• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A comparative study on radiation reliability of composite channel InP high electron mobility transistors*

    2021-07-30 07:37:14JiaJiaZhang張佳佳PengDing丁芃YaNanJin靳雅楠ShengHaoMeng孟圣皓XiangQianZhao趙向前YanFeiHu胡彥飛YingHuiZhong鐘英輝andZhiJin金智
    Chinese Physics B 2021年7期

    Jia-Jia Zhang(張佳佳) Peng Ding(丁芃) Ya-Nan Jin(靳雅楠) Sheng-Hao Meng(孟圣皓)Xiang-Qian Zhao(趙向前) Yan-Fei Hu(胡彥飛) Ying-Hui Zhong(鐘英輝) and Zhi Jin(金智)

    1School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450001,China

    2Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    3Microelectronics Institute,Xidian University,Xi’an 710071,China

    Keywords: proton irradiation,composite channel,InP HEMTs,TCAD modeling

    1. Introduction

    In recent years, high-precision sensing and high-quality communication have imposed huge requirements on the operating frequency of integrated circuits, which has increased from W-band to G-band or even terahertz.[1,2]A variety of techniques are adopted to extend the Moore’ law and improve the devices’ frequency characteristics, such as novel structures[3,4]and fabrication technology.[5]The InP-based high electron mobility transistors (HEMTs) have demonstrated high carrier sheet density, peak drift velocity, and low-field mobility,and the recorded frequency characteristics have exceeded 1 THz.[6]Therefore, they are recognized as a promising candidate for power amplifiers(PAs)and low noise amplifiers(LNAs)of upcoming THz satellite communication and deep space detection systems.[7-10]

    When electronic equipment operates in harsh space environment, its performance deterioration and even abnormality result from various high energetic particles and cosmic rays.Therefore, it is essential to understand the radiation reliability of these devices. Since III-V HEMTs are not sensitive to ionization effects,researchers primarily focus on the displacement effects caused by irradiation. So far, the displacement effects of GaN and GaAs HEMTs have been extensively studied. Typical features are the positive shift of threshold voltage, degradation of transconductance, current, operating frequency,and gain.[11-18]Besides,the related literature demonstrates that a large value of conduction band offset correlates with greater tolerance of radiation damage.[19,20]

    However, there are few studies on the proton irradiation of InP HEMTs.[21,22]The present work presents a reasonable radiation-resistant composite channel structure for InP HEMTs. A combination of SRIM and ISE-TCAD is used to simulate the radiation reliability of the composite channel structure InP HEMTs. The trap model and the ionized impurity scattering model account for the carrier removal and mobility degradation caused by irradiation.And finally,an understandable explanation for the better radiation reliability of the composite channel is presented.

    2. Modeling

    2.1. Device structure

    Figures 1(a) and 1(b) show the schematic cross-sections of the traditional single channel structure and the composite channel structure InP HEMTs, respectively. These two device structures possess almost the same epitaxial layers apart from the channel layer. The entire epilayers of single channel structure from bottom to top consist of an InP semi-insulating substrate,a 500-nm-thick In0.52Al0.48As(InAlAs)buffer layer,15-nm-thick In0.52Al0.48As (InGaAs) channel layer, 5-nmthick InAlAs spacer layer, aδ-doping plane with a concentration of 5×1012cm-2, 10-nm-thick InAlAs barrier layer,uppermost 30-nm-thick heavily-doped InGaAs cap layer with a doping concentration of 3×1019cm-3.The composite channel contains 3-nm-thick InGaAs layer,2-nm-thick InAs layer,and 10-nm-thick In0.53(Al0.3Ga0.7)0.47As (InAlGaAs) layer.All InAlAs and InGaAs layers are lattice matched with InP substrate as well as InAlGaAs. The gate length is set to be 100 nm, and both gate-source distance and gate-drain distance are 1.0 μm.

    Fig.1. Schematic cross-sections of InP HEMTs: (a)single channel structure and(b)composite channel structure.

    2.2. Physical model

    The accurate physical models are used to simulate the device characteristics,including hydrodynamic transport model,Shockley-Read-Hall recombination, Auger recombination,radiative recombination,density gradient model,and mobility high-field saturation model.Detailed model and calibration refer to the counterparts previous work.[23,24]Moreover,the trap model is employed to introduce the radiation damage into device simulation. And the self-consistent coupling of Poisson equation, current continuity equations, current density equations are given as follows:[25]

    whereφis the electrostatic potential,qis the elementary charge,εis the material permittivity,nis the electron density,pis the hole density,N+D,N-A,andρtrapare the ionized donor,acceptor density, and trap density,JnandJpare the current densities,μnandμpare the carrier mobilities,respectively,ΦnandΦpare the quasi-Fermi levels.

    2.3. Vacancy profile

    Displacement-related point defects are considered the primary damage mechanism that influences device performance in proton-irradiated InP HEMTs.[12,13,20]Energetic protons transfer part of their kinetic energy to the lattice atoms through non-ionizing energy loss(NIEL).This energy displaces atoms from their lattice sites and creates charged defect centers. According to the number of vacancies created in the given depth after energetic proton incidence, we can calculate the densities of vacancy at different proton fluences. Here we consider only the influence of As vacancies on InP HEMT,because As vacancies act as acceptor defects and the influence of donor defects on the device can be ignored.[26,27]Figure 2 shows the As vacancy densities created near the heterojunction versus 75-keV proton fluence, calculated by SRIM. Under the same fluence,there is no significant difference between the vacancy density of the barrier layer and the channel layer. In addition,the 75-keV proton NIEL is about 2.3 MeV·cm2/g in both of InP HEMT structures.

    Fig.2. Vacancy density near heterojunction versus proton fluence of(a)single channel structure and(b)composite channel structure.

    2.4. Results and discussion

    DC transfer characteristics of both HEMTs at a drain voltage (VDS) of 1.5 V are shown in Fig. 3(a). The composite channel structure exhibits over 1200 mS/mm of peak transconductance(gm,max)and 873 mA/mm of saturation current (IDS,sat). Compared with single channel structure, composite channel structure significantly increases peak transconductance and saturation current. Besides, under the same Schottky barrier, the composite channel structure’s threshold voltage(Vth)is more negative. The reason will be explained in detail below. Figures 3(b)and 3(c)show the small-signal RF characteristic of both HEMTs atVDS=1.5 V and gate-source voltage (VGS) biases around the points with peak transconductance. In a low-frequency band, the current gain (H21)and the maximum available/stable power gain (MAG/MSG)curves are flat. With the increase of frequency, the current gain decreases by-20 dB /decade, while the power gain decreases by two slopes, the stability factorK= 1 where the slope changes from-10 dB/decade(MSG)to-20 dB/decade(MAG). Note that the current gain cutoff frequency (fT) and maximum oscillation frequency(fmax)of the composite channel structure reach 440 GHz and 930 GHz, respectively. The detailed device characteristics are summarized in Table 1.

    The improved characteristics of the composite channel structure can be explained by simulating the conduction band and the two-dimensional electron gas density of the heterojunction, and the results are shown in Fig. 4. It can be intuitively seen that the single channel structure forms a triangularlike potential well near the heterojunction, and the electrons are confined mainly in this potential well while the composite channel structure electrons are confined primarily in the InAs subchannel with higher mobility. Besides, the composite channel structure results in an apparent increase in modulation efficiency expressed by higher sheet density of two-dimensional electron gas density because of the insertion of InAs. This directly leads the threshold voltage to shift negatively.[28]In other words, the higher carrier density and mobility of the composite channel structure result in excellent DC and RF characteristics.

    Table 1. Electrical characteristics of both HEMTs.

    Fig.3. Electrical characteristics of both HEMTs: (a)transfer characteristics,(b)current gain,and(c)power gain.

    Fig.4. Conduction band diagrams and electron density profiles of both HEMTs: (a)single channel structure,(b)composite channel structure.

    The transfer characteristics of both HEMTs without and with the irradiation of protons are investigated. However,figure 5 shows the case of only non-irradiation, proton fluence of 5.0×1011cm-2and 2.0×1012cm-2for clarity. With the increase of the proton fluence,both structures exhibit different degrees of degradation, mainly in reducing transconductance and current,the threshold voltage shifts toward more positive value.This is consistent with the explanation that the radiation yields the acceptor defects near the heterojunction.[18]

    Fig.5. Transfer characteristics of both HEMTs: (a)single channel structure and(b)composite channel structure at different proton fluences.

    The relationships between the normalized critical parameters and different proton fluences are shown in Fig. 6. The normalized value is adopted here for comparison, in order to eliminate the difference between the characteristics of both structures and more intuitively reflect the degradation degree of critical parameters by the irradiation fluence. The normalized DC parameters,such as threshold voltage,peak transconductance,and saturation current show that the composite channel structure leads to better radiation reliability. The reason will be explained below in terms of the degradation of carrier density and mobility. Within the simulated proton fluence,the higher the fluence,the more pronounced the advantage of the composite channel structure is. To make the simulation results more convincing, we compare the single channel structure’s current degradation rate with those of other III-V HEMT irradiation experiments where the methods in the literature are adopted,[19]and the results are shown in Fig.6(d).The current degradation rate obtained by simulation is of the same order of magnitude as the experimental value, and there is no significant difference.

    Figures 6(e) and 6(f) show the radiation fluence dependence of the cut-off frequency and the maximum oscillation frequency. Note that the RF parameters do not change significantly like the DC parameters in the simulated fluence range,especially the maximum oscillation frequency. In fact, the frequency parameters are inversely proportional to the carrier transport time in the channel,which are expressed as[29]

    whereLgis the gate length,vdis the electron drift velocity,τexis the extrinsic delay time,Rdsis the channel resistance,Rgis the gate contact resistance, andRiis the Schottky junction resistance. Regardless of parasitic effects, the frequency parameters should be closely related to the drift velocity under a certain gate length. When the drift velocity reaches a saturation value,the Coulomb scattering of the defects introduced by the irradiation no longer dominates unless radiation fluence is very high. The Coulomb scattering caused by charged defects is an important cause of DC degradation. In other words,the effect of radiation on RF parameters lags DC parameters.Related studies show that the degradation of RF response is due to impedance mismatches caused by changes in resistance and capacitance.[18]

    Carrier removal and mobility reduction are regarded as the causes of DC degradation of irradiated HEMTs.[30]To illustrate the higher reliability of the composite channel structure in terms of DC parameters, we extract the twodimensional electron gas sheet density(ns)and mobility(μ)of the two structures under different irradiation fluences,and the results are shown in Fig.7. The normalized form is still used here for the convenience of comparison. The two-dimensional electron gas density has a linear relationship with the radiation fluence. According to the Coulomb scattering model of charged defects, the mobility is more sensitive to radiation. Mobility degrades rapidly at low fluence, but at high fluence the degradation value tends to be saturated. It is consistent with the irradiation experiment of the GaN-based twodimensional electron gas system.[31]Although the mobility degradations of the two structures are almost the same due to a similar defect density (Fig. 2), the carrier removal rate of the composite channel structure is significantly lower than that of the single channel structure. This indicates that comparing with the single channel structure, the improvement of the radiation reliability of the composite channel is reflected mainly in the weakening of the carrier removal effect.

    Fig.6. Relationship between the normalized critical parameters and proton fluence:(a)ΔVth,(b)normalized gm,max,(c)normalized IDS,sat,(e)normalized fT,(f)normalized fmax,and(d)degradation rate of normalized IDS,sat with equivalent fluence of 2-MeV proton versus conduction band offset for this simulation and various III-V HEMTs.[19]

    Fig.7. (a)Normalized ns and(b)normalized μ varying with proton fluence for single channel and composite channel.

    The carrier removal effect of defects introduced by irradiation can be illustrated by extracting the capture rate of defects. Figure 8 shows the capture rates of different defect levels with respect to conduction band near the heterojunction region. Although the capture rates of the barrier layers are almost the same in both structures,there is a significant difference in channel layer because of the wide band-gap InAlGaAs subchannel. For a non-degenerate system, the probability of the defect levels occupied should follow the Boltzmann distribution function:

    Comparing with the band diagram of Fig. 4, the offset between the conduction band of the InAlGaAs subchannel and the Fermi level is about 0.3 eV.For the As vacancy defect energy level 0.15 eV adopted in this simulation,[32]the defects in the InAlGaAs subchannel are partially ionized. Comparing with the complete ionization of channel defects in the single channel structure, the composite channel structure significantly reduces the carrier removal effect. This implies that through a reasonable composite channel structure, the device characteristics can be optimized while the radiation reliability can be improved.

    Fig. 8. Distribution of traps capture rate near heterojunction for (a) single channel structure and(b)composite channel structure.

    3. Conclusions

    In this work, a composite channel structure InP HEMT is proposed to improve the proton irradiation tolerance, and displays more excellent DC and RF characteristics than traditional single channel structure because of increased modulation doping efficiency and carrier confinement. Besides, the composite channel structure exhibits superior radiation reliability. By extracting the sheet density and mobility of twodimensional electron gas, it is believed that the composite channel weakens the carrier removal effect. This can account for the increase of native carrier and the decrease of defect capture rate. Therefore, it is proved that a reasonable composite channel structure design can effectively improve the irradiation reliability of InP HEMT device.

    国产在线视频一区二区| 亚洲 欧美一区二区三区| 女性被躁到高潮视频| 亚洲精品一区蜜桃| 国产精品一区二区在线观看99| 欧美最新免费一区二区三区| 精品久久久久久电影网| 丰满少妇做爰视频| 日日啪夜夜爽| 亚洲人成77777在线视频| 国产精品成人在线| 成人18禁高潮啪啪吃奶动态图| 日韩免费高清中文字幕av| 精品99又大又爽又粗少妇毛片| 80岁老熟妇乱子伦牲交| freevideosex欧美| 久久ye,这里只有精品| 久久久久精品性色| 日本欧美视频一区| 国产成人精品久久二区二区91 | 满18在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 久久狼人影院| 国产成人精品久久久久久| 少妇人妻久久综合中文| 99九九在线精品视频| 精品99又大又爽又粗少妇毛片| 亚洲国产精品999| 日韩av在线免费看完整版不卡| 中国三级夫妇交换| av电影中文网址| 97在线人人人人妻| av网站在线播放免费| 亚洲婷婷狠狠爱综合网| 91成人精品电影| 大陆偷拍与自拍| 少妇人妻久久综合中文| 最近手机中文字幕大全| 欧美97在线视频| 日本-黄色视频高清免费观看| 久久久久精品久久久久真实原创| 久久 成人 亚洲| 女的被弄到高潮叫床怎么办| 伦理电影大哥的女人| 欧美bdsm另类| 一区二区三区乱码不卡18| av线在线观看网站| 国产熟女欧美一区二区| 中文精品一卡2卡3卡4更新| 最近手机中文字幕大全| 欧美精品高潮呻吟av久久| 香蕉丝袜av| 女人精品久久久久毛片| 亚洲欧美中文字幕日韩二区| 亚洲第一青青草原| 国产极品粉嫩免费观看在线| 亚洲国产欧美网| 欧美成人午夜免费资源| 黄频高清免费视频| 日韩三级伦理在线观看| 最近的中文字幕免费完整| 国产av一区二区精品久久| 精品人妻偷拍中文字幕| 免费久久久久久久精品成人欧美视频| 老司机影院成人| 国产色婷婷99| 亚洲人成电影观看| 久久久久久久久免费视频了| 999精品在线视频| 久久精品国产亚洲av涩爱| 日本午夜av视频| av国产精品久久久久影院| 欧美成人精品欧美一级黄| 亚洲国产日韩一区二区| 婷婷色综合大香蕉| 亚洲欧美清纯卡通| 新久久久久国产一级毛片| 肉色欧美久久久久久久蜜桃| 国产精品免费大片| 性色av一级| 国产精品二区激情视频| 成人黄色视频免费在线看| xxxhd国产人妻xxx| 久久久久久人人人人人| 在线天堂最新版资源| 爱豆传媒免费全集在线观看| 亚洲精品日本国产第一区| 精品国产一区二区三区四区第35| 美女大奶头黄色视频| 97在线视频观看| 在线免费观看不下载黄p国产| 在线观看免费视频网站a站| 国产精品 国内视频| 男女国产视频网站| 热re99久久精品国产66热6| 99re6热这里在线精品视频| 一区在线观看完整版| 日日爽夜夜爽网站| 国产又爽黄色视频| 久久精品亚洲av国产电影网| 免费观看性生交大片5| 成年av动漫网址| 欧美最新免费一区二区三区| 国产亚洲午夜精品一区二区久久| 黄网站色视频无遮挡免费观看| 亚洲视频免费观看视频| 久久这里只有精品19| av国产久精品久网站免费入址| 国产深夜福利视频在线观看| 国产福利在线免费观看视频| 久久人人爽av亚洲精品天堂| 91成人精品电影| 久久99一区二区三区| 97在线视频观看| 建设人人有责人人尽责人人享有的| 日本91视频免费播放| 欧美激情高清一区二区三区 | 一区二区三区乱码不卡18| 国产xxxxx性猛交| 母亲3免费完整高清在线观看 | 黑人巨大精品欧美一区二区蜜桃| 性高湖久久久久久久久免费观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美网| 天天影视国产精品| 久久99蜜桃精品久久| 免费观看性生交大片5| 亚洲伊人色综图| 亚洲国产精品一区二区三区在线| 久久久久人妻精品一区果冻| 男人舔女人的私密视频| 一级片免费观看大全| 亚洲国产精品一区三区| 男女午夜视频在线观看| 最新的欧美精品一区二区| 中文字幕最新亚洲高清| 国产乱人偷精品视频| 国产免费福利视频在线观看| 免费观看性生交大片5| 十八禁高潮呻吟视频| 久久99一区二区三区| 久久ye,这里只有精品| 欧美 日韩 精品 国产| 美女脱内裤让男人舔精品视频| 各种免费的搞黄视频| 国产成人aa在线观看| 精品人妻熟女毛片av久久网站| 国产 一区精品| 91精品伊人久久大香线蕉| 天天影视国产精品| 久久99蜜桃精品久久| 亚洲成人手机| 热99久久久久精品小说推荐| 亚洲综合色惰| 在线观看www视频免费| videosex国产| 欧美少妇被猛烈插入视频| 婷婷成人精品国产| 国产精品av久久久久免费| 一边亲一边摸免费视频| 丰满饥渴人妻一区二区三| 久久久国产精品麻豆| 日韩中文字幕视频在线看片| 国产精品久久久久久久久免| 久久人妻熟女aⅴ| 搡老乐熟女国产| 国产精品久久久久久精品古装| 黄色配什么色好看| 国产精品亚洲av一区麻豆 | 精品一品国产午夜福利视频| 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 美女高潮到喷水免费观看| 国产一区亚洲一区在线观看| 纯流量卡能插随身wifi吗| 免费女性裸体啪啪无遮挡网站| 免费久久久久久久精品成人欧美视频| 晚上一个人看的免费电影| 叶爱在线成人免费视频播放| 亚洲国产精品一区三区| 亚洲国产看品久久| 亚洲国产av新网站| 久久久久久免费高清国产稀缺| 捣出白浆h1v1| 国产精品欧美亚洲77777| 国产精品蜜桃在线观看| 狠狠婷婷综合久久久久久88av| 国产精品免费大片| 精品99又大又爽又粗少妇毛片| 国产精品av久久久久免费| 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| 久久久久久久久久久久大奶| av国产精品久久久久影院| 国产又爽黄色视频| 香蕉国产在线看| 日韩免费高清中文字幕av| 熟女av电影| 久久这里只有精品19| 欧美精品亚洲一区二区| 人人妻人人澡人人爽人人夜夜| 色婷婷av一区二区三区视频| 蜜桃国产av成人99| 亚洲精品视频女| 91精品伊人久久大香线蕉| 精品一品国产午夜福利视频| 国产国语露脸激情在线看| 亚洲一区中文字幕在线| 国产男女超爽视频在线观看| 色视频在线一区二区三区| 一级爰片在线观看| 亚洲av成人精品一二三区| 亚洲欧美中文字幕日韩二区| 大陆偷拍与自拍| 中国国产av一级| 国产在线一区二区三区精| 麻豆av在线久日| 嫩草影院入口| 91精品三级在线观看| 国产一区亚洲一区在线观看| 久久精品国产亚洲av天美| 国产精品 国内视频| 亚洲成人手机| 黄片小视频在线播放| 一级毛片 在线播放| 国产精品一二三区在线看| 丝袜美腿诱惑在线| av国产精品久久久久影院| 一区福利在线观看| 日韩制服骚丝袜av| 丝袜在线中文字幕| 国产极品天堂在线| 曰老女人黄片| 色网站视频免费| 久久午夜综合久久蜜桃| 国产成人精品一,二区| 午夜av观看不卡| 亚洲av免费高清在线观看| 久久久久国产网址| 国产一区二区 视频在线| 天天躁狠狠躁夜夜躁狠狠躁| 成人国产麻豆网| 最近的中文字幕免费完整| 最近中文字幕2019免费版| 久久综合国产亚洲精品| 热99久久久久精品小说推荐| 熟女少妇亚洲综合色aaa.| 激情视频va一区二区三区| 在线看a的网站| 黄色毛片三级朝国网站| 伦精品一区二区三区| 久久久国产一区二区| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 亚洲av综合色区一区| 亚洲精品aⅴ在线观看| 丝袜美足系列| 看免费成人av毛片| 国产片内射在线| 丝袜喷水一区| 又大又黄又爽视频免费| 欧美成人精品欧美一级黄| 91午夜精品亚洲一区二区三区| 美女福利国产在线| 日本黄色日本黄色录像| 黄片播放在线免费| 熟女av电影| 自拍欧美九色日韩亚洲蝌蚪91| 免费看av在线观看网站| 免费高清在线观看视频在线观看| 在现免费观看毛片| 最近中文字幕2019免费版| 精品少妇久久久久久888优播| 国产成人精品一,二区| 精品少妇内射三级| 十八禁网站网址无遮挡| 成人18禁高潮啪啪吃奶动态图| 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 另类精品久久| 只有这里有精品99| 少妇人妻精品综合一区二区| 成人毛片a级毛片在线播放| 人妻人人澡人人爽人人| 夫妻性生交免费视频一级片| 午夜福利视频精品| 国产在线免费精品| 亚洲色图综合在线观看| 亚洲久久久国产精品| 亚洲欧洲日产国产| 国产精品香港三级国产av潘金莲 | 91aial.com中文字幕在线观看| 一本大道久久a久久精品| 国产成人精品福利久久| 啦啦啦中文免费视频观看日本| 美女中出高潮动态图| 国产麻豆69| 超碰97精品在线观看| 天天躁夜夜躁狠狠久久av| 欧美人与性动交α欧美软件| 99国产综合亚洲精品| 国产av国产精品国产| 亚洲精品一二三| 色哟哟·www| 国产一区有黄有色的免费视频| 欧美日韩一级在线毛片| 欧美成人精品欧美一级黄| 婷婷色麻豆天堂久久| 一级毛片我不卡| 成人免费观看视频高清| 9色porny在线观看| 午夜福利一区二区在线看| 国产一区亚洲一区在线观看| 天天影视国产精品| 在线观看三级黄色| 青春草视频在线免费观看| 国产精品亚洲av一区麻豆 | 日韩熟女老妇一区二区性免费视频| 成人影院久久| a级片在线免费高清观看视频| 成年女人毛片免费观看观看9 | 欧美日韩国产mv在线观看视频| 深夜精品福利| 午夜免费鲁丝| 久久久久精品人妻al黑| 精品少妇久久久久久888优播| 80岁老熟妇乱子伦牲交| av一本久久久久| 日韩电影二区| 夫妻午夜视频| 少妇的逼水好多| 大片电影免费在线观看免费| 成年女人在线观看亚洲视频| √禁漫天堂资源中文www| 男人添女人高潮全过程视频| 日日撸夜夜添| 女人高潮潮喷娇喘18禁视频| 国产成人免费观看mmmm| 精品亚洲成国产av| 中国三级夫妇交换| 亚洲第一av免费看| 啦啦啦在线观看免费高清www| 丝瓜视频免费看黄片| 国产欧美日韩综合在线一区二区| 黄网站色视频无遮挡免费观看| 男女免费视频国产| 亚洲av免费高清在线观看| 熟女电影av网| 啦啦啦中文免费视频观看日本| 亚洲图色成人| 另类亚洲欧美激情| 天天影视国产精品| 春色校园在线视频观看| 久久精品国产鲁丝片午夜精品| 久久久久久久久久人人人人人人| 午夜av观看不卡| 日本av手机在线免费观看| 欧美成人午夜免费资源| 久久99精品国语久久久| 亚洲欧美一区二区三区久久| 欧美变态另类bdsm刘玥| 人人妻人人澡人人看| 五月天丁香电影| 成年人免费黄色播放视频| 日韩大片免费观看网站| 啦啦啦啦在线视频资源| 中文字幕人妻丝袜制服| 黑人欧美特级aaaaaa片| 久久久a久久爽久久v久久| 国产精品国产三级专区第一集| 天堂8中文在线网| 亚洲国产毛片av蜜桃av| 在线观看免费日韩欧美大片| 婷婷色综合www| 亚洲精品一二三| 国产精品秋霞免费鲁丝片| 丝袜脚勾引网站| 90打野战视频偷拍视频| 91在线精品国自产拍蜜月| 人妻一区二区av| 国产人伦9x9x在线观看 | 十分钟在线观看高清视频www| 啦啦啦啦在线视频资源| 欧美日韩精品成人综合77777| 在线观看www视频免费| 亚洲美女黄色视频免费看| 妹子高潮喷水视频| 免费播放大片免费观看视频在线观看| 午夜精品国产一区二区电影| 人人妻人人澡人人看| av线在线观看网站| 又大又黄又爽视频免费| videos熟女内射| 成人国语在线视频| 午夜福利乱码中文字幕| xxx大片免费视频| 丝瓜视频免费看黄片| 大香蕉久久成人网| 美国免费a级毛片| h视频一区二区三区| 日本wwww免费看| 日韩成人av中文字幕在线观看| 久久人人97超碰香蕉20202| 男女下面插进去视频免费观看| 亚洲av电影在线观看一区二区三区| 久久人人97超碰香蕉20202| 亚洲激情五月婷婷啪啪| 午夜91福利影院| av视频免费观看在线观看| 视频区图区小说| 亚洲精品第二区| 欧美日韩一区二区视频在线观看视频在线| 91久久精品国产一区二区三区| 伊人久久大香线蕉亚洲五| 亚洲人成电影观看| 色婷婷久久久亚洲欧美| 色94色欧美一区二区| 久久人人爽av亚洲精品天堂| 久久国产精品男人的天堂亚洲| 69精品国产乱码久久久| 亚洲精品成人av观看孕妇| 91国产中文字幕| 久久久久久人人人人人| 成人国产av品久久久| 高清视频免费观看一区二区| 天美传媒精品一区二区| 久久国产精品大桥未久av| 久久国内精品自在自线图片| 久久99一区二区三区| 久久精品夜色国产| 亚洲熟女精品中文字幕| 亚洲精品一区蜜桃| 熟女少妇亚洲综合色aaa.| 蜜桃在线观看..| 我的亚洲天堂| 色网站视频免费| 女性被躁到高潮视频| 一级,二级,三级黄色视频| 久久久久久免费高清国产稀缺| 亚洲色图 男人天堂 中文字幕| 黄色 视频免费看| 免费看av在线观看网站| 又大又黄又爽视频免费| 欧美精品高潮呻吟av久久| 国产精品三级大全| 91精品三级在线观看| 亚洲婷婷狠狠爱综合网| 人成视频在线观看免费观看| 在线免费观看不下载黄p国产| 日产精品乱码卡一卡2卡三| 久热久热在线精品观看| 日日撸夜夜添| 欧美变态另类bdsm刘玥| 校园人妻丝袜中文字幕| 国产熟女欧美一区二区| 少妇人妻精品综合一区二区| 一区在线观看完整版| 国产精品人妻久久久影院| 天天影视国产精品| 成人漫画全彩无遮挡| 亚洲中文av在线| 中文字幕精品免费在线观看视频| 亚洲一码二码三码区别大吗| 久久精品久久久久久久性| 最新中文字幕久久久久| 免费少妇av软件| 国产精品三级大全| 亚洲久久久国产精品| 9191精品国产免费久久| 亚洲一码二码三码区别大吗| 婷婷色av中文字幕| 日日撸夜夜添| 午夜免费男女啪啪视频观看| 久久韩国三级中文字幕| 久久人妻熟女aⅴ| 久久人人爽人人片av| 99香蕉大伊视频| 日本91视频免费播放| 久久久精品94久久精品| 亚洲中文av在线| 欧美国产精品va在线观看不卡| 边亲边吃奶的免费视频| 美女视频免费永久观看网站| 最近最新中文字幕免费大全7| 精品视频人人做人人爽| 久久青草综合色| 日本免费在线观看一区| 日韩一区二区三区影片| 久久这里只有精品19| 日韩精品免费视频一区二区三区| 亚洲情色 制服丝袜| 久久久国产精品麻豆| 亚洲精品日本国产第一区| 街头女战士在线观看网站| www.自偷自拍.com| 国产精品免费大片| www.av在线官网国产| 中文字幕精品免费在线观看视频| 一级,二级,三级黄色视频| 国产欧美日韩一区二区三区在线| 日韩大片免费观看网站| 亚洲国产精品999| 99九九在线精品视频| 日本-黄色视频高清免费观看| 王馨瑶露胸无遮挡在线观看| 精品酒店卫生间| 国产精品女同一区二区软件| 男女无遮挡免费网站观看| 日韩av免费高清视频| 精品一区二区三卡| 777米奇影视久久| 国产免费又黄又爽又色| 亚洲综合色网址| 国产成人精品一,二区| 亚洲国产欧美在线一区| 国产又爽黄色视频| 欧美中文综合在线视频| 精品一品国产午夜福利视频| 亚洲欧洲日产国产| 秋霞伦理黄片| 97在线视频观看| kizo精华| 久久久久久久久免费视频了| 精品少妇黑人巨大在线播放| 啦啦啦中文免费视频观看日本| 亚洲第一青青草原| 人人澡人人妻人| 久久久久国产网址| 久久 成人 亚洲| 亚洲人成77777在线视频| 日韩欧美精品免费久久| 免费女性裸体啪啪无遮挡网站| 亚洲欧美一区二区三区久久| 日韩av不卡免费在线播放| 亚洲av综合色区一区| 久久久久精品久久久久真实原创| 亚洲精品国产av蜜桃| 两性夫妻黄色片| 韩国av在线不卡| 亚洲精品久久久久久婷婷小说| 国产精品久久久久成人av| 黄频高清免费视频| 色婷婷久久久亚洲欧美| 精品福利永久在线观看| 国产成人aa在线观看| 国产极品天堂在线| 国产亚洲一区二区精品| 国产一区二区三区av在线| 晚上一个人看的免费电影| 视频区图区小说| 精品亚洲成国产av| 熟女少妇亚洲综合色aaa.| 少妇被粗大的猛进出69影院| 成人影院久久| 不卡视频在线观看欧美| 啦啦啦视频在线资源免费观看| 国产在线视频一区二区| 热re99久久国产66热| 狠狠婷婷综合久久久久久88av| 久久免费观看电影| 亚洲精品第二区| 91国产中文字幕| 午夜福利视频在线观看免费| 国产成人av激情在线播放| 男女免费视频国产| 999久久久国产精品视频| 一级毛片电影观看| 色网站视频免费| 热re99久久精品国产66热6| 成年女人毛片免费观看观看9 | 人妻系列 视频| 国产成人免费观看mmmm| 亚洲久久久国产精品| 女性被躁到高潮视频| 久久久久精品久久久久真实原创| 成年动漫av网址| 久久午夜福利片| 久久精品亚洲av国产电影网| 美女午夜性视频免费| 啦啦啦视频在线资源免费观看| 亚洲精品aⅴ在线观看| 国产深夜福利视频在线观看| 成人漫画全彩无遮挡| 成年美女黄网站色视频大全免费| 超碰97精品在线观看| 日韩av免费高清视频| 夫妻性生交免费视频一级片| 天堂俺去俺来也www色官网| 777米奇影视久久| 国产白丝娇喘喷水9色精品| 国产乱来视频区| 亚洲一级一片aⅴ在线观看| 国产在线视频一区二区| 一二三四在线观看免费中文在| 久久这里只有精品19| 亚洲男人天堂网一区| 我要看黄色一级片免费的| 欧美bdsm另类| 国产精品不卡视频一区二区| 免费日韩欧美在线观看| 99热国产这里只有精品6| 免费看不卡的av| av不卡在线播放| 亚洲欧洲国产日韩| 国产成人一区二区在线| 欧美日韩av久久| 十分钟在线观看高清视频www| 高清视频免费观看一区二区| 欧美日韩av久久| 十分钟在线观看高清视频www| 国产毛片在线视频| 亚洲国产精品成人久久小说| 久久久久久伊人网av| 日本黄色日本黄色录像| 免费黄色在线免费观看|