• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of SiC/graphene nanosheet composites by helicon wave plasma*

    2021-07-30 07:39:34JiaLiChen陳佳麗PeiYuJi季佩宇ChengGangJin金成剛LanJianZhuge諸葛蘭劍andXueMeiWu吳雪梅
    Chinese Physics B 2021年7期
    關(guān)鍵詞:佳麗諸葛

    Jia-Li Chen(陳佳麗) Pei-Yu Ji(季佩宇) Cheng-Gang Jin(金成剛)Lan-Jian Zhuge(諸葛蘭劍) and Xue-Mei Wu(吳雪梅)

    1School of Physical Science and Technology and Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University,Suzhou 215006,China

    2The Key Laboratory of Thin Films of Jiangsu Province,Soochow University,Suzhou 215006,China

    3Laboratory for Space Environment and Physical Sciences,Harbin Institute of Technology,Harbin 150001,China

    4Analysis and Testing Center,Soochow University,Suzhou 215123,China

    Keywords: helicon wave plasma,SiC/graphene nanosheet,x-ray photoelectron spectroscopy(XPS),fluorescence

    1. Introduction

    Silicon carbide (SiC) is a novel composite material with superior properties such as low density, high hardness,high strength, chemical inertness, high thermal conductivity(3 W/cm·K-5 W/cm·K) and a high breakdown field strength(2.0 MV/cm).[1,2]Many published reports covered the synthesis of nanocrystalline SiC and studying its photoluminescence (PL) properties.[3-5]SiC offers a unique combination of structural and electrical characteristics for applications in harsh environments such as high temperature and complex electromagnetic fields. Silicon carbide nanocrystals(SiC NCs) also show some properties beneficial to biological/photoelectric applications[5,6]and catalytic applications(including water decomposition and water purification).[7]Recently, many techniques such as sputtering, chemical vapor deposition (CVD),[8]plasma-enhanced chemical vapor deposition (PECVD), and ion implantation have been used for preparing SiC films.

    Graphene is considered an incredibly strong material with large surface areas as well as excellent mechanical, optical,thermal, and electrical properties.[9]Many graphene-based materials have has shown to possess excellent performance in sensors,transistors,actuators,and storage devices.[10-13]

    To our knowledge, few researches reported that tetramethylsilane (TMS) had been used as a source to synthesize SiC/GNSs in one step. The TMS is a simple organosilane and is widely used as a precursor for the synthesis of many important materials,[14-16]such as SiC nanoparticles,[17]and nanocrystals(NCs).[18]Welzelet al.[19]studied TMS as a precursor for the preparation of Si-C-N:H films by using an electron cyclotron resonance(ECR)plasma. Haqet al.[20]studied the growth of SiC nanocrystals by dissociation of TMS under atmospheric pressure microplasma. In particular,PECVD has been widely used to prepare various nanomaterials.It is worthwhile to note that the properties of the films are dependent on the preparation process. The helicon wave plasma(HWP)source can be widely used for preparing the nanomaterials,because of its high ionization rate,low deposition pressure,and high plasma density(≥1019m-3).[21]

    In this work,we report a method of rapidly synthesize the SiC/GNS composites in one step by using high-density helicon wave plasma(HWP)technology and TMS as a precursor for the first time. We studied the microstructure as well as the growth model of the SiC/GNS structure.

    2. Experiment

    The SiC/GNSs were deposited on silicon (Si) substrates in an argon helicon wave plasma chemical vapor deposition(HWP-CVD)system using tetramethylsilane(TMS).Figure 1 shows a schematic diagram of the deposition system. The detailed equipment of the system has been reported elsewhere.[22,23]In this experiment, a p-Si (100) signal crystal was chosen as the substrate material. The substrates were cut into 1 cm×1 cm pieces and sequentially cleaned ultrasonically with acetone,alcohol and deionized water to remove impurities from the Si surface. The Si substrates were placed in the deposition chamber and secured, then the vacuum chamber was pumped to the background vacuum. After evacuation,Ar (99.99%) gas was introduced into the discharge chamber.In the axial magnetic field environment, the radio frequency modulation was used for Ar HWP discharge to clean the vacuum chamber,substrate and Si substrate. The HWP was generated by 1500 W, 13.56 MHz, RF power supply through an antenna at a pressure of 0.06 Pa and a static axial magnetic field of 1480 Gs (1 Gs=10-4T) in Ar as the working gas.The injected TMS was decomposed by Ar (40 sccm) HWP.The HWP discharge and the TMS input were turned off after ten min.

    Fig.1. Schematic diagram of HWP-CVD experimental setup.

    The morphologies of the SiC/GNSs were studied by scanning electron microscopy (SEM, Model Hitachi SU8100).X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250 XI) analyzed the composition of the SiC/graphene composite nanosheets. The x-ray diffraction(XRD)patterns were obtained by using an x-ray diffractometer (Rigaku D/MAX-2000 PC). Raman spectra were measured with a Horiba Raman system and a 514-nm excitation semiconductor laser.Steady-state fluorescence(PL,FLS 920)was measured by using an OSRAM XBO 450-W high-pressure xenon arc lamp as a light source and showed a strong continuous spectrum in a range of 200 nm-900 nm. In the measurement, the working current and voltage were 25 A and 20 V, respectively the starting voltage was 25 kV, and the pressure was 5 atm(1 atm=1.01325×105Pa).The optical emission spectra(OES)were collected with a grating spectrometer(MS 5204i)in combination with a 74-UV silica collimating lens.

    3. Results and discussion

    3.1. Structure and phase composition

    Figure 2(a) shows a low magnification SEM image of SiC/GNS composites deposited for 10 min. It shows the nanosheets uniformly aggregated in a small island, like hairballs, with an average size of approximately 230 nm.Compared with a typical carbon nanosheet (vertically standing nanowalls with a maze-like, highly branched and porousstructure),[24]the SiC/GNS composites display some of those typical characteristics, such as vertically standing nanowalls with a maze-like structure. However, they aggregated into uniform spherical objects.

    Fig. 2. (a) SEM of SiC/GNS composites and local enlargements; (b) XRD pattern of SiC/GNS composites.

    Figure 2(b)shows the XRD[25]pattern of SiC/GNS composites.The major crystalline phases in the samples areα-SiC andβ-SiC.[26]The XRD pattern of the sample shows mainly cubic 3C-SiC (namely,β-SiC), crystalline phase of strong peaks corresponding to the (111), (220), and (311) planes.These values are consistent with those in the literature.[27]There also exist 2H-SiC (namely,α-SiC) peaks at 2θ=39.73°, 45.68°, and 66.54°. Theα-SiC peaks are weaker than theβ-SiC peaks. In this paper,[28]it is pointed out that the structure changes fromβ-SiC (cubic structure) toα-SiC(hexagonal structure) after cooling from high temperature of over 1500°C in Ar atmosphere. Theβ-SiC structure has been considered to be the low-temperature polymorph of SiC. In addition, weak hexagonal SiC peaks of (101) were observed,which are due to the polymorphic phase transition of cubic SiC formed by the reaction in HWP. In addition toα-SiC andβ-SiC, the phases such as graphite and silicon oxynitride were also identified. A carbon peak at 2θ=78.54°was observed.[29]The presence of silicon oxynitride was attributed to the contamination of oxygen during film preparation.

    Fig.3. Raman spectra of SiC/GNS composites.

    Raman spectra in Fig. 3 further confirm the structural characteristics of these materials. Each Raman band is analyzed by being fit with a Lorentzian line. The D-band seen in Fig. 3 is attributed to the strong peak carbon structure at 1355 cm-1.The mixed peak deconvolution is divided into two small peaks at 1592 cm-1and 1621 cm-1,which correspond to the G-band and D′-band, respectively. The D′was associated with six-membered ring structures and graphene edges,and D originates from disordered carbon, the G peak comes from the graphitized carbon.[29]The most prominent feature of graphene in Raman spectrum is the 2D peak; its position and shape are clearly distinguished among single-layer, doublelayer, and multi-layer graphene.[31,32]Single-layer graphene sheet has a single, clear 2D peak below 2700 cm-1.[33,34]The double-layer graphene sheet has a wider, upshifted 2D peak below 2700 cm-1.[31,32]Sheets with more than five layers and larger pieces of graphite exhibit similar spectra[31,32]with broad 2D peaks shifting up field above 2700 cm-1. The position and shape of the G peak further prove the graphene structure of the SiC/GNS composites. Listed in Table 1 are the full widths at half maximum(FWHM)and relative intensity ratios of band-peaks of D, G, D′, and 2D (ID/IG,ID′/IG,andI2D/IG) for the Raman spectra in Fig. 3. The large value ofID/IGindicates that the as-grown carbon material possesses a large number of defects,which are caused by vacancies,deformations, ripples and edges. The most important feature in Raman spectrum of graphene is 2D peak,and its intensity and position are widely used to estimate the number of layers in graphene sample.Raman spectrum indicates a~1592 cm-1G peak and a~2692-cm-12D peak withI2D/IG~0.46 ratio and the FWHM2D~79.86 cm-1. This means that the graphene structure in the film is multilayer graphene structure.[35]The graphene flake contains neither the oxygen peak nor the G peak of the flake appearing at 1580 cm-1.[32,33]For graphite oxide flakes,the G peak is expanded and shifted significantly to 1594 cm-1.[36,37]The G peak of the SiC/GNS composites appears at 1591 cm-1,which indicates the presence of oxygen in the structure.

    Table 1. Full widths at half maximum(FWHM)and relative intensity ratios of band-peaks of D, G, D′, and 2D (ID/IG, ID′/IG, and I2D/IG)for Raman spectra in Fig.3.

    Fig.4. XPS spectra of SiC/GNS composites: (a)C 1s and(b)Si 2p.

    To evaluate the quality of SiC/GNSs, XPS spectra of the SiC/graphene nanosheet film are shown in Fig. 4. As shown in Fig. 4(a), the C 1s spectrum contains four peaks at 283.1 eV, 284.7 eV, 285.4 eV, and 286.7 eV, which correspond to C-Si bond,[38]graphite C=C species,[39]localized alternate hydrocarbon,[30,40]and C-O bond.[41]In Fig. 4(b),two peaks related to Si-C (99.8 eV)[38,42]bond and O-Si-C(102.7 eV)[43]exist in the Si(2p)spectrum of SiC/GNS.Oxygen may come from physically adsorbed oxygen or oxygenrelated contamination.

    3.2. Growth mechanism

    The ionization rate of HWP is high, the TMS can be treated as fully ionized,and a large number of active free radicals exist inside the plasma. After a complex gas-phase reaction and a short-chain reaction,[44]SiH, CH, and C2 radicals are viewed as the primary species for SiC/GNS growth.[45]The loss of TMS methyl groups and the extraction of hydrogen are important nucleation approach and growth pathway.[20]The TMS reactions can be described by the equations in Ref.[46].

    Fig.5. Illustration of initial growth model of SiC/GNS synthesized on Si substrate;[(a)-(d)]SEM images of SiC/GNS composites deposited at different times.

    The initial growth mechanism model is given as follows.(i)Carbon-containing active radicals are adsorbed onto the Si substrate, and thus forming a very thin carbon layer. (ii) Silicon and carbon combine and fuse to form a sphere with a size of approximately 230 nm. The SiC nanocrystalline islands completely cover the substrate surface,and thus forming a rough surface interface layer with many dangling bonds on the substrate. These dangling bonds are the nucleation sites for graphene nanocrystals. (iii)Disordered carbon nanosheets nucleate there and undergo two-dimensional growth to form nanographene sheets. The formation mechanism of SiC/GNSs in the Ar/TMS HWP is the polymerization of neutral TMS fragments. Figure 5 describes the above-mentioned morphological evolution of SiC/GNSs surface.

    High magnification SEM images of SiC/GNSs with different deposition times to observe its growth process are shown in Figs. 5(a)-5(d). Those results show that nanoislands of silicon and carbon initially nucleate during the initial nanosheet composite growth phase, an interface layer is constructed by aggregating the formed silicon and carbon nanoislands, and carbon nanosheets then grow at the nuclei on the interface layer. This is because the SiC nanoparticles agglomerate significantly,[47-49]which is consistent with a previous mechanistic model of SiC/GNS growth.

    3.3. Electron temperature

    Optical emission spectroscopy is used to diagnose HWP discharge,and shown Fig.6. An Hαline is found at 656.2 nm,meanwhile weak lines for Si(at 288.1 nm and 390.5 nm)and C(at 516.0 nm and 588.6 nm)species are also recorded. The lines for Si are found at 288.04 nm and 388.22 nm, which originate from the dissociation of the TMS. We can deduce the formation process of active species as follows: ((CH)3)4Si+ e-→SiH, Si, C2, H. Inert gases such as argon, neon and helium each play an important role in controlling electron temperature through excitation and ionization.[50]In a local thermal equilibrium(LTE)plasma,the electron temperature is the same as the excitation temperature,so the most common electron temperature can be calculated by the light intensity ratio method.[51]In order to understand the HWP discharge mode,we choose the two spectral lines 738.3 nm and 801.44 nm to calculate the electron excitation temperature. The electron temperatures are determined to be 1.7435 eV.

    3.4. Photoluminescence

    In addition,the fluorescence characteristics of SiC/GNSs on different substrates are also studied. Figure 6 shows the fluorescence spectrum of the SiC/GNSs synthesized at room temperature at 380 nm. Two strong fluorescence peaks are observed at 420 nm and 440 nm, the corresponding energies are about 2.95 eV and 2.82 eV (1240/wavelength = eV),[52]respectively. A single PL peak of graphene oxide can be observed in Ref.[53]. Our SiC/GNS sample generates multi-PL peaks, which indicate that the PL mechanism of SiC/GNS is complicated. The strong D peaks in Fig.3 and the large value ofID/IGindicate that the sample contains the definite sp3carbon and defects.[54]Thus,a bandgap is formed in the sample.The results of Fanchiniet al.[55]indicate that the energy difference betweenπ*state andπstate is~2.5 eV-3.5 eV although the optical gap is lower than 1 eV for carbon materials.Thus, the PL peaks centered at about 420 nm and 44 nm can be attributed to the transition between theπ*andπbands.[56]The PL results of films deposited on the quartz and silicon substrates show that their peak positions remain unchanged.Therefore,the substrate is not necessarily related to the PL performance of the material. The luminescence mechanism may be related to the quantum size effect of the nanomaterial.[57]These strong peaks are caused by material morphology,orientation,defects,and dangling bond surfaces.

    Fig.6. Optical emission spectra for Ar+TMS in HWP during synthesis of samples.

    Fig. 7. PL spectra of SiC/GNSs on different substrates under excitation of 380-nm laser.

    Compared with the bandgap of bulk 3C-SiC (2.23 eV),SiC nanowires (2.07 eV-2.48 eV)[58]and SiC nanoparticles(2.38 eV-3.10 eV),[59]the PL peak of SiC/GNSs (2.95 eV)is blue-shifted. Those results indicate that SiC/GNSs have the potential applications in serving as light-emitting materials with excellent thermal and oxidation stabilities. Therefore,the synthesis of SiC/GNSs should have broad applications in blue and ultraviolet light emission,field electron emission,and display devices.

    4. Conclusions

    In this study, SiC/GNSs composites are directly and rapidly synthesized by decomposition of TMS at low pressure,high density HWP discharge of Ar flow. Raman spectrum confirms the graphene structure. In the XRD and XPS studies, theα-SiC andβ-SiC are obtained on the surface of the SiC/GNS composite. Moreover, a diffusion-nucleation process describes nanosheet formation. Graphene nanosheets nucleate on many dangling bonds of the SiC nano-islands, then undergo two-dimensional growth, ultimately resulting in the formation of SiC/GNS composites. The electron excitation temperature is calculated to be about 1.7435 eV for the Ar+ TMS in the HWP during synthesis of samples. Comparing with other SiC, the PL peak of SiC/GNSs (2.95 eV) is blue-shifted, indicating that SiC/GNSs have the potential applications in serving as light-emitting materials with excellent thermal and oxidation stabilities.

    Therefore,we expect these SiC/GNS composites to have broad applications in blue and ultraviolet light emission,field electron emission,and display devices.

    猜你喜歡
    佳麗諸葛
    Design of Creative Incentive Contract of Cultural and Creative Industry Chain from Dual Perspective
    原來(lái)我們就是傳說中的四大名著?
    放假前VS放假后,快說是不是你
    諸葛羽扇
    小讀者(2021年4期)2021-06-11 05:42:26
    家長(zhǎng)群VS 你的群,究竟區(qū)別何在
    2021,我們一起走花路吧
    諸葛南征
    談初中化學(xué)實(shí)驗(yàn)教學(xué)的初探
    “楊皮匠”雅鞋吸引國(guó)際佳麗
    西部皮革(2015年17期)2015-02-28 18:14:55
    諸葛八卦村的“妙”
    美女扒开内裤让男人捅视频| 国产成人av教育| 免费观看人在逋| 亚洲成av片中文字幕在线观看| 久久精品国产亚洲av香蕉五月 | 99re6热这里在线精品视频| 国产精品影院久久| 不卡一级毛片| 欧美日韩黄片免| 18禁观看日本| 亚洲专区中文字幕在线| 搡老岳熟女国产| 午夜福利一区二区在线看| 一二三四社区在线视频社区8| 日韩电影二区| 女人爽到高潮嗷嗷叫在线视频| 99精品欧美一区二区三区四区| 国产在线一区二区三区精| 在线观看免费视频网站a站| 亚洲国产精品999| 亚洲精品国产精品久久久不卡| 亚洲精品中文字幕一二三四区 | 亚洲精品美女久久av网站| videosex国产| 午夜福利在线观看吧| av网站免费在线观看视频| 欧美精品人与动牲交sv欧美| 国产精品.久久久| 免费高清在线观看日韩| 最近最新中文字幕大全免费视频| cao死你这个sao货| 在线观看免费日韩欧美大片| 日本一区二区免费在线视频| 脱女人内裤的视频| 欧美亚洲日本最大视频资源| 久久女婷五月综合色啪小说| 久久久久久亚洲精品国产蜜桃av| 午夜福利视频精品| 丁香六月天网| 高清黄色对白视频在线免费看| 十分钟在线观看高清视频www| 99久久综合免费| 国产精品一二三区在线看| 亚洲第一av免费看| kizo精华| 亚洲人成77777在线视频| 少妇裸体淫交视频免费看高清 | 免费少妇av软件| 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 男男h啪啪无遮挡| 欧美日韩亚洲高清精品| 久久女婷五月综合色啪小说| 中文精品一卡2卡3卡4更新| 国产在视频线精品| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻熟女aⅴ| 久久久久久亚洲精品国产蜜桃av| 美女国产高潮福利片在线看| 热99久久久久精品小说推荐| 亚洲熟女精品中文字幕| 热re99久久国产66热| 91字幕亚洲| 国产精品九九99| 亚洲人成电影免费在线| 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线| 大陆偷拍与自拍| 日本vs欧美在线观看视频| 亚洲成人手机| 精品亚洲成a人片在线观看| 免费高清在线观看日韩| 国产亚洲午夜精品一区二区久久| 一区二区三区激情视频| 一个人免费在线观看的高清视频 | 国产成人欧美| 亚洲av日韩精品久久久久久密| 午夜老司机福利片| 亚洲欧美清纯卡通| 成年动漫av网址| 欧美在线一区亚洲| 青春草亚洲视频在线观看| 国产视频一区二区在线看| 亚洲视频免费观看视频| 99精品久久久久人妻精品| 欧美久久黑人一区二区| 欧美国产精品va在线观看不卡| 国产视频一区二区在线看| 乱人伦中国视频| 天天影视国产精品| 十八禁网站免费在线| 狠狠狠狠99中文字幕| 国产精品成人在线| 91麻豆av在线| 国产精品一二三区在线看| 捣出白浆h1v1| 99久久精品国产亚洲精品| 黑人操中国人逼视频| 国产日韩欧美亚洲二区| 国内毛片毛片毛片毛片毛片| 午夜成年电影在线免费观看| 蜜桃国产av成人99| 老司机影院毛片| 两人在一起打扑克的视频| 99国产精品一区二区三区| 美女午夜性视频免费| 日韩人妻精品一区2区三区| 国产片内射在线| 日韩一区二区三区影片| 国产欧美日韩精品亚洲av| 亚洲人成电影免费在线| 两性午夜刺激爽爽歪歪视频在线观看 | 久久av网站| 日本av免费视频播放| 精品国内亚洲2022精品成人 | 99久久99久久久精品蜜桃| 精品人妻1区二区| 男女免费视频国产| 亚洲av电影在线观看一区二区三区| 动漫黄色视频在线观看| 日韩三级视频一区二区三区| 少妇的丰满在线观看| a级毛片黄视频| 国产精品久久久人人做人人爽| 久久久久国内视频| 日日夜夜操网爽| av在线app专区| 天堂中文最新版在线下载| 夫妻午夜视频| 成人av一区二区三区在线看 | 黄片大片在线免费观看| 亚洲精品久久午夜乱码| 无遮挡黄片免费观看| 高清黄色对白视频在线免费看| 精品一区在线观看国产| 三上悠亚av全集在线观看| 欧美激情极品国产一区二区三区| 亚洲综合色网址| 久热爱精品视频在线9| 亚洲精品美女久久久久99蜜臀| 黄色片一级片一级黄色片| 一级毛片精品| 久久国产精品男人的天堂亚洲| 老鸭窝网址在线观看| 精品第一国产精品| av在线app专区| 99国产精品一区二区蜜桃av | 免费久久久久久久精品成人欧美视频| 国产无遮挡羞羞视频在线观看| 美女高潮到喷水免费观看| 两人在一起打扑克的视频| a 毛片基地| 国产欧美日韩综合在线一区二区| 五月天丁香电影| 蜜桃在线观看..| 国产在线一区二区三区精| 黄色视频,在线免费观看| 777米奇影视久久| 国产精品一区二区精品视频观看| 啦啦啦 在线观看视频| 国产精品亚洲av一区麻豆| 97精品久久久久久久久久精品| 在线天堂中文资源库| av片东京热男人的天堂| 国产精品国产三级国产专区5o| 老汉色av国产亚洲站长工具| 老司机福利观看| 亚洲欧美激情在线| 中文字幕人妻丝袜制服| 看免费av毛片| 天天躁狠狠躁夜夜躁狠狠躁| 别揉我奶头~嗯~啊~动态视频 | 久久天躁狠狠躁夜夜2o2o| 亚洲精品久久午夜乱码| 国产精品麻豆人妻色哟哟久久| 又大又爽又粗| 在线观看舔阴道视频| 成年动漫av网址| 男人操女人黄网站| 在线 av 中文字幕| 美女高潮喷水抽搐中文字幕| 夜夜夜夜夜久久久久| 久久久久国产精品人妻一区二区| 国产免费现黄频在线看| 国产片内射在线| 91字幕亚洲| 精品福利永久在线观看| 丝袜美足系列| 美女高潮喷水抽搐中文字幕| 美女扒开内裤让男人捅视频| 精品人妻一区二区三区麻豆| 一区二区三区精品91| 热re99久久国产66热| 久久久精品免费免费高清| 久9热在线精品视频| 超碰成人久久| 精品人妻熟女毛片av久久网站| av片东京热男人的天堂| 悠悠久久av| 日韩欧美免费精品| 精品国内亚洲2022精品成人 | 亚洲午夜精品一区,二区,三区| 国产精品二区激情视频| 日韩大片免费观看网站| 美女视频免费永久观看网站| 人成视频在线观看免费观看| 日日爽夜夜爽网站| 欧美午夜高清在线| 国产成人欧美在线观看 | 亚洲欧美精品综合一区二区三区| 丝袜美腿诱惑在线| 淫妇啪啪啪对白视频 | 精品国产乱码久久久久久小说| 我要看黄色一级片免费的| 亚洲av美国av| 中文精品一卡2卡3卡4更新| 老司机靠b影院| 免费观看人在逋| 午夜免费鲁丝| 久久亚洲精品不卡| 欧美日韩一级在线毛片| 黑人巨大精品欧美一区二区mp4| av有码第一页| 国产男人的电影天堂91| 日韩制服丝袜自拍偷拍| 久久性视频一级片| 久久久久国产精品人妻一区二区| 男女免费视频国产| 咕卡用的链子| 久久久久精品人妻al黑| 亚洲综合色网址| 纯流量卡能插随身wifi吗| 高清黄色对白视频在线免费看| 亚洲 欧美一区二区三区| 国产日韩欧美在线精品| 午夜老司机福利片| 99热全是精品| 大型av网站在线播放| av在线播放精品| 男女无遮挡免费网站观看| 一区二区三区精品91| 啦啦啦中文免费视频观看日本| av天堂在线播放| 99精国产麻豆久久婷婷| 热99re8久久精品国产| 99久久综合免费| 乱人伦中国视频| 天天添夜夜摸| 99久久精品国产亚洲精品| 欧美国产精品va在线观看不卡| 国产一区二区三区综合在线观看| 亚洲精品国产色婷婷电影| 精品人妻1区二区| 久久精品亚洲av国产电影网| 久久久久国产精品人妻一区二区| 永久免费av网站大全| 黄色毛片三级朝国网站| 99国产精品免费福利视频| 欧美一级毛片孕妇| 在线观看人妻少妇| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 肉色欧美久久久久久久蜜桃| 9191精品国产免费久久| 啦啦啦 在线观看视频| 伦理电影免费视频| 男女无遮挡免费网站观看| 三级毛片av免费| 日韩一区二区三区影片| 电影成人av| 亚洲av片天天在线观看| 成年人免费黄色播放视频| 精品一区在线观看国产| 波多野结衣av一区二区av| 麻豆国产av国片精品| 久久久久国产精品人妻一区二区| 69av精品久久久久久 | 国产日韩欧美亚洲二区| 国产一区有黄有色的免费视频| tocl精华| 又紧又爽又黄一区二区| 精品福利永久在线观看| 在线 av 中文字幕| 亚洲七黄色美女视频| 亚洲av片天天在线观看| 久久精品人人爽人人爽视色| 91精品国产国语对白视频| 国产精品国产av在线观看| 亚洲国产欧美在线一区| 午夜影院在线不卡| 桃花免费在线播放| 乱人伦中国视频| 麻豆国产av国片精品| 一级黄色大片毛片| 亚洲精品自拍成人| 欧美精品亚洲一区二区| 精品少妇黑人巨大在线播放| 午夜老司机福利片| 91麻豆av在线| 欧美黄色淫秽网站| 丰满少妇做爰视频| 精品亚洲成国产av| 国产成人精品无人区| 久久久久精品国产欧美久久久 | 一个人免费看片子| 麻豆国产av国片精品| 一边摸一边做爽爽视频免费| 中亚洲国语对白在线视频| 国产成+人综合+亚洲专区| 国产欧美亚洲国产| 久久99热这里只频精品6学生| 日韩视频在线欧美| 亚洲成国产人片在线观看| 老熟女久久久| 亚洲欧美成人综合另类久久久| 亚洲精品中文字幕在线视频| 男人操女人黄网站| 每晚都被弄得嗷嗷叫到高潮| 久久精品亚洲av国产电影网| 999久久久精品免费观看国产| 母亲3免费完整高清在线观看| 午夜福利影视在线免费观看| 国产一区二区三区在线臀色熟女 | 欧美xxⅹ黑人| 无限看片的www在线观看| 午夜福利在线免费观看网站| 真人做人爱边吃奶动态| 国产成人精品在线电影| 国产成人a∨麻豆精品| 99re6热这里在线精品视频| 久久午夜综合久久蜜桃| 亚洲男人天堂网一区| 久久午夜综合久久蜜桃| 亚洲av美国av| 精品少妇久久久久久888优播| 亚洲视频免费观看视频| 制服人妻中文乱码| 1024香蕉在线观看| 欧美久久黑人一区二区| 精品少妇黑人巨大在线播放| 一区二区三区四区激情视频| 国产精品.久久久| 一区二区三区四区激情视频| 日韩熟女老妇一区二区性免费视频| av在线播放精品| www.999成人在线观看| 久久久久久久久免费视频了| 精品少妇黑人巨大在线播放| 国产av国产精品国产| 99精品欧美一区二区三区四区| 亚洲av电影在线观看一区二区三区| 他把我摸到了高潮在线观看 | 精品少妇一区二区三区视频日本电影| 十八禁人妻一区二区| 九色亚洲精品在线播放| 日韩大码丰满熟妇| 韩国高清视频一区二区三区| 免费观看a级毛片全部| 婷婷成人精品国产| 久久精品久久久久久噜噜老黄| 久久久久久久大尺度免费视频| 99香蕉大伊视频| 老汉色∧v一级毛片| 青草久久国产| 久久久久久久大尺度免费视频| 午夜精品久久久久久毛片777| 另类精品久久| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美| 女警被强在线播放| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| 丰满饥渴人妻一区二区三| 又大又爽又粗| 老汉色∧v一级毛片| 国产av又大| 精品国产超薄肉色丝袜足j| 亚洲人成电影观看| 12—13女人毛片做爰片一| av福利片在线| 国产深夜福利视频在线观看| 日本vs欧美在线观看视频| 精品人妻一区二区三区麻豆| 777米奇影视久久| 波多野结衣av一区二区av| 十分钟在线观看高清视频www| 天天躁狠狠躁夜夜躁狠狠躁| www.精华液| 久热这里只有精品99| 国产亚洲午夜精品一区二区久久| 国产伦理片在线播放av一区| 丰满迷人的少妇在线观看| 亚洲成人国产一区在线观看| 亚洲 欧美一区二区三区| 美女高潮喷水抽搐中文字幕| 国产成人免费无遮挡视频| 亚洲中文av在线| 高潮久久久久久久久久久不卡| 国产91精品成人一区二区三区 | 999精品在线视频| 亚洲色图 男人天堂 中文字幕| 欧美 日韩 精品 国产| 日本一区二区免费在线视频| 久久久国产欧美日韩av| 亚洲综合色网址| 日韩欧美一区视频在线观看| 欧美精品av麻豆av| 久久久水蜜桃国产精品网| 国精品久久久久久国模美| 色94色欧美一区二区| 91九色精品人成在线观看| 亚洲九九香蕉| www日本在线高清视频| cao死你这个sao货| 建设人人有责人人尽责人人享有的| 亚洲五月婷婷丁香| 男人舔女人的私密视频| 操美女的视频在线观看| 国产xxxxx性猛交| 亚洲avbb在线观看| 欧美黄色片欧美黄色片| 国产成人a∨麻豆精品| 久久中文字幕一级| 欧美精品亚洲一区二区| 亚洲色图 男人天堂 中文字幕| 999久久久国产精品视频| 久久久精品国产亚洲av高清涩受| 日本欧美视频一区| 男女高潮啪啪啪动态图| 日韩,欧美,国产一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲性夜色夜夜综合| 不卡av一区二区三区| 亚洲精华国产精华精| 亚洲欧美激情在线| 18禁黄网站禁片午夜丰满| 亚洲伊人色综图| 精品久久蜜臀av无| 少妇被粗大的猛进出69影院| 亚洲 欧美一区二区三区| 天天添夜夜摸| 精品福利观看| 国产熟女午夜一区二区三区| 精品亚洲乱码少妇综合久久| 色综合欧美亚洲国产小说| 国产精品国产av在线观看| 50天的宝宝边吃奶边哭怎么回事| 色94色欧美一区二区| 亚洲va日本ⅴa欧美va伊人久久 | 欧美精品啪啪一区二区三区 | 亚洲五月婷婷丁香| 久久国产精品影院| 欧美日韩一级在线毛片| 少妇粗大呻吟视频| 亚洲精品乱久久久久久| 久久天堂一区二区三区四区| 久久国产亚洲av麻豆专区| 亚洲性夜色夜夜综合| 国产精品久久久久久精品电影小说| 一区二区三区精品91| 天天躁夜夜躁狠狠躁躁| 国产成人欧美在线观看 | 精品一区二区三卡| 青青草视频在线视频观看| 国产成人精品在线电影| 丝袜脚勾引网站| 欧美日韩成人在线一区二区| 男人舔女人的私密视频| 大码成人一级视频| 1024香蕉在线观看| 午夜日韩欧美国产| cao死你这个sao货| 悠悠久久av| 成人国语在线视频| 国产免费av片在线观看野外av| 免费在线观看日本一区| 天堂中文最新版在线下载| 久久人人爽人人片av| 国产熟女午夜一区二区三区| 国产成人系列免费观看| 欧美久久黑人一区二区| 大陆偷拍与自拍| 欧美精品亚洲一区二区| 在线观看免费午夜福利视频| 美女午夜性视频免费| 久久综合国产亚洲精品| 国产有黄有色有爽视频| 亚洲成人免费电影在线观看| 老司机午夜十八禁免费视频| 欧美变态另类bdsm刘玥| 一级毛片女人18水好多| 国产有黄有色有爽视频| 亚洲中文字幕日韩| 两人在一起打扑克的视频| 国产免费av片在线观看野外av| 一级毛片精品| 精品福利永久在线观看| 在线亚洲精品国产二区图片欧美| 成人三级做爰电影| 日本黄色日本黄色录像| 中文字幕精品免费在线观看视频| 国产黄频视频在线观看| av天堂在线播放| 一级毛片电影观看| videosex国产| 亚洲精品一卡2卡三卡4卡5卡 | 午夜两性在线视频| 操美女的视频在线观看| 18禁国产床啪视频网站| 色播在线永久视频| 久久免费观看电影| 午夜精品国产一区二区电影| 免费久久久久久久精品成人欧美视频| 亚洲精品粉嫩美女一区| 色婷婷久久久亚洲欧美| 69精品国产乱码久久久| 午夜影院在线不卡| 精品少妇久久久久久888优播| 免费女性裸体啪啪无遮挡网站| 建设人人有责人人尽责人人享有的| 日本vs欧美在线观看视频| 他把我摸到了高潮在线观看 | 久久久国产欧美日韩av| 亚洲情色 制服丝袜| 精品国产乱码久久久久久男人| 久热爱精品视频在线9| 一区二区av电影网| 他把我摸到了高潮在线观看 | tube8黄色片| 欧美大码av| 国产精品av久久久久免费| 少妇 在线观看| 精品一区二区三区四区五区乱码| 国产精品久久久人人做人人爽| 热re99久久国产66热| 男女边摸边吃奶| 国产在线一区二区三区精| 欧美精品av麻豆av| 国内毛片毛片毛片毛片毛片| 另类精品久久| 自拍欧美九色日韩亚洲蝌蚪91| 日韩,欧美,国产一区二区三区| 国产老妇伦熟女老妇高清| 欧美日韩一级在线毛片| 欧美黑人精品巨大| 久久 成人 亚洲| 日韩人妻精品一区2区三区| 国产深夜福利视频在线观看| 久久ye,这里只有精品| 亚洲av电影在线进入| 国产精品免费视频内射| 99热网站在线观看| 亚洲男人天堂网一区| 欧美性长视频在线观看| 精品熟女少妇八av免费久了| 久久久精品免费免费高清| 亚洲av成人一区二区三| 在线观看免费日韩欧美大片| 国产日韩欧美在线精品| 丁香六月欧美| 亚洲精品自拍成人| 91成人精品电影| 黄色怎么调成土黄色| cao死你这个sao货| av线在线观看网站| 成人影院久久| 狠狠婷婷综合久久久久久88av| 蜜桃国产av成人99| 国产激情久久老熟女| 人人妻人人澡人人爽人人夜夜| 国产日韩欧美视频二区| 亚洲免费av在线视频| 免费在线观看完整版高清| 国产精品熟女久久久久浪| 国产欧美日韩综合在线一区二区| 在线永久观看黄色视频| 亚洲中文日韩欧美视频| 嫁个100分男人电影在线观看| 丁香六月天网| 国产99久久九九免费精品| 国产精品 国内视频| 新久久久久国产一级毛片| 色视频在线一区二区三区| 天天操日日干夜夜撸| av线在线观看网站| 9色porny在线观看| 99国产精品一区二区蜜桃av | 亚洲国产成人一精品久久久| 亚洲国产中文字幕在线视频| 国产免费现黄频在线看| 久久久精品区二区三区| 精品欧美一区二区三区在线| 亚洲av日韩精品久久久久久密| 国产精品国产三级国产专区5o| 亚洲国产欧美在线一区| 午夜福利免费观看在线| 精品国产超薄肉色丝袜足j| 熟女少妇亚洲综合色aaa.| 国产精品自产拍在线观看55亚洲 | 国产老妇伦熟女老妇高清| 久久久精品国产亚洲av高清涩受| 亚洲国产精品999| 免费日韩欧美在线观看| 欧美日韩福利视频一区二区| 91麻豆精品激情在线观看国产 | 午夜精品久久久久久毛片777| 少妇被粗大的猛进出69影院| 国产精品久久久久成人av| 18禁黄网站禁片午夜丰满| 亚洲国产精品999| 下体分泌物呈黄色| 亚洲免费av在线视频| 岛国毛片在线播放| 又紧又爽又黄一区二区| 精品欧美一区二区三区在线|