• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    State-to-state dynamics of reactions H+DH′(v=0,j=0)→HH′(v′,j′)+D/HD(v′,j′)+H′with time-dependent quantum wave packet method*

    2021-07-30 07:37:20JuanZhao趙娟DaGuangYue岳大光LuLuZhang張路路ShangGao高尚ZhongBoLiu劉中波andQingTianMeng孟慶田
    Chinese Physics B 2021年7期
    關(guān)鍵詞:中波高尚

    Juan Zhao(趙娟) Da-Guang Yue(岳大光) Lu-Lu Zhang(張路路) Shang Gao(高尚)Zhong-Bo Liu(劉中波) and Qing-Tian Meng(孟慶田)

    1School of Science,Shandong Jiaotong University,Jinan 250357,China

    2School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    Keywords: state-to-state,time-dependent quantum wave-packet method,differential cross sections

    1. Introduction

    The H+H2reaction and its isotopic variants have been the focus of numerous experimental[1-7]and theoretical[8-17]studies over many years. In the field of molecular reaction dynamics, the construction of potential energy surface (PES) is very important. For H+H2system, there are a lot of works about PES.As early as in 1978,Truhlaret al.have developed LSTH surface[18]with 267ab initiopoints and a maximum absolute deviation of 0.55 kcal/mol.In 1987,Varandaset al.performed complete-active-space self-consistent field(CASSCF)and multireference configuration interaction calculation and gave an adiabatic double many-body expansion(DMBE)PES for H3.[19]In 1994,Sunet al.carried out quantum mechanical calculations of the rotational excitation of H2by H atoms using the DMBE[19]PES and found that the low temperature thermal rate coefficients were significantly higher than those based on the LSTH[18]surface.In order to investigate the origin of these discrepancies between these two H3PESs, Boothroydet al.developed an improved surface (BKMP),[20]which matched the 772ab initioenergies with a maximum absolute deviation of 1.21 kcal/mol. BKMP surface incorporated new data extending toRH-H2=4a0,but it too was least well constrained in the critical range ofRH-H2. In 1996,Boothroydet al.fitted a refined H3PES,denoted as BKMP2[21]surface,this PES was based on 8701ab initioenergies with an overall root-meansquare(rms)error of 0.17 kcal/mol and a maximum absolute deviation of 3.90 kcal/mol. In 1999, Wuet al.[22]calculated a new surface based on spline fits of an exact quantum Monte Carlo method.

    Based on these five surfaces,numerous theoretical studies of the H3system have been done, among which the BKMP2 surface is most widely used[23-27]for the reason that in accurate quantum calculation, it can produce a very good agreement result with the experiment.[2,3,28-31]In 1997,Hochman-Kowal and Persky[32]studied the influence of rotation on reactivity for the H+DH(v= 0,j= 0-6) on the LSTH and DMBE PESs using the quasi-classical trajectory method. In 2002, Chaoet al.[3,28]presented the results of a joint experimental and theoretical investigation of the reaction dynamics of the H+DH′→D+HH′chemical reaction,and found that the experimental and theoretical state-to-state dynamics are in quantitative agreement.

    The above researches mainly focus on H+DH′→D+HH′channel, but the collisions between H and DH may generate products through two reaction channels: the abstraction channel that produces the production of H2(H+DH′→HH′+D)and the exchange channel that leads to the production of HD (H+DH′→HD′+H), the study of exchange channel H+DH′→HD′+H is few. In addition, Hanet al.[33]developed a parallel code for state-to-state quantum dynamics with propagation of time-dependent wave-packet[34,35](TDWP)in reactant coordinates based on graphical processing units(GPUs),and this code has been used to calculate the differential cross sections(DCSs)of H+H2reaction based on the BKMP2 surface and state-resolved reaction probabilities of nonadiabatic triplet-singlet transitions of O(3P,1D)+H2[33]for the total angular momentumJ=0. These results show that the calculation accuracy is high and the calculation speed is fast,which solves the time-consuming and memory limitation problems that have troubled researchers for a long time due to the large amount of state-to-state quantum calculation.So far,this code has been successfully used to study the quantum state-to-state dynamics of O(3P)+HD,[36]S+H2,[37]N+H2,[38]N+HD,[39]F+HO,[40]D+ND[41]reactions.

    In this work,we used this efficient GPUs version of timedependent wavepacket code to calculate the product stateresolved integral cross sections (ICSs) and differential cross sections of H+DH′→HH+D′and H+DH′→HD+H′reaction channels. The paper is organized as follows: in Section 2, we will give the theoretical methodology used in this work.Section 3 will present the results and discussion.Finally Section 4 will close with the conclusions.

    2. Theoretical method

    In this contribution, the efficient GPUs version of TDWP[33]code is used. This code has been successfully applied to many studies on the state-to-state dynamics properties ofA+BCsystem.[36-43]The main idea of this method is as follows. The Hamiltonian of the title reaction is defined in the body-fixed(BF)reactant Jacobi coordinates. For a givenJ(Jis total rotational angular momentum),the Hamiltonian of theA+BCreaction can be expressed as

    The corresponding reduced massμRis expressed asμR=mA·(mB+mC)/(mA+mB+mC), andμrcan be written asμr=mB·mC/(mB+mC). ?Jis the total angular momentum operator, and ?jis the rotational angular momentum operator ofBC.V(R,r,θ)=Vpes-Vr(r),whereVpesis the potential energy of the triatomic system,andVr(r)is the diatomic potential energy ofBC.h(r)is the diatomic reference Hamiltonian defined as

    The initial Gaussian wave packet for the reactant in the spacefixed(SF)reactant Jacobi coordinate is expanded as:

    For the initial state (v0j0l0),|JM j0l0ε〉represents the SF rotational basis and describes angular motion,withMbeing the projection of the total angular momentumJ.φv0j0(rα)is the rovibrational eigen-function of the diatomic moleculeBC.The initial wave packet is transformed into the BF frame and propagated on GPUs with the second-order split method.[44]The absorbing potentials with the form of damping functions are employed to prevent the reflections of the wave packet from the boundaries. To extract the state-to-state information of the product channels, the handicap of the reactant Jacobi coordinate based method is the coordinate transformation from reactant to product channel, and the radial component of product wave-packet is a delta function multiplied the outgoing asymptotic radial functions

    whereR∞is the location of the dividing surface in the product asymptote where the transformation proceeds. The basic idea of the transformation is to carry out the projection from the wave packet in the reactant Jacobi coordinate(R∞,rα,θα,Kα)to the product Jacobi coordinate (R∞,ri,θj,Kβ) through the equation,withKαandKβbeing the projection of the total angular momentumJin the BF reactant and product coordinates,respectively. So,the scattering matrix element in BF representation is defined as

    where h(1,2)are the spherical Hankel functions of the first and second kinds.Finally,the scattering matrix is transformed into helicity representation to derive the DCS and ICS by a scattering matrix summing over all relevant total angular momentum quantum numbersJ.

    wherekv0j0is the translational wave vector of the initial state(v0,j0).θis the scattering angle anddJK′K0is the Wigner rotational matrix. More theoretical details can be found in Ref.[33].

    In present work,we carry out state-to-state calculation for all angular momentumJup to 30 to converge differential cross sections of the title reaction for the collision energy range of 0.15 eV-1.0 eV. To insure convergence of scattering results,extensive tests have been carried out to determine the optimal parameters,which are summarized in Table 1. One of the key convergence parameters in this work is denotedK, which is set (J+1), including all the projection of the total angular momentumJ.

    Table 1. Numerical parameters used in the present quantum wave packet calculations.

    3. Results and discussion

    3.1. Reaction probability and integral cross section

    Figure 1 shows the minimum energy path (MEP) of H3 BKMP2 PES.As is shown in Fig.1,there is a barrier with the height of 9.61 kcal/mol(≈0.42 eV).[21]

    Fig.1. Minimum energy path of the BKMP2 PES.

    Firstly, in order to verify the correctness of our calculations, the ICSs summed over final states of H+DH′→HH′+D and HD+H′reaction channels and the rotational state-resolved ICS of H+DH′→HH′+D at the collision energy of 0.5 eV are calculated, and the results are shown in Figs.2(a)and 2(b),respectively. In Fig.2(a),the green dashdot line are TDWP results of H+DH′→HH′+D, the blue dash-dot-dot line are TDWP results of H+DH′→HD+H′channel in this work, and the other results are cited from Refs. [28,32]. As shown in Fig. 2(a), all the ICSs present a similar trend,i.e., each of them increases with increasing relative translational energy and has a threshold at energy of about 0.35 eV. Due to the quantum tunneling effect, the threshold energy is smaller than the height of barrier. There are also differences between the two reaction channels in Fig. 2(a). The reaction section value of the HD+H′channel is larger than that of the HH′+D channel at the collision energy higher than 0.5 eV. There are two possible reasons;one is the zero-point energy(ZPE)effect, the other is the deviation of the center of mass of the reactant molecule DH′.For H+DH′reaction system, the force constant of the reaction system is the same, but the vibrational frequency of HD substitute is lower than HH′,so the harmonic ZPE of the HD molecule is lower than HH′, the H+DH′→HD+H′is easier to occur, and the cross section is larger. Moreover,from a classical point of view, the center of mass of the reactant molecule DH′is closer to the D atom, so when H atoms collides with DH′molecule,the probability of H atoms hitting D will be greatly increased, resulting in the formation of HD products more easily, and the integral cross section of HD+H′is larger than that of the HH′+D product channel. Figure 2(b) shows the rotational state-resolved reaction cross sections of H+DH′→HH′+D reaction channel atEC=0.5 eV, the black squares are quantum-mechanical results with Boltzmann spin statistics reported by Chaoet al.,[28]the red circles are experiment results, the blue stars are the TDWP results in this work. On the whole,these results agree well with each other, but from the details, it can be seen that our results forj′=1,2,4 are closer to the experimental values than the ones obtained by Chaoet al.

    Fig.2. (a)Total ICSs versus collision energy. The early QM results are from Chao and Skodje (Ref. [28]), the QCT results are from Hochman-Kowal and Persky(Ref.[32]). (b)The ICS for H+DH′(v=0,j=0)→HD(v′ =0,j′)+H′ versus j′ at EC =0.5 eV. The red circles are the experimental results(Ref.[28])and black squares represent the results of QM using Boltzmann statistics(Ref.[28]).

    To shed light on theJdependence of the total reaction probabilities, we plot the reaction probabilities as a function of total angular momentum at eight collision energies in Fig.3.TheJ-dependent partial wave contribution is weighted over a(2J+1) factor to the ICS. It is well known that theJdependence of the ICS is an analog of the opacity functionp(b),wherebis the collision parameter. Thus, differentJdependence means different impact parameter dependence. All the opacity functions are smoothly varied and exhibit similar arch shapes. The curves follow the trend that increases withJ,reaches the maximum and subsequently drops to zero when reaching the largest accessible value. Meanwhile, the curves extend to largerJvalues with increasing collision energy. It is also seen that for certain collision energy, largeJpartial waves are involved in the H+DH′→HH′+D channel, and in particular we can see from the vertical value that the bigger contributor to the H+DH′→HD+H′channel is the smallerJ. According to the one-to-one correspondence between the impact parameterband the angular momentumJ,it is reasonable to consider that collisions with large impact parameters are in favor of the abstraction reaction,while those with small impact parameters lead to the exchange reaction.[43]Therefore, the direct abstraction mechanism is more dominant in H+DH′→HH′+D channel than H+DH′→HD+H′.

    Fig.3. (2J+1)weighted opacity functions for(a)H+DH′→HH′+D and(b)H+DH′→HD+H′ at different collision energies.

    3.2. Product distribution

    Figure 4 shows the vibrational state-resolved reaction cross sections of the products HH′and HD at the collision energy range of 0.15 eV-1.0 eV. As can be seen from Fig. 4,the products of both channels are mainly concentrated in thev′=0 vibrational energy level. For HD product, because of lower vibrational frequency,the vibrational energy level of the product molecule can be reached is larger (v′=2, and 1 for HD and H2,respectively).

    Fig.4. Vibrational state-resolved reaction cross sections for(a)H+DH′ →HH′+D and(b)H+DH′→HD+H′ reactions.

    The rotational state-resolved reaction cross sections of two product channels are also been calculated and shown in Fig. 5. There is a similar collision energy threshold (≈0.35 eV) for both reaction channels, and when the collision energy is greater than the threshold, the rotational quantum number inversion occurs in both reaction products. The difference is that the HD product channel can achieve a greater maximum rotational quantum number than the HH′channel.Because the direct mechanism plays a major role in both reaction channels, and each atom in the system has a light mass,so the orbital angular momentum of the reactants can easily be converted into the rotational angular momentum of the of the product molecules. Considering that the mass of atom D is higher than that of atom H,according to the rotational energy formula,

    the gap of rotational energy level of the HD molecule is small,and therefore, the maximum rotational energy level that the HD product molecule can achieve is larger.

    Fig. 5. Rotational state-resolved reaction cross sections for (a) H+DH′ →HH′+D and(b)H+DH′→HD+H′ reactions.

    In order to more intuitively display the state distribution of product molecule, we plot the vib-rotational distribution at different collision energies for H+DH′→HH′+D and H+DH′→HD+H′channels in Figs.6 and 7,respectively. It can be seen in these two figures that the vib-rotational distributions are like a half-cooked egg for both channels,the product’s vibrational quantum number is essentially 0, and with the collision energy increasing,this half-cooked egg gets fatter and fatter,i.e.,the collision energy can promotes the rotational rather than vibrational excitation of the product molecules. In addition, it can also be seen from the difference between the Figs.6 and 7 that the maximum rotational quantum number of HD achieved is greater than that of H2. During the reactive encounter,total angular momentum is conserved

    eBAandeBCare unit vectors withBpointing toAandBpointing toC,respectively;μBCis the reduced mass ofBCmolecule andEis the repulsive energy,the larger product atom will take more angular momentum away. Considering these two reaction channels in this work,j=0 and twoJ1s are the same.But for H+DH′→HH′+D,

    so the rotational quantum numberj′of HD achieved is greater than that of HH′. In order to compare the energy level intervals quantitatively, we calculated the rotational energy levels of both the HH′(v′=0,j′) and HD(v′=0,j′) molecules by solving the radial Schr¨odinger equation of nuclear motion,and the results are shown in Table 2.From this table,it can be seen that HD has much smaller gaps of the rotational energy level.

    Table 2. The vib-rotational energies(in units of cm-1)of the HH′ and HD product molecules.

    Fig. 6. Product vib-rotational state-resolved distributions for H+DH′ →HH′+D reaction at four collision energies(a)EC=0.4 eV,(b)EC=0.6 eV,(c)EC=0.8 eV,and(d)EC=1.0 eV.

    Fig.7. The same as Fig.6 but for H+DH′→HD+H′ reaction.

    3.3. Differential cross sections

    Figures 8(a) and 8(b) display the total DCSs of H+DH′→HH′+D and H+DH′→HD+H′reaction channels at four collision energies, respectively. As can be seen in Figs. 8(a) and 8(b), the product of both channels are mainly backscattered, and with the collision energy increasing, the backward scattering is enhanced. Of course,there are some differences between these two channels. For H+DH′→HH′+D channel,the range of scattering angle is larger,and forEC=1.0 eV,a more obvious forward scattering phenomenon appears in H+DH′→HH′+D channel. These results are consistent with the usual rebound mechanism in a system with a collinear reaction path. Moreover, the center of mass of the reactant molecule DH′is closer to D, if the H atom approaches the reactant DH′, it has a greater chance to get closer to D atom, and the reaction is controlled by the rebound mechanism, which leads to a larger scattering angle for HD product molecule than HH′. As the collision energy increases, larger number of partial waves are involved in the reaction[42]as shown in Fig.3,which suggests that the contribution from the direct abstraction mechanism becomes larger,the scattering angle becomes smaller and the products start to scatter forward.

    Fig.8. Total DCSs for(a)H+DH′→HH′+D and(b)H+DH′→HD+H′reactions at four collision energies.

    The individual state-to-state DCS reveals more angular structures than the total DCS. Figures 9 and 10 show the state-resolved DCSs of H+DH′→HH′(v′=0,j′)+D and H+DH′→HD(v′= 0,j′)+H′reaction channels, respectively. It can be seen from the two figures that the products of the two channels present backward scattering distribution,especially for the small collision energy, the scattering angle is mainly concentrated at 180°. However, with the increase of the collision energy, the rotational quantum number of the product molecule becomes larger and larger,and the range of scattering angle gradually expands in the direction of decreasing.

    Fig. 9. The state-to-state DCS for H+DH′(v = 0,j = 0) →HH′(v′ =0,j′)+D reaction at four collision energies.

    Fig. 10. The same as Fig. 9 but for H+DH′(v = 0,j = 0) →HD(v′ =0,j′)+H′ reaction at four collision energies.

    In addition, there are some differences between the results of H+DH′→HH′+D and H+DH′→HD+H′channels. With the increase of the collision energy, the scattering angle of HH′molecules decreases more rapidly. Moreover,at the collision energy of 1.0 eV, HH′molecules with large rotational quantum number tend to have a more obvious sideway scattering distribution than that of HD, and the forward scattering HH′molecules begin appear. This forward scattering is more obvious in the state-resolved DCSs of the product molecule withv′=1,as shown in Fig.11. It was further verified that the contribution of the direct abstraction mechanism in the HH′product channel is greater than that in the HD channel at the higher collision energy. Moreover, HH′molecules withv′= 0 and 1 both contribute to the forward scattering component.

    Fig.11. The state-to-state DCSs for(a)H+DH′(v=0,j=0)→HH′(v′ =1,j′)+D and(b)H+DH′(v=0,j=0)→HD(v′ =1,j′)+H′ reactions at the collision energy of EC=0.8 eV and 1.0 eV.

    4. Summary

    In this work,an efficient GPUs version of time-dependent wave-packet code has been used to calculate the differential cross section of H+DH′→HH′+D/HD+H′reactions on BKMP2 surface.

    (i)There is a barrier in MEP,H+DH′→HH′+D/HD+H′reactions have threshold energy about 0.35 eV, which is lower than the barrier because of quantum tunnel.

    (ii)By comparing with the earlier theoretical and experimental results of rotational state-resolved ICS of H+DH′→HH′+D reaction at the collision energy of 0.5 eV, it can be seen that our theoretical calculation results are closer to the experimental values forj′=1,2,4, so, to some extent, our calculation accuracy is higher.

    (iii) The opacity functions are smoothly varied and exhibit arch shapes, largerJpartial waves are involved in the H+DH′→HH′+D channel and the bigger contributor to the H+DH′→HD+H′channel is the smallJ, according to the classical items, the direct abstraction mechanism is more dominant in H+DH′→HH′+D channel than H+DH′→HD+H′.

    (iv)Because of the smaller gap of rotational energy level of the HD molecule, the maximum rotational energy level of HD product molecule can achieve is larger than HH′.

    (v) Although both reaction channels are predominantly backward scattered due to the rebound mechanism,the contribution of direct abstraction reaction mechanism will increase at the high collision energies, and the forward scattering distribution of HH′is more obvious than that of HD.

    All those show that the mass difference of isotopes can lead to a lot of differences in dynamics. Therefore, it is of great significance to study the isotopic effect on the dynamical properties.

    Acknowledgment

    The authors are very grateful to Prof. Han for providing he code.

    猜你喜歡
    中波高尚
    A quantum algorithm for Toeplitz matrix-vector multiplication
    淺析DAM中波發(fā)射機(jī)日常維護(hù)
    科技傳播(2019年24期)2019-06-15 09:29:06
    與許多高尚的人對(duì)話
    Happiness through honorable actions
    DAM 10kW中波發(fā)射機(jī)的RF電路
    誠(chéng)實(shí)也是一種高尚
    高尚的人
    中波發(fā)射機(jī)的輸出阻抗變換為50Ω的實(shí)踐與探討
    中波射頻功放板的識(shí)別
    3DX50中波發(fā)射機(jī)母板的改造
    最近最新中文字幕大全电影3| 91av网一区二区| 色综合站精品国产| 一本一本综合久久| www.精华液| 久久精品国产综合久久久| 动漫黄色视频在线观看| 91麻豆精品激情在线观看国产| 免费大片18禁| 国产亚洲欧美在线一区二区| 全区人妻精品视频| 又紧又爽又黄一区二区| 欧美日韩综合久久久久久 | 国产熟女xx| 每晚都被弄得嗷嗷叫到高潮| 亚洲,欧美精品.| 天天躁日日操中文字幕| 亚洲av电影不卡..在线观看| 香蕉久久夜色| 国产真人三级小视频在线观看| 俄罗斯特黄特色一大片| 很黄的视频免费| 国产激情欧美一区二区| 久久香蕉精品热| 婷婷六月久久综合丁香| 欧美在线一区亚洲| 校园春色视频在线观看| www日本在线高清视频| 午夜影院日韩av| 综合色av麻豆| 美女 人体艺术 gogo| 成人一区二区视频在线观看| 久久久久亚洲av毛片大全| 亚洲中文av在线| 亚洲欧美日韩高清专用| 免费观看精品视频网站| 免费在线观看影片大全网站| 成人特级av手机在线观看| 男人和女人高潮做爰伦理| 最近最新中文字幕大全电影3| 小说图片视频综合网站| avwww免费| cao死你这个sao货| 国产激情久久老熟女| 又黄又粗又硬又大视频| 少妇人妻一区二区三区视频| 亚洲av第一区精品v没综合| 亚洲精品456在线播放app | 亚洲欧美精品综合久久99| 99久久99久久久精品蜜桃| 久久久久亚洲av毛片大全| 噜噜噜噜噜久久久久久91| 黄色片一级片一级黄色片| 美女被艹到高潮喷水动态| 麻豆久久精品国产亚洲av| 丰满人妻一区二区三区视频av | aaaaa片日本免费| 亚洲中文日韩欧美视频| 伊人久久大香线蕉亚洲五| 久久久国产精品麻豆| 亚洲人与动物交配视频| 在线国产一区二区在线| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 免费在线观看亚洲国产| 香蕉久久夜色| 国产蜜桃级精品一区二区三区| 夜夜爽天天搞| 淫妇啪啪啪对白视频| 日本黄大片高清| 天堂√8在线中文| 最近在线观看免费完整版| 看免费av毛片| 十八禁网站免费在线| 性色avwww在线观看| 亚洲天堂国产精品一区在线| 久久久久久九九精品二区国产| 亚洲中文av在线| 99热6这里只有精品| 91在线观看av| 99re在线观看精品视频| 日本成人三级电影网站| 人人妻,人人澡人人爽秒播| 听说在线观看完整版免费高清| 日本撒尿小便嘘嘘汇集6| 天堂网av新在线| 国产高潮美女av| 国产一区二区激情短视频| 18禁黄网站禁片午夜丰满| 99国产精品99久久久久| 亚洲真实伦在线观看| av在线天堂中文字幕| 成人性生交大片免费视频hd| 丁香六月欧美| 99国产极品粉嫩在线观看| 免费看美女性在线毛片视频| 99久久成人亚洲精品观看| 亚洲中文字幕日韩| 日韩三级视频一区二区三区| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 国产亚洲精品av在线| 国产三级在线视频| 成人午夜高清在线视频| 国产高清videossex| 国产极品精品免费视频能看的| www.999成人在线观看| 欧美日韩福利视频一区二区| 天天一区二区日本电影三级| 美女黄网站色视频| 亚洲成人久久爱视频| 亚洲国产日韩欧美精品在线观看 | 精品免费久久久久久久清纯| 国产久久久一区二区三区| 欧美日韩综合久久久久久 | 欧美大码av| 国产一级毛片七仙女欲春2| 久久久久久久午夜电影| 美女高潮的动态| 亚洲国产精品合色在线| 在线永久观看黄色视频| 国产真实乱freesex| 欧美日本视频| 午夜免费观看网址| 熟女人妻精品中文字幕| 一个人看视频在线观看www免费 | 麻豆国产av国片精品| 看黄色毛片网站| 日韩欧美精品v在线| 午夜亚洲福利在线播放| 日本在线视频免费播放| 亚洲成人久久性| 综合色av麻豆| 制服人妻中文乱码| 欧美一区二区精品小视频在线| 中文字幕熟女人妻在线| 日本三级黄在线观看| 国产精品1区2区在线观看.| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 在线十欧美十亚洲十日本专区| 九九久久精品国产亚洲av麻豆 | 国产成人aa在线观看| 在线观看舔阴道视频| 国产不卡一卡二| 美女cb高潮喷水在线观看 | cao死你这个sao货| 精品国产乱子伦一区二区三区| 伊人久久大香线蕉亚洲五| 搡老妇女老女人老熟妇| xxx96com| 午夜福利在线在线| 免费人成视频x8x8入口观看| 中文字幕久久专区| 亚洲国产精品sss在线观看| 一个人观看的视频www高清免费观看 | 亚洲欧洲精品一区二区精品久久久| 亚洲中文字幕一区二区三区有码在线看 | 在线播放国产精品三级| 国内少妇人妻偷人精品xxx网站 | 老熟妇仑乱视频hdxx| 99国产综合亚洲精品| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产| 日本免费a在线| 在线播放国产精品三级| 波多野结衣高清无吗| 欧美激情在线99| 天堂网av新在线| 亚洲美女黄片视频| 俺也久久电影网| 一级毛片高清免费大全| av欧美777| 精品一区二区三区视频在线 | 亚洲成人中文字幕在线播放| 熟女人妻精品中文字幕| 一个人看的www免费观看视频| 88av欧美| 狂野欧美激情性xxxx| 在线观看免费视频日本深夜| 黄频高清免费视频| 国内精品久久久久精免费| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 日日夜夜操网爽| 美女午夜性视频免费| 成年人黄色毛片网站| 黑人操中国人逼视频| 亚洲片人在线观看| 欧美日韩福利视频一区二区| 女同久久另类99精品国产91| 日本免费a在线| 九色国产91popny在线| 免费看a级黄色片| 麻豆av在线久日| 看黄色毛片网站| 黄色女人牲交| 中出人妻视频一区二区| 亚洲一区二区三区色噜噜| 91av网站免费观看| 久久人妻av系列| av天堂在线播放| 亚洲精品久久国产高清桃花| 两性午夜刺激爽爽歪歪视频在线观看| 变态另类丝袜制服| 国产精品久久电影中文字幕| 老熟妇仑乱视频hdxx| 两个人视频免费观看高清| 精品国内亚洲2022精品成人| 免费av毛片视频| x7x7x7水蜜桃| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久精品吃奶| 色综合婷婷激情| 国产蜜桃级精品一区二区三区| 99热6这里只有精品| 在线a可以看的网站| 琪琪午夜伦伦电影理论片6080| 国产成人啪精品午夜网站| 大型黄色视频在线免费观看| 麻豆av在线久日| 久久精品国产综合久久久| 国产精品,欧美在线| 欧美中文日本在线观看视频| 欧美+亚洲+日韩+国产| a级毛片在线看网站| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| 校园春色视频在线观看| 精品人妻1区二区| 日本一二三区视频观看| 免费看光身美女| 国产午夜精品久久久久久| 国产精品久久电影中文字幕| 成人三级黄色视频| 俺也久久电影网| 又黄又粗又硬又大视频| 麻豆国产97在线/欧美| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| 黄片大片在线免费观看| 国产亚洲精品一区二区www| 国产成年人精品一区二区| 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 十八禁人妻一区二区| 国产伦一二天堂av在线观看| a级毛片a级免费在线| 久久人妻av系列| www日本黄色视频网| 欧美日韩一级在线毛片| 日本成人三级电影网站| 性色av乱码一区二区三区2| 国内精品久久久久精免费| 国产主播在线观看一区二区| 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费| 午夜福利在线观看吧| 好看av亚洲va欧美ⅴa在| 日本黄色视频三级网站网址| 欧美zozozo另类| 波多野结衣巨乳人妻| 美女黄网站色视频| 精品久久久久久成人av| 亚洲真实伦在线观看| 好男人在线观看高清免费视频| 网址你懂的国产日韩在线| 99国产综合亚洲精品| 中文字幕久久专区| 在线永久观看黄色视频| 欧美极品一区二区三区四区| 又粗又爽又猛毛片免费看| 久久久久九九精品影院| 网址你懂的国产日韩在线| 偷拍熟女少妇极品色| 精品国产乱子伦一区二区三区| 热99在线观看视频| 首页视频小说图片口味搜索| 男人舔女人的私密视频| 一本一本综合久久| 小说图片视频综合网站| 一个人观看的视频www高清免费观看 | 丁香欧美五月| 国产69精品久久久久777片 | svipshipincom国产片| 亚洲欧美日韩无卡精品| 亚洲人成伊人成综合网2020| 欧美+亚洲+日韩+国产| 欧美乱妇无乱码| 亚洲专区国产一区二区| 亚洲av熟女| 亚洲午夜理论影院| 国产一区二区激情短视频| 日本一本二区三区精品| 色综合亚洲欧美另类图片| 91麻豆av在线| 亚洲国产精品999在线| 午夜激情欧美在线| 一区二区三区高清视频在线| 久久久色成人| 我的老师免费观看完整版| 亚洲五月天丁香| 欧美精品啪啪一区二区三区| 国产黄色小视频在线观看| 精品久久久久久久人妻蜜臀av| www.999成人在线观看| 中文字幕最新亚洲高清| 日韩欧美一区二区三区在线观看| 校园春色视频在线观看| 日韩 欧美 亚洲 中文字幕| 97超级碰碰碰精品色视频在线观看| ponron亚洲| 一本一本综合久久| 国产99白浆流出| 十八禁人妻一区二区| h日本视频在线播放| 亚洲七黄色美女视频| 好看av亚洲va欧美ⅴa在| 欧美性猛交黑人性爽| 夜夜躁狠狠躁天天躁| 丰满的人妻完整版| 日本在线视频免费播放| 黄色女人牲交| 中文字幕最新亚洲高清| 91麻豆精品激情在线观看国产| 国产精品久久电影中文字幕| 国产精品av视频在线免费观看| 老司机午夜福利在线观看视频| 国产乱人视频| 精品一区二区三区四区五区乱码| 人人妻,人人澡人人爽秒播| 国产精品美女特级片免费视频播放器 | 欧美激情在线99| 超碰成人久久| 国产伦人伦偷精品视频| 免费看光身美女| 欧美日韩乱码在线| 日韩国内少妇激情av| 亚洲性夜色夜夜综合| 欧美高清成人免费视频www| 麻豆国产97在线/欧美| 高潮久久久久久久久久久不卡| 亚洲av美国av| 夜夜躁狠狠躁天天躁| 99热只有精品国产| 天堂网av新在线| 岛国视频午夜一区免费看| 国产人伦9x9x在线观看| 丰满人妻一区二区三区视频av | 9191精品国产免费久久| 亚洲性夜色夜夜综合| 人人妻人人看人人澡| 亚洲激情在线av| 黄色片一级片一级黄色片| 色哟哟哟哟哟哟| 国产精品 国内视频| 99热精品在线国产| 亚洲av美国av| 99精品在免费线老司机午夜| 国产三级黄色录像| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美人成| 波多野结衣巨乳人妻| 亚洲中文av在线| 天堂av国产一区二区熟女人妻| 成年女人永久免费观看视频| 中文字幕av在线有码专区| 久久久久久大精品| 9191精品国产免费久久| 国产伦人伦偷精品视频| 欧美不卡视频在线免费观看| 老鸭窝网址在线观看| 国产精品一区二区三区四区免费观看 | 俺也久久电影网| 中文亚洲av片在线观看爽| 高清毛片免费观看视频网站| 999久久久精品免费观看国产| 国产亚洲精品久久久com| 亚洲中文字幕日韩| 精品一区二区三区视频在线 | 国产高清视频在线观看网站| 啦啦啦观看免费观看视频高清| 五月玫瑰六月丁香| 99精品在免费线老司机午夜| 淫秽高清视频在线观看| 亚洲一区二区三区不卡视频| 欧美zozozo另类| 国产黄片美女视频| 俺也久久电影网| 一二三四在线观看免费中文在| 国产精品久久久久久人妻精品电影| 又黄又爽又免费观看的视频| 欧美成人一区二区免费高清观看 | 99热6这里只有精品| 久久久久亚洲av毛片大全| 夜夜夜夜夜久久久久| 91av网一区二区| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| 成人18禁在线播放| 中文字幕人妻丝袜一区二区| 亚洲 欧美一区二区三区| 国产精品日韩av在线免费观看| 一区二区三区国产精品乱码| 欧美性猛交╳xxx乱大交人| 无限看片的www在线观看| 91在线精品国自产拍蜜月 | 国产精品久久久人人做人人爽| 国内久久婷婷六月综合欲色啪| 午夜免费观看网址| 欧美最黄视频在线播放免费| 国产一区二区三区在线臀色熟女| 成人高潮视频无遮挡免费网站| 嫩草影院入口| 国产极品精品免费视频能看的| 麻豆成人午夜福利视频| 亚洲精品一区av在线观看| 成年女人毛片免费观看观看9| 男人舔女人下体高潮全视频| 最近最新中文字幕大全电影3| 亚洲精品美女久久久久99蜜臀| 麻豆一二三区av精品| 女生性感内裤真人,穿戴方法视频| 99久久99久久久精品蜜桃| 欧美日韩乱码在线| av福利片在线观看| 久久九九热精品免费| 12—13女人毛片做爰片一| 午夜激情福利司机影院| 欧美在线黄色| 九色国产91popny在线| 国产黄a三级三级三级人| 午夜日韩欧美国产| 国产高清有码在线观看视频| 熟女电影av网| 久99久视频精品免费| 亚洲精品在线观看二区| 成熟少妇高潮喷水视频| 久久久久久久久久黄片| 色综合婷婷激情| 一夜夜www| 国产精品一区二区精品视频观看| 午夜精品在线福利| 日本五十路高清| 99久久综合精品五月天人人| 色吧在线观看| 波多野结衣巨乳人妻| 午夜亚洲福利在线播放| 在线观看免费视频日本深夜| 操出白浆在线播放| 美女免费视频网站| 欧美大码av| 国产一区二区激情短视频| 国产精品亚洲美女久久久| 母亲3免费完整高清在线观看| 九九在线视频观看精品| 色哟哟哟哟哟哟| 国产精华一区二区三区| 免费在线观看影片大全网站| 国产69精品久久久久777片 | 啦啦啦韩国在线观看视频| 国产精品爽爽va在线观看网站| 久久天躁狠狠躁夜夜2o2o| 亚洲成人免费电影在线观看| 一进一出抽搐动态| 美女免费视频网站| 国产高清三级在线| 麻豆国产97在线/欧美| 久久精品亚洲精品国产色婷小说| 中国美女看黄片| 国产高潮美女av| 欧美3d第一页| 香蕉av资源在线| 国产精品野战在线观看| 日本免费a在线| 国产精品亚洲一级av第二区| 日韩有码中文字幕| 丁香欧美五月| 久久久久久久久免费视频了| 99国产综合亚洲精品| 国产精品1区2区在线观看.| 麻豆国产av国片精品| 亚洲美女黄片视频| 欧美大码av| 久久久久久大精品| 婷婷亚洲欧美| 精品欧美国产一区二区三| 男女午夜视频在线观看| 国产人伦9x9x在线观看| 露出奶头的视频| 色老头精品视频在线观看| 国产亚洲av嫩草精品影院| 亚洲精品在线观看二区| 欧美国产日韩亚洲一区| 国产一区二区激情短视频| 亚洲最大成人中文| 精品欧美国产一区二区三| 午夜福利18| 亚洲天堂国产精品一区在线| 中文字幕熟女人妻在线| 变态另类成人亚洲欧美熟女| 可以在线观看的亚洲视频| 美女免费视频网站| 亚洲欧美日韩高清在线视频| 国产伦人伦偷精品视频| 国产99白浆流出| 成人鲁丝片一二三区免费| 国产91精品成人一区二区三区| 日日摸夜夜添夜夜添小说| 欧美激情在线99| 1000部很黄的大片| 无人区码免费观看不卡| 久久精品人妻少妇| 午夜激情欧美在线| 欧美乱色亚洲激情| 国产伦在线观看视频一区| 亚洲av电影在线进入| 亚洲午夜理论影院| 免费观看人在逋| 天天一区二区日本电影三级| 男女之事视频高清在线观看| 国语自产精品视频在线第100页| 欧美xxxx黑人xx丫x性爽| 中文亚洲av片在线观看爽| 一级作爱视频免费观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成电影免费在线| 999久久久国产精品视频| 久99久视频精品免费| 日韩欧美国产一区二区入口| 国产日本99.免费观看| av中文乱码字幕在线| 狂野欧美激情性xxxx| 男女做爰动态图高潮gif福利片| 国产综合懂色| 88av欧美| 久久午夜综合久久蜜桃| 黄片小视频在线播放| 一级毛片精品| 性色av乱码一区二区三区2| 成年版毛片免费区| 免费搜索国产男女视频| 国产乱人伦免费视频| 亚洲国产精品成人综合色| 手机成人av网站| 久久久久国内视频| 亚洲中文字幕日韩| 最近在线观看免费完整版| 日韩欧美 国产精品| 一进一出抽搐动态| 免费看a级黄色片| 欧美一级毛片孕妇| 一a级毛片在线观看| 国产av一区在线观看免费| 久久久久久久久久黄片| 精品国内亚洲2022精品成人| 淫秽高清视频在线观看| 无限看片的www在线观看| cao死你这个sao货| 九九在线视频观看精品| 欧美色视频一区免费| 国产乱人视频| 国产精品亚洲av一区麻豆| 日本 av在线| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久| 757午夜福利合集在线观看| 成人性生交大片免费视频hd| 99久久精品热视频| 香蕉久久夜色| 99在线视频只有这里精品首页| 男人舔女人下体高潮全视频| 日韩欧美在线乱码| 男人的好看免费观看在线视频| 亚洲美女黄片视频| 亚洲 欧美一区二区三区| 日本 欧美在线| 人人妻人人澡欧美一区二区| 日本一本二区三区精品| 亚洲av熟女| 波多野结衣高清无吗| 真实男女啪啪啪动态图| 亚洲欧美日韩卡通动漫| 此物有八面人人有两片| 日本一本二区三区精品| 欧美在线一区亚洲| 神马国产精品三级电影在线观看| 曰老女人黄片| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区| 亚洲国产欧美网| 亚洲成av人片免费观看| 啦啦啦免费观看视频1| 中文字幕av在线有码专区| 美女cb高潮喷水在线观看 | 操出白浆在线播放| 国产精品一及| 757午夜福利合集在线观看| 一级作爱视频免费观看| 日本 av在线| 亚洲一区二区三区不卡视频| 别揉我奶头~嗯~啊~动态视频| 在线永久观看黄色视频| 搞女人的毛片| 在线观看免费午夜福利视频| 国产私拍福利视频在线观看| 久久久久国产精品人妻aⅴ院| 精品一区二区三区四区五区乱码| 他把我摸到了高潮在线观看| 日本熟妇午夜| 精品无人区乱码1区二区| 97超视频在线观看视频| 手机成人av网站|