• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle*

    2021-07-30 07:36:50JianGao高見ChangguiGu顧長貴andHuijieYang楊會杰
    Chinese Physics B 2021年7期

    Jian Gao(高見), Changgui Gu(顧長貴), and Huijie Yang(楊會杰)

    Business School,University of Shanghai for Science and Technology,Shanghai 200093,China

    Keywords: ventricular fibrillation,spiral wave,pattern formation,elimination

    1. Introduction

    Sudden cardiac death is a major cause accounting for over 300000 deaths per year in the USA alone.[1]Under normal conditions,cardiac action potentials originated from the sinoatrial node periodically propagate at a rate of about 75 bpm in tissues.[2,3]In abnormal situations, such as during the initiation of ventricular tachycardia (VT), reentry of the propagation occurs in that a spiral wave emerges. The wave may stay as a stable spiral wave or degenerate into small fragments of waves, i.e., ventricular fibrillation (VF) resulting from a turbulent cardiac electrical activity, which is a major reason for sudden cardiac death.[4,5]During the VF event,the heart is incapable of any concerted pumping action. These VT and VF events do not often terminate spontaneously.[6-8]The termination depends on the dynamic properties of the spiral wave.[9,10]Therefore,spiral waves in cardiac muscle play an essential role in VT and VF events. Consequently,removal of spiral waves is of much practical interest.[11-17]

    At present, a common method of clinical treatment for cardiac tremor is electroshock, which can stimulate the thoracic cavity with high voltage electricity(about 4-7 kV).However, the electroshock method has many disadvantages, such as damage to heart tissue, pain to the patient, and low cure rate.[18]In the research of treatment of VT and VF,one of the research directions is spiral wave dynamics,attempting to find effective methods to remove and to suppress the spiral wave by studying the dynamic properties of the spiral wave. For instance,Gaoet al.[19]proposed that the external forcing can suppress spiral waves and turbulence in excitable media, because the external forcing changes the excitability of the media. In Refs.[20,21],the authors reported that phase compression can suppress the spiral wave in excitable and oscillatory media. In Refs.[22,23]the authors studied the effects of electromagnetic induction on spiral waves and target waves in the model of cardiac tissue. Zhanget al.[24]proposed a method to eliminate spiral waves and spatiotemporal chaos using the synchronization transmission technology of network signals.Moreover,suppressing and controlling the pinned spiral wave are more difficult than the meandering spiral wave, because pinned spiral waves are often attracted to a local area (obstacle) such as heterogeneity. In the issue, in Refs. [25-28]researchers reported many effective schemes to control the pinned spiral waves. For instance,Chenet al.[28]have studied the behavior of spiral waves interacting with obstacles and the removal of pinned spiral waves by periodic mechanical deformation. In addition, some methods suppress spiral waves through competition of waves.[29-34]According to the wave competition rule,[35,36]it is required to impose a higher frequency wave to eliminate the spiral waves in excitable media.The appearance of such high-frequency waves will accelerate the beating of the cardiac muscle,[37]therefore, results in the aggravation of VT event. Accordingly, it is urgent to find a better alternative method for removal of spiral waves.

    In this article, we propose a method to clear off spiral waves by exerting a global pulsating disturbance on the medium based on two models of cardiac muscle, i.e., the Fitzhugh-Nagumo (FHN) model[38]and the B¨ar model.[39]We also examine our method in the complex Ginzburg-Landau equation (CGLE) model.[40,41]The rest of the article is organized as follows. In Section 2,we introduce the models and the method. In Section 3 the numerical results are presented. The analytical results are given in Section 4. Lastly,conclusion and discussion are presented in Section 5.

    2. Models and method

    The two-dimensional (2D) cardiac tissue with transmembrane current is often described by the FHN model expressed as follows:[38,42]

    where variableAis the trans-membrane potential, variableBis the slow variable for current,whose time ratio isε,Iis the external periodic forcing current,δArepresents an increment ofAof all local points obtained by an external one-off global pulse current,t0represents the moment when the pulse is applied,t+0represents the moment when the pulse ends,t-0indicates the infinitesimal time before the pulse is applied, ?2is?2/?x2+?2/?y2, and the diffusion coefficientDAis set to 1 for simplicity. The kinetics of this model are given byf(A,B)=A-A3/3-Bandg(A,B)=A+β-γB. Hereβandγare parameters of the medium.

    In the simulation,the chosen parameters for this excitable medium areε=0.2,β=0.5,andγ=0.8. Equation(1)with those parameters was also discussed in Ref.[21],showing that the medium can support a rigidly rotating spiral wave and the radius of the trajectory of spiral tip is zero. Our model is integrated on a 100×100 grid points with no-flux boundary conditions. A nine-point finite difference scheme is also applied to compute the Laplacian term ?2A,then the discrete equation is calculated via the four-order Runge-Kutta method. The space steps Δxand Δyare both 1,and the time step Δtis 0.01.

    To simulate the electrical activity in a normal cardiac muscle, a pacemaker (external periodic forcing current) is placed in the center of the medium to form a stable target wave,and it reads

    In order to facilitate the description of the effect of pulse,δAcan be expressed askA0, i.e.,δA=kA0, wherekrepresents a coefficient andA0(≈1.83)represents the amplitude of local oscillation. In this article, the moment of applying the pulse is assumed to be at the origin of time, i.e.,t0=0. In the following sections,we will examine the effects of the key parameterk, which indicates the degree of influence on the membrane potential of different ions.[38]Snapshots plotted in white and black describe the spatial distribution of the variableA. Because the gradient between the maximum value(white)and the minimum value(black)in the medium is so large,it is difficult to display the gray scale.

    3. Numerical results

    The general dynamics of the medium is shown in the supplementary files,including a target wave state and the appearance of spiral wave. We use the spiral waves in Fig.S1(b)in the supplementary files as the initial situation of the medium.To examine the effects ofδAon the spiral, the value ofkis gradually increased. Figure 1 shows the effects of the parameterkon the spiral. With the increase ofk,although the stable spiral maintains in the medium, the position of the spiral tip differs(Figs.1(a)-1(c)). In particular,the position of the center fork=0 is indicated by a red solid point. Whenk=0.30,the position of the center is slightly altered and close to the red solid point(Fig.1(a)). Whenkis increased to 0.45(Fig.1(b))or 0.60(Fig.1(c)),the position of the center is farther from the red point.

    Fig.1. The stabilized states of a spiral wave with selected values of k,(a)k=0.30,(b)k=0.45,(c)k=0.60,respectively.The red point in the center of the medium indicates the location of the spiral center before the pulse is applied. Each snapshot is a part of the spirals in Fig.S1(b)in the supplementary files.

    Interestingly,whenkis further increased and exceeds the threshold ˉk1=0.63,the spiral waves break into many smaller spiral waves (Fig. 2(a)). Whenkis further increased and exceeds(or is equal to)the threshold ˉk2=0.76,the spiral wave is eliminated instantaneously, and a target wave is generated in the medium(Fig.2(b)). Therefore, the parameterkaffects the dynamic patterns of the medium.

    Fig. 2. The stabilized states of the medium with selected values of k,(a)k=0.70,(b)k=0.77,respectively.

    In order to describe the effect of the parameterkon spiral waves in more detail, we show the relationship between the parameterkand the number of spiral tips in the medium(see Fig. 3). One can find that whenkis in the interval [0,0.63],the number of spiral tip is 2, which means that the spiral waves are not broken or eliminated. Whenkis in the interval(0.63,0.76),the number of spiral tip is greater than 2,which means that the spiral waves are broken. Whenkis greater than or equal to 0.76, the number of spiral tip is 0, which means that the spiral waves are eliminated.

    Further,we examine the temporal evolutions for the spiral after the disturbance is applied, ifkis less than the thresholdˉk2=0.76,and ifkis greater than or equal to the threshold ˉk2,respectively, in Fig. 4. Initially (t=0-), i.e., before the disturbance is applied,the stabilized spiral wave is observed. In Fig. 4(a), after the disturbance (k=0.70) is applied, the spiral arms are divided into many small segments (t=5), and then a number of smaller spiral waves are generated with each breakpoint as a new spiral tip (t=10 and 25). In Fig. 4(b),after the disturbance(k=0.77)is applied,the spirals(t=0-)suddenly disappear(t=5 and 15),and a target wave is generated(t=25).The temporal evolution in Figs.4(a)and 4(b)are shown in Movie 1 and Movie 2 included in the supplementary files,respectively.

    Fig. 3. The relationship between the parameter k and the number of spiral tip.

    Fig.4. The temporal evolution of spirals after the disturbance is applied,when k=0.70 in(a)and k=0.77 in(b),respectively. The moment when the disturbance is applied is the origin of time(t=0).

    Fig.5.Alternation of the state for a local oscillation before and after the disturbance(k=0.77)is applied. (a)Temporal evolution of membrane potential A for a typical grid point (25, 25) in the medium. (b) Plots of ν versus t for the grid point(25, 25)in the medium, where ν is the frequency of this grid point.

    The properties for a selected local oscillation,before and afterδAis applied,are shown in Fig.5,including the temporal evolution(a)and the corresponding frequency(b). Before the application (t <0), the frequency is about 0.95×10-1. After the disturbance is applied(t ≥0),the frequency is quickly reduced to 0.60×10-1. Interestingly,the duration for this reduction is about ?t=40,which is about 2.5 times of the period of the target wave.

    In addition to common spiral waves above,we also examine whether our method can suppress the pinned spiral waves,i.e., spiral waves, which are pinned (anchored) to localized heterogeneities,are more difficult to suppress and control than the common spiral wave. In order to obtain the pinned spiral wave on the basis of Fig.1(b),we operate on the medium: fix variablesAin a small area near the spiral tip at-1.03 (potential of resting state). Figure 6(a) shows the pinned spiral waves. The temporal evolution of the pinned spiral waves is shown in Movie 3 in the supplementary files. After the pulse withk=0.77 is applied, the pinned spiral waves are eliminated instantaneously, and a target wave is generated by the pacemaker in the medium of Fig. 6(b). The target wave can cross the obstacle and continue to spread. Movie 4 in the supplementary files shows the temporal evolution.

    Fig.6.(a)The pinned spiral waves,(b)a target wave with two localized heterogeneities. The red points are the localized heterogeneities.

    In the supplementary files,we examine our method based on the B¨ar model and the CGLE model. We find that in these two models, through our method, the spiral tip can also be moved and the spiral wave can be eliminated.

    4. Analytical results

    There are several questions: Why can this method eliminate spiral waves? Why can the position of the spiral tip be moved whenkis less than the threshold? In this section we try to explain.

    To facilitate the analysis,we answer these questions based on the CGLE model (the model and numerical results are in the supplementary files). In Fig. 7(a), the pointO, called the point defect, is the spiral center which is at the fixed point(Re(A),Im(A))=(0,0), the lineΩrotates counterclockwise withOas the center. Except the center pointO, oscillations of all the other points are simple harmonic oscillation,and the closer to the center,the smaller the amplitude.The points(e.g.,P3andP′3) that have the same distance from theOhave the same phase trajectory. All local points (e.g.,P1,P2andP3)in the radiusrhave the same phase,points inr′(e.g.,P′3)and points inr(e.g.,P1,P2orP3) exhibit an anti-phase synchronization,that is,the difference between their phases isπ.

    The spiral center is a self-sustaining wave source that does not require external action. To facilitate the analysis,we discretize the medium. Figure 8 shows nine oscillators near the spiral center in a discrete system, whereA(0,0)is the point defect at the center of the spiral wave, and the oscillators symmetric about pointOare anti-phase synchronous,i.e.,A(-1,1)=-A(1,-1),A(-1,0)=-A(1,0),A(-1,-1)=-A(1,1),A(0,1)=-A(0,-1).A(0,0)is at the fixed point (0,0). SinceA(0,0)=0, their dynamic termsA-(1+iβ)|A|2A=0. Now consider the diffusion term ofA(0,0),

    Consequently, pointOis always at the fixed point(0, 0), and the point defect can be self-sustaining,resulting in that the area nearOis always in an uneven state, and this uneven state is what the self-sustaining wave source should satisfy.Moreover,disrupting the anti-phase synchronization around the point defect will break the existing balance, and completely breaking the anti-phase synchronization around the center of the spiral wave will cause the point defect to automatically collapse.Our method is to eliminate the spiral wave by breaking the anti-phase synchronization.

    Fig.7. The dynamic behavior near the spiral center:(a)A snapshot of a circular region near the center of the spiral. Point O is the center of the spiral, the black solid line Ω is a set of local points where Re(A)is 0,the black arrows indicate the direction of rotation of Ω. The blue dotted line r is any radius of this circular region,and the yellow dotted line r′is another radius on the same diameter. Points P1, P2 and P3 are local points on r,P′3 is the symmetry point of P3 relative to point O.P1,P2 and P3 have the same phase,P3 and P′3 are in anti-phase,i.e.,the difference between their phase is π. (b)A phase diagram. Trajectories C1 and C2 in (b) are the phase trajectories of P1 and P2 in (a), respectively. C3 is the phase trajectory of P3 and P′3.

    Fig.8. Nine adjacent oscillators near the point defect in a discrete system. The circles and the square are adjacent local oscillators,the square is the point O in Fig.5(a),Δx and Δy are the space steps.

    Figure 9 shows the set of local points where the real or imaginary part ofAis 0,which is called the symbol boundary curve(SBC).The SBC is symmetric about pointObefore theδAis applied. The intersection(O)of the black solid line and the dotted line in Fig.9 is the spiral center, i.e., the point defect,beforeδAis applied. After the disturbance is applied to the medium,the SBC of the real part loses its central symmetry and is close to one end of the SBC of the imaginary part,and the largerk, the closer to the SBC of the imaginary part(Fig.9). For instance,the blue solid line in Fig.9 is nearer to one end of the dotted line than the yellow and red ones. The alteration of the SBC of the real part,on the one hand,leads to the alteration of the position for the point defect,on the other hand, leads to the increase of the curvature of the SBC at the point defect(Fig.9). For example, pointsO1,O2andO3are the new point defects,the curvature atO3is greater than atO2andO1. Simultaneously, the diffusion effect has a strong influence on the place where the curvature of the SBC is large,which causes the curvature to become smaller and smaller,resulting in further alteration of the position of the point defect.

    Fig. 9. The set of local points where Re(A)=0 and Im(A)=0. The black solid line and dotted line in are the SBCs of the real and imaginary parts of the initial spiral wave respectively. The red, yellow and blue solid lines,which are the SBCs of the real part after δA is applied,correspond to k=0.50,k=0.85 and k=0.92,respectively. Point O is the point defect of the initial spiral wave,each of points O1,O2 and O3 is point defect at t=0+ after δA is applied.

    With our method, whenk <1, the SBCs of the real and imaginary parts always have an intersection point(Fig.9),that is, the point defect cannot be directly eliminated. However,whenkis large enough(about 0.92),the curvature of the SBC for the real part(at the defect pointO3)is large enough,so that the effect of the diffusion on this SBC will be strong enough.Eventually, under the effect of diffusion, point defect is removed from the medium along the SBC of the imaginary part.

    5. Discussion and conclusion

    In conclusion,we have presented a simple method to clear off spiral waves in three models of cardiac muscle by applying a global instantaneous disturbance. We have observed that the spiral wave can be eliminated in a short time, and then, the medium reaches the homogeneous oscillation in about one oscillation period. During this elimination,different from other methods,the oscillation frequency of the medium does not increase, but decreases directly and rapidly. In our method, we can eliminate the spiral wave by increasing the membrane potential globally. This increase is less than the amplitude of the membrane potential (about 80 mV). In addition, our method can eliminate the spiral wave within a short period of time.We believe that the method in this paper can provide a better guide to the clinical treatment of VT and VF.

    The traditional method for treating the VT and VF events in the clinic is electroshock that stimulates the thoracic cavity with high voltage electricity(about 4-7 kV).This method brings great pain to the patient and cause great damage to heart tissue and other tissues of the human body.[18]It is widely believed that spirals in cardiac muscle are play a vital role in life-threatening situations(VT and VF).[4,5]Therefore,experts and scholars have conducted a lot of research on how to remove and suppress spiral waves. By most previous methods of the expulsion of spiral waves,[19,29-33]a target wave was created after applying a periodic forcing at a local point,which leads to the removal of the spiral wave from the heart.A target wave whose frequency is lower than that of the spiral wave cannot suppress the spiral wave,and a target wave with a higher frequency is required to suppress the spiral wave.[35,36]However,the emergence of the target wave with a higher frequency will cause the heartbeat to be accelerated again,which will aggravate the VT and directly endanger life. Accordingly,these methods are not clinically feasible. In this article,in the process of eliminating the spiral wave, the frequency of the medium is not increased again.

    It is possible to effectively eliminate spiral waves and pinned spiral waves in cardiac tissue by applying a global pulse to increase the trans-membrane potential. Note that the value of the parameterkmust exceed the threshold ˉk2=0.76,otherwise more spiral waves will be generated (Fig. 2(a)),making the VT and VF events more serious.

    About the control of spiral tip,Liuet al.[43]have studied the motion of spiral tip controlled by a local periodic forcing imposed on a region around the spiral tip in an excitable medium,and observed three types of trajectories of spiral tip.Chenet al.[44]moved the spiral tip by propagation time delay.In fact,using the method in this article can also make the spiral tip move. Therefore, the use of periodic pulses can make the spiral tip meander,and by adjusting the time interval between pulses,different trajectories of spiral tip can be obtained.

    国产成人免费无遮挡视频| 国产欧美日韩综合在线一区二区| 永久网站在线| 亚洲成人av在线免费| 男女无遮挡免费网站观看| 毛片一级片免费看久久久久| 在线观看国产h片| 国产综合精华液| 男女边吃奶边做爰视频| 可以免费在线观看a视频的电影网站 | 国产精品二区激情视频| 自线自在国产av| 日韩 亚洲 欧美在线| 黑人猛操日本美女一级片| 久久精品亚洲av国产电影网| 欧美变态另类bdsm刘玥| 一区二区三区激情视频| 国产精品久久久久久av不卡| 日韩大片免费观看网站| 日韩人妻精品一区2区三区| 高清视频免费观看一区二区| 久久精品国产a三级三级三级| 国产精品熟女久久久久浪| av天堂久久9| 日韩精品有码人妻一区| 国产成人精品久久久久久| 18+在线观看网站| 熟妇人妻不卡中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产国语对白av| 亚洲一级一片aⅴ在线观看| 一级,二级,三级黄色视频| 美女高潮到喷水免费观看| 男人添女人高潮全过程视频| 99久久人妻综合| 日韩一区二区三区影片| 人妻少妇偷人精品九色| 免费看av在线观看网站| 精品国产国语对白av| 狠狠婷婷综合久久久久久88av| 久久久久久久久久久免费av| 日本-黄色视频高清免费观看| 电影成人av| 国产精品成人在线| 26uuu在线亚洲综合色| 看免费av毛片| 中文字幕人妻熟女乱码| 亚洲欧洲国产日韩| 国产精品成人在线| 精品人妻偷拍中文字幕| 国产在线视频一区二区| 男人添女人高潮全过程视频| 欧美变态另类bdsm刘玥| 巨乳人妻的诱惑在线观看| 最近2019中文字幕mv第一页| 亚洲综合精品二区| 国产免费一区二区三区四区乱码| 久久国内精品自在自线图片| 男人爽女人下面视频在线观看| 日韩一区二区三区影片| 国产 精品1| 国产成人aa在线观看| 久久人人爽人人片av| 美女福利国产在线| 天美传媒精品一区二区| 男女国产视频网站| 大片免费播放器 马上看| 日本欧美国产在线视频| 亚洲国产精品成人久久小说| 性色av一级| 欧美成人午夜免费资源| 国产淫语在线视频| 亚洲视频免费观看视频| 国产av一区二区精品久久| kizo精华| videosex国产| 最近中文字幕2019免费版| 久久久久久久久久久免费av| 亚洲欧美一区二区三区黑人 | 午夜激情久久久久久久| 久久久久国产一级毛片高清牌| 大片电影免费在线观看免费| 久久综合国产亚洲精品| 黄色毛片三级朝国网站| 97人妻天天添夜夜摸| 女人被躁到高潮嗷嗷叫费观| 国产精品一二三区在线看| 99久久精品国产国产毛片| 丝袜美足系列| 老司机亚洲免费影院| 侵犯人妻中文字幕一二三四区| 亚洲精品国产av蜜桃| 麻豆精品久久久久久蜜桃| 婷婷色综合www| 王馨瑶露胸无遮挡在线观看| 夜夜骑夜夜射夜夜干| 性色av一级| 精品人妻一区二区三区麻豆| 久久久精品免费免费高清| 亚洲中文av在线| 五月开心婷婷网| 成年人免费黄色播放视频| 亚洲中文av在线| 永久免费av网站大全| 成人黄色视频免费在线看| 国产欧美日韩综合在线一区二区| av福利片在线| 日产精品乱码卡一卡2卡三| 国产精品成人在线| 亚洲综合色惰| 在线观看国产h片| 久久综合国产亚洲精品| 国产亚洲午夜精品一区二区久久| 爱豆传媒免费全集在线观看| 亚洲av福利一区| 国产片内射在线| 熟女少妇亚洲综合色aaa.| 日韩中字成人| 91aial.com中文字幕在线观看| 纵有疾风起免费观看全集完整版| 秋霞伦理黄片| 在线亚洲精品国产二区图片欧美| 欧美精品人与动牲交sv欧美| 亚洲成人av在线免费| 久久久国产精品麻豆| 免费在线观看完整版高清| 精品人妻在线不人妻| 18+在线观看网站| 成人午夜精彩视频在线观看| 国产精品二区激情视频| 国产有黄有色有爽视频| av在线观看视频网站免费| 久久久久久伊人网av| 91aial.com中文字幕在线观看| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 熟女少妇亚洲综合色aaa.| 日本av手机在线免费观看| 中文乱码字字幕精品一区二区三区| 国产精品蜜桃在线观看| www.自偷自拍.com| 欧美精品高潮呻吟av久久| 宅男免费午夜| 免费女性裸体啪啪无遮挡网站| 午夜av观看不卡| 男女边吃奶边做爰视频| 天美传媒精品一区二区| 国产日韩一区二区三区精品不卡| av又黄又爽大尺度在线免费看| 国产精品 欧美亚洲| 亚洲欧美清纯卡通| 国产亚洲一区二区精品| 婷婷成人精品国产| 国产黄色视频一区二区在线观看| 下体分泌物呈黄色| 丝袜在线中文字幕| 久久精品熟女亚洲av麻豆精品| 欧美日本中文国产一区发布| 日韩一本色道免费dvd| 99久久中文字幕三级久久日本| 午夜激情久久久久久久| 免费观看性生交大片5| av电影中文网址| 一边摸一边做爽爽视频免费| 三上悠亚av全集在线观看| 午夜免费男女啪啪视频观看| 日本免费在线观看一区| 纵有疾风起免费观看全集完整版| 天天躁夜夜躁狠狠久久av| 国产精品成人在线| 日韩制服骚丝袜av| 国产高清国产精品国产三级| 夜夜骑夜夜射夜夜干| 国产精品嫩草影院av在线观看| 妹子高潮喷水视频| 国产淫语在线视频| 欧美日本中文国产一区发布| 国产在线视频一区二区| 国产高清不卡午夜福利| 亚洲天堂av无毛| 午夜久久久在线观看| 夜夜骑夜夜射夜夜干| 久久久久久人人人人人| 涩涩av久久男人的天堂| videos熟女内射| 国产免费又黄又爽又色| 亚洲中文av在线| 日产精品乱码卡一卡2卡三| 一本—道久久a久久精品蜜桃钙片| 极品人妻少妇av视频| 国产男女超爽视频在线观看| 人成视频在线观看免费观看| 久久精品久久久久久噜噜老黄| 国产成人91sexporn| 亚洲精品国产色婷婷电影| 在线 av 中文字幕| 欧美成人午夜免费资源| 国产不卡av网站在线观看| 天堂中文最新版在线下载| 美女主播在线视频| 亚洲av.av天堂| 国产视频首页在线观看| 午夜福利影视在线免费观看| 亚洲美女搞黄在线观看| 亚洲国产日韩一区二区| 中文欧美无线码| 大片电影免费在线观看免费| 在线观看美女被高潮喷水网站| 国产1区2区3区精品| 国产 精品1| 日本91视频免费播放| 性高湖久久久久久久久免费观看| 男人操女人黄网站| 国产一区二区 视频在线| 好男人视频免费观看在线| 亚洲国产欧美网| 色婷婷久久久亚洲欧美| 女人被躁到高潮嗷嗷叫费观| 深夜精品福利| 久久99精品国语久久久| 精品国产乱码久久久久久小说| 99热国产这里只有精品6| 亚洲av.av天堂| 男女高潮啪啪啪动态图| 久久精品久久精品一区二区三区| 99九九在线精品视频| 成年人午夜在线观看视频| 少妇人妻精品综合一区二区| 在线亚洲精品国产二区图片欧美| 超碰成人久久| 色婷婷久久久亚洲欧美| 人妻一区二区av| 不卡视频在线观看欧美| 国产av精品麻豆| 亚洲精品视频女| 久久精品国产自在天天线| 色吧在线观看| 久久午夜综合久久蜜桃| 热re99久久国产66热| 曰老女人黄片| 天天躁夜夜躁狠狠躁躁| 日韩欧美一区视频在线观看| 香蕉丝袜av| 成人国产麻豆网| 黄色怎么调成土黄色| 天堂俺去俺来也www色官网| 80岁老熟妇乱子伦牲交| 伦精品一区二区三区| 免费高清在线观看日韩| av在线观看视频网站免费| 免费久久久久久久精品成人欧美视频| 老司机影院成人| 亚洲欧美色中文字幕在线| 色94色欧美一区二区| 视频区图区小说| 久久午夜综合久久蜜桃| 亚洲欧美清纯卡通| 伊人久久国产一区二区| 色网站视频免费| 少妇人妻 视频| 久久韩国三级中文字幕| 久久久久久人妻| 日韩在线高清观看一区二区三区| 在线精品无人区一区二区三| av.在线天堂| 国产精品偷伦视频观看了| 欧美另类一区| 欧美成人午夜精品| 亚洲精品一区蜜桃| 精品人妻在线不人妻| 亚洲国产日韩一区二区| 只有这里有精品99| 久久热在线av| 亚洲精品中文字幕在线视频| www.av在线官网国产| 国产国语露脸激情在线看| 午夜日韩欧美国产| 欧美亚洲日本最大视频资源| 欧美黄色片欧美黄色片| 日本午夜av视频| 国产1区2区3区精品| 国产日韩欧美亚洲二区| 精品少妇黑人巨大在线播放| 亚洲精品日韩在线中文字幕| 高清av免费在线| www日本在线高清视频| 免费少妇av软件| 伊人亚洲综合成人网| 七月丁香在线播放| 热re99久久国产66热| 涩涩av久久男人的天堂| 免费女性裸体啪啪无遮挡网站| 99热网站在线观看| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| a级片在线免费高清观看视频| 寂寞人妻少妇视频99o| 最黄视频免费看| 精品少妇久久久久久888优播| 亚洲精品中文字幕在线视频| av有码第一页| 亚洲一级一片aⅴ在线观看| 女性被躁到高潮视频| 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜制服| 中文字幕人妻丝袜制服| 日韩精品有码人妻一区| av电影中文网址| 亚洲伊人色综图| 国产不卡av网站在线观看| 免费观看在线日韩| 搡女人真爽免费视频火全软件| 人人妻人人添人人爽欧美一区卜| 美女视频免费永久观看网站| 国产白丝娇喘喷水9色精品| 色婷婷av一区二区三区视频| 国产精品嫩草影院av在线观看| 午夜福利一区二区在线看| 母亲3免费完整高清在线观看 | 在线观看国产h片| 婷婷成人精品国产| 欧美最新免费一区二区三区| 久久久久国产一级毛片高清牌| 日韩 亚洲 欧美在线| 宅男免费午夜| 亚洲av中文av极速乱| 国产精品人妻久久久影院| 男男h啪啪无遮挡| 十八禁高潮呻吟视频| 久久久久久久久久人人人人人人| 久久久久视频综合| 一二三四在线观看免费中文在| 亚洲人成网站在线观看播放| 精品国产露脸久久av麻豆| 成人国产麻豆网| 亚洲精品久久午夜乱码| 亚洲精品国产av蜜桃| 叶爱在线成人免费视频播放| 免费不卡的大黄色大毛片视频在线观看| 黄色毛片三级朝国网站| 超碰97精品在线观看| 日韩在线高清观看一区二区三区| 精品福利永久在线观看| 在线观看三级黄色| 春色校园在线视频观看| 精品人妻一区二区三区麻豆| videosex国产| 又大又黄又爽视频免费| 日韩成人av中文字幕在线观看| 侵犯人妻中文字幕一二三四区| 考比视频在线观看| 丝袜美腿诱惑在线| 丰满乱子伦码专区| 狠狠精品人妻久久久久久综合| 人体艺术视频欧美日本| 免费日韩欧美在线观看| 欧美精品高潮呻吟av久久| 国产精品.久久久| 中文字幕人妻熟女乱码| 国精品久久久久久国模美| 国产在线一区二区三区精| 成人毛片60女人毛片免费| 久久影院123| 亚洲av在线观看美女高潮| 伊人亚洲综合成人网| 免费观看性生交大片5| 亚洲欧美色中文字幕在线| 天天躁夜夜躁狠狠久久av| 伦理电影免费视频| 女人被躁到高潮嗷嗷叫费观| 香蕉丝袜av| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av天美| 国产成人精品无人区| 91在线精品国自产拍蜜月| 高清在线视频一区二区三区| 熟女电影av网| 各种免费的搞黄视频| 日韩免费高清中文字幕av| 丁香六月天网| 91午夜精品亚洲一区二区三区| 卡戴珊不雅视频在线播放| 国产xxxxx性猛交| 国产极品天堂在线| 美女xxoo啪啪120秒动态图| 在线免费观看不下载黄p国产| 国产淫语在线视频| 日本av免费视频播放| 久久精品国产综合久久久| 亚洲第一青青草原| 国产成人91sexporn| 久久精品夜色国产| 久久精品人人爽人人爽视色| 在线观看国产h片| 国产又爽黄色视频| 久久99精品国语久久久| 人人澡人人妻人| 国产野战对白在线观看| 日产精品乱码卡一卡2卡三| 精品久久久精品久久久| 久久久精品免费免费高清| 2022亚洲国产成人精品| 好男人视频免费观看在线| 另类亚洲欧美激情| 日日撸夜夜添| 一级黄片播放器| 在线天堂中文资源库| 精品久久蜜臀av无| 伊人久久大香线蕉亚洲五| 婷婷色麻豆天堂久久| 夜夜骑夜夜射夜夜干| 免费在线观看完整版高清| 国产熟女午夜一区二区三区| 久久国内精品自在自线图片| 国产精品二区激情视频| 精品午夜福利在线看| 韩国av在线不卡| www.av在线官网国产| 一级片'在线观看视频| 涩涩av久久男人的天堂| 汤姆久久久久久久影院中文字幕| 日日摸夜夜添夜夜爱| 亚洲三级黄色毛片| 日韩不卡一区二区三区视频在线| 欧美日韩av久久| 亚洲av电影在线进入| 久久ye,这里只有精品| 91成人精品电影| 国产熟女午夜一区二区三区| 亚洲四区av| 欧美+日韩+精品| 菩萨蛮人人尽说江南好唐韦庄| 最近手机中文字幕大全| 精品人妻熟女毛片av久久网站| 十分钟在线观看高清视频www| 欧美亚洲日本最大视频资源| 男女下面插进去视频免费观看| 91精品国产国语对白视频| 深夜精品福利| 中文精品一卡2卡3卡4更新| 九色亚洲精品在线播放| 在线精品无人区一区二区三| 日日撸夜夜添| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人爽人人夜夜| 国产高清国产精品国产三级| 天天影视国产精品| 日韩中字成人| 侵犯人妻中文字幕一二三四区| 国产熟女欧美一区二区| 日日爽夜夜爽网站| 午夜福利乱码中文字幕| 26uuu在线亚洲综合色| 97人妻天天添夜夜摸| 国产有黄有色有爽视频| av国产精品久久久久影院| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 99久国产av精品国产电影| 人人妻人人澡人人爽人人夜夜| 搡老乐熟女国产| 97在线人人人人妻| 国产精品一国产av| 99久国产av精品国产电影| 亚洲中文av在线| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久av美女十八| 亚洲美女黄色视频免费看| 亚洲av免费高清在线观看| 成年人免费黄色播放视频| 国产片内射在线| 欧美97在线视频| 极品人妻少妇av视频| 少妇人妻精品综合一区二区| 国产av精品麻豆| 国产av国产精品国产| 尾随美女入室| 97在线视频观看| 国产精品久久久av美女十八| 亚洲熟女精品中文字幕| 美女福利国产在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲内射少妇av| 国产乱人偷精品视频| 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 91精品伊人久久大香线蕉| www.av在线官网国产| 久久热在线av| 亚洲三级黄色毛片| 亚洲av男天堂| 亚洲av综合色区一区| 国产黄色免费在线视频| 久久久久网色| 亚洲第一区二区三区不卡| 大片免费播放器 马上看| 蜜桃在线观看..| 可以免费在线观看a视频的电影网站 | xxx大片免费视频| 飞空精品影院首页| 男人操女人黄网站| 国产精品国产三级国产专区5o| 日韩av不卡免费在线播放| 男人爽女人下面视频在线观看| 免费观看av网站的网址| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 18禁观看日本| freevideosex欧美| 婷婷色综合www| 国产精品一区二区在线观看99| xxxhd国产人妻xxx| 日韩在线高清观看一区二区三区| 有码 亚洲区| 午夜福利乱码中文字幕| 熟女少妇亚洲综合色aaa.| 美女午夜性视频免费| 可以免费在线观看a视频的电影网站 | 亚洲精品乱久久久久久| 亚洲伊人色综图| 七月丁香在线播放| 女人高潮潮喷娇喘18禁视频| 亚洲av男天堂| 在线观看一区二区三区激情| 亚洲综合色网址| 国产成人精品一,二区| 亚洲一级一片aⅴ在线观看| 欧美精品高潮呻吟av久久| 国产精品亚洲av一区麻豆 | 丝袜在线中文字幕| 久久免费观看电影| 国产精品嫩草影院av在线观看| videosex国产| 亚洲精品久久午夜乱码| 高清视频免费观看一区二区| 久久综合国产亚洲精品| 中文字幕人妻丝袜一区二区 | 精品第一国产精品| 国产精品二区激情视频| 亚洲精品av麻豆狂野| 久久久久久久久久久免费av| 男男h啪啪无遮挡| 久久鲁丝午夜福利片| 综合色丁香网| 亚洲,欧美精品.| 欧美日韩视频高清一区二区三区二| 欧美+日韩+精品| 免费观看性生交大片5| 国产在线视频一区二区| 校园人妻丝袜中文字幕| 欧美激情 高清一区二区三区| 欧美中文综合在线视频| 久久狼人影院| 欧美中文综合在线视频| 国产毛片在线视频| 国产av国产精品国产| 亚洲成色77777| 毛片一级片免费看久久久久| 久久鲁丝午夜福利片| 国产综合精华液| 捣出白浆h1v1| 国产1区2区3区精品| 国产av码专区亚洲av| 成年人午夜在线观看视频| 寂寞人妻少妇视频99o| 咕卡用的链子| 欧美日韩综合久久久久久| 亚洲国产最新在线播放| av.在线天堂| 欧美日韩av久久| 这个男人来自地球电影免费观看 | 久久久久网色| 精品人妻偷拍中文字幕| 少妇人妻精品综合一区二区| 亚洲一区二区三区欧美精品| 九色亚洲精品在线播放| 日韩av不卡免费在线播放| 国产精品免费视频内射| 边亲边吃奶的免费视频| 亚洲激情五月婷婷啪啪| 如何舔出高潮| 日韩中文字幕视频在线看片| 亚洲,欧美精品.| 大片免费播放器 马上看| 亚洲av欧美aⅴ国产| 999精品在线视频| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| 亚洲 欧美一区二区三区| 欧美激情高清一区二区三区 | 校园人妻丝袜中文字幕| 国产av码专区亚洲av| 在线免费观看不下载黄p国产| 美女主播在线视频| 丁香六月天网| 国产片内射在线| 久久久久久久久久久免费av| av女优亚洲男人天堂| 91aial.com中文字幕在线观看| 日日啪夜夜爽| 男女边吃奶边做爰视频| 免费大片黄手机在线观看| 性色avwww在线观看| a级毛片在线看网站| 婷婷色av中文字幕| 最近最新中文字幕免费大全7| 欧美变态另类bdsm刘玥| 最近中文字幕高清免费大全6| 狠狠婷婷综合久久久久久88av| 亚洲精品成人av观看孕妇| 日本wwww免费看| 秋霞伦理黄片| 日日爽夜夜爽网站|