蜜桃国产精品网| 老熟妇乱子伦视频在线观看| 久久久久性生活片| www.999成人在线观看| 国产精品99久久99久久久不卡| e午夜精品久久久久久久| 88av欧美| 免费无遮挡裸体视频| 夜夜夜夜夜久久久久| 亚洲熟妇熟女久久| 国产精品一区二区精品视频观看| 亚洲人成伊人成综合网2020| 中文字幕人妻丝袜一区二区| 国产乱人伦免费视频| 美女高潮的动态|