• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock*

    2021-07-30 07:36:40JinBoYuan袁金波JianCao曹健KaiFengCui崔凱楓DaoXinLiu劉道信YiYuan袁易SiJiaChao晁思嘉HuaLinShu舒華林andXueRenHuang黃學人
    Chinese Physics B 2021年7期
    關鍵詞:華林

    Jin-Bo Yuan(袁金波) Jian Cao(曹健) Kai-Feng Cui(崔凱楓) Dao-Xin Liu(劉道信)Yi Yuan(袁易) Si-Jia Chao(晁思嘉) Hua-Lin Shu(舒華林) and Xue-Ren Huang(黃學人)

    1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    2Key Laboratory of Atomic Frequency Standards,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: optical clocks,frequency uncertainty,servo error,servo algorithm

    1. Introduction

    Owing to the develop ments in ultracold atomic systems and the improvement in laser frequency stabilization technology, optical clocks have achieved a better performance over the past few decades. As a competitive candidate for the nextgeneration second definition,[1]the frequency stability and uncertainty of optical clocks have been rapidly developing.[2-8]Meanwhile,in different application areas,such as chronometric leveling, the measurement of the fundamental constants,and the search for dark matter, higher demands for a higher frequency stability and uncertainty have been raised.[9-12]

    As a connector,the servo algorithm adjusts the frequency of optical local oscillator into resonance with the clock transition, realizing automatic interrogation and locking of the clocks.In a simple integrator algorithm,the servo error caused by laser frequency drift may become an obstacle in uncertainty evaluation of high-precision optical clocks. Adding a second integrator after the simple integrator is effective in suppressing the servo error caused by linear frequency drift.[13-16]However,in these studies,servo error evolution functions evolving with different second integrator parameters are not mentioned,and only empirical parameters are given. To accurately determine the second integrator parameters when applied to an optical clock under different circumstances, it is necessary to evaluate how the servo error varies with the variation of the second integrator parameters.

    In this paper, we built an optical clock locking model to investigate the servo error variation with different second integrator parameters. According to the simulations, the sensitivity of the servo error influenced by laser frequency drift is suppressed as a function of experimental decay when second integrator parameters increase. To demonstrate the simulation results, we measured the frequency variation of the clock with different second integrator parameters. The frequency variation coincides well with the simulation results for different second parameters. A rejection ratio of 107 was achieved when the double integrator algorithm was employed.The servo error uncertainty of the clock was evaluated as 1.9×10-18,operating with optimal double integrator parameters for a week while all other parameters remain the same,improved by an order of magnitude.

    2. Numerical simulation

    For single ion optical clocks, interrogation must be repeated dozens of times to obtain quantum jumps and calculate the excitation probability when the servo algorithm is applied.The electron shelving scheme[17,18]is used for the quantum jump experiments in our single40Ca+ion optical clock. The four-point locking scheme[19,20]is used to maintain the detection laser resonance with the clock transition. Suppose that the interrogation laser frequency of then-th servo interval isfn, closed to the center of the resonance line, and that the full width at half maximum (FWHM) of the resonance spectrum is 2δ. The detection laser frequency can be expressed asfl=fn-δandfr=fn+δ. The error signalenof then-th servo interval can be calculated as follows:

    whereGis the gain of the simple servo algorithm,G·enis then-th frequency correction applied before then+1 interval is started,andNlandNrare the quantum jump numbers,respectively.

    Because the simple servo algorithm only includes information of the laser frequency and error signal during then-th servo interval,it will cause a servo error if the laser frequency drifts during then+1 servo interval. A correction based on laser frequency drift prediction should be added to the algorithm to reduce the servo error,which is the so-called second integrator. For a perfect servo algorithm,the sum of the error signal should be zero over a long period of time. It significantly deviates from zero when a servo error exists, which means that the sum of the error signal can be considered as an indicator of servo error caused by laser frequency drift. The recurrence formula of the double-integrator servo algorithm becomes

    where the second integrator gainIis added as a factor to adjust the servo response to laser frequency drift,andmis the number of errors counted to calculate the sum of the error signal,corresponding to the second integration time.

    2.1. Simulation of the simple integrator algorithm

    We built a single ion optical locking model with parameters based on the clock-locking process to simulate the servo error variation by different algorithms. The linewidth of the clock transition is 13.4 Hz, corresponding to a probe time of 60 ms. The linear drift of laser frequency changes within the range of-25 mHz/s to +25 mHz/s, and each servo interval takes 10 s to complete the interrogation of the spectrum,leading to a frequency change between-250 mHz and+250 mHz after one servo finishing.

    Fig. 1. Simulations of servo response and servo error evaluation at a 50-mHz/s laser drift rate under a simple integrator algorithm. The curves are labeled by simple integrator gain G: (a)variation of frequency difference over time since algorithm started,(b)variation of servo error over time since algorithm started,(c)variation of frequency difference over frequency linear drift rate,and(d)variation of SFD over gain G of simple integrator. Red dashed curve shows the experimental decay fitting of SFD.

    The simple integrator algorithm was the first to be investigated in our locking model. The servo error and frequency response under different gainsGare depicted in Fig. 1 with different colored curves. When the laser frequency increases at a rate of 50 mHz/s,the frequency difference changes since locking starts, as shown in Fig. 1(a). As the simple integrator gainGincreases, the time required for the servo to stabilize becomes shorter and the stable state difference decreases at the same time. The error signal shares a similar rule with the frequency difference over time, as shown in Fig. 1(b). In the following discussion of this paper, we consider the frequency difference as the main research object. In Fig. 1(c),the frequency difference between the detection laser and clock transition varies linearly with drift rate when the gains are optimized. The slope of the lines in Fig.1(c)represents the sensitivity of the servo error influenced by the linear frequency drift,which is abbreviated as the slope of the frequency difference(SFD)in the following discussion.As shown in Fig.1(d),the SFD decreases with simple integrator gainGaccording to the law of experimental decay. However, it is disappointing that a perfect servo algorithm cannot be realized,although the SFD becomes smaller while the simple integrator gainsGincreases. By contrast, the increment of the simple integrator gainGis ineffective after SFD reaches the saturation region.However, the over-feedback error signal derived from excessive gain may decrease the frequency stability of the optical clock.[21]Under a comprehensive consideration,the optimized simple integrator gain is set asG=1.0. Based on a simple integrator algorithm with optimum gain,the residual servo error can be further suppressed by the addition of the second integrator.

    2.2. Simulation of the double integrator algorithm

    Similar to the simple integrator algorithm,we analyze the servo response of the double integrator algorithm from the aspects of time,drift rate,and SFD.The simple integrator gain is set asG=1.0,throughout the double integrator algorithm simulation process. In Figs. 2(a) and 2(b), the second integrator gainIand quantum projection noise were considered simultaneously under the second integrator numberm=50. Benefitting from the increase in the second integrator gainI, the frequency difference caused by laser frequency drift decreases dramatically and oscillates for a longer time, reaching the limit whenIapproaches 1/10 ofGin Fig.2(a). The oscillation will not constrict if the second integrator gainIis too large.The QPN is 8-to 20-times the servo error under the double integrator algorithm according to the amplitude of the frequency difference in panels (a) and (b). To minimize the effect of QPN, the frequency differences of detection laser and clock transition are averaged for 2×104s after the oscillation becomes stabilized when analyzing the SFD. The same strategy is implemented for the frequency difference evaluation in clock comparison experiments.

    Fig.2. Simulations of servo response evaluation under double integrator algorithm. The simple integrator gain is set as G=1.0 throughout the simulation process. Simulation with QPN is labeled by the red dashed line in panels (c)-(f). Variations of servo response to a 50-mHz/s drift rate (a) without QPN after the algorithm starts and(b)with QPN.Curves in both graphs are labeled by second integrator gain I. Variation of frequency difference over frequency linear drift rate labeled by(c)second integrator gain I when m=50 and(d)second integrator number m when I=0.088. (e)Variation of SFD over gain I of second integrator when m=50. (f)Variation of SFD over m of the second integrator when I=0.088.

    Both the second integrator parametersIandmhave an impact on the frequency difference,as shown in Figs.2(c)and 2(d).The curves in Figs.2(e)and 2(f)illustrate the variation of the SFD over the second integrator parametersIandm,respectively. In Figs.2(c)-2(f),simulations without QPN are labeled as solid lines and those with QPN are indicated by dashed lines.The SFD is suppressed as a function of experimental decay when second integrator parametersIormincreases. Both the second integrator parametersIandmare indispensable,and the improper setting of either will make the servo error more sensitive to laser frequency drift. It is also demonstrated that QPN will not have an effect on the servo when averages are taken,according to the dashed curves shown in Figs.2(c)-2(f),where the variation is randomly distributed around curves without QPN.

    3. Experimental set up

    The double integrator algorithm was applied to both40Ca+transportable clocks involved in the frequency comparison with all other parameters being constant. The aspects of clock 1 are the same as those mentioned in our previous study,[22]except that the ring trap is replaced by a linear Paul trap. Clock 2 is a newly established transportable optical clock that is more miniaturized and integrated than clock 1. All lasers and optical components involved in clock 2 are integrated into a 75 cm×35 cm×25 cm module, and lasers are stabilized using a multi-channel cavity during clock operation.[23]In both clocks, measurements of three pairs of Zeeman components were taken to eliminate the electric quadrupole shift[24]while locking the clocks. As shown in Fig. 3, we measured three pairs of Zeeman components by changing the frequency shift of AOM 1 before trap 1. Frequency corrections are added to the frequency of AOM 1 during clock 1 locking,and the average frequency of three pairs of Zeeman components is applied to AOM 1′when each servo interval is finished. The laser beam shifted by AOM 1′was used for clock transition frequency output and clock comparison.Clock 2 shares the same locking scheme as clock 1. Throughout the comparison experiment, the two clock lasers are stabilized to two independent ultra-stable Fabry-Perot cavities using the Pound-Drever-Hall (PDH) technique.[23,25,26]The drift rate of the clock laser is controlled by adjusting the frequency sweeping speed of the AOM 1′′and AOM 2′′drivers before the cavity every 30 min.

    Fig. 3. Schematic diagram of comparison between two clocks. The optical path is denoted by red solid lines. The servo path is denoted by black dashed lines. AOM:acoustic optical modulator;PD:photodetector.

    For one clock, the frequency change of the clock transition frequency output needs to be measured when evaluating optimum second integrator parameters. During the frequency comparison,clock 1 works as a reference clock,the laser frequency drift rate of which is compensated between-5 mHz/s and+5 mHz/s.The other works as an undetermined clock,the laser frequency drift rate of which varies from-80 mHz/s to+80 mHz/s. Because the laser frequency drift rate in clock 1 is much smaller than that in clock 2, the clock transition frequency output of clock 1 is much more stable than that of clock 2 even in simple integrator algorithm, according to the simulation. Thus, the clock transition frequency output of clock 2 mainly contributes to the frequency difference between the two clocks.

    4. Experimental results

    Figure 4 shows a typical process for determining the optimal second integrator parameters based on a series of frequency comparison between two clocks. First, we assess the influence of the second integrator gainIon the frequency difference between clock 1 and clock 2. As shown in Fig. 4(a),the frequency difference changes linearly with the drift rate of clock laser 2. Similar to the numerical simulation, we use the SFD as a key indicator in the servo parameter evaluation.When the second integrator numbermis 30,five SFDs under different second integrator gainsIare obtained and marked as black dots in Fig.4(c).As can be seen from the figure,the SFD reduction becomes negligible when the second integrator gainIincreases by more than 0.088. Second, the same approach was used to study the influence of the second integrator numbermon the frequency difference, as shown in Fig. 4(b). In Fig.4(d), the SFD under different second integrator numbersmdisplays a similar law as that in Fig.4(c),except for a much smaller SFD value.

    Fig.4. Experimental results of frequency comparison between two clocks when determining optimal second integrator parameters. The laser frequency drift rate of clock laser 1 is compensated between-5 mHz/s and+5 mHz/s. (a)and(b)Frequency difference measured when the drift rate of clock laser 2 changes and linear fittings of the data are shown in dashed lines. Measurements in panel(a)are labeled with different second integrator gain I when m=30 and that in panel(b)are labeled with a different second integrator number m when I=0.088. (c)SFD and SSE under different second integrator gain I when m=30. (d)SFD and SSE under different second integrator m when gain I=0.088. The curve in black and red dashed line represents the experimental decay fitting of the SFDs and SSEs.

    Finally,the slope of the servo error(SSE)to the drift rate has the same trend as the SFD throughout the comparison.Benefitting from the preferable second integrator parameters,the convergence of the SSE shown in Fig.4(d)is smaller than that in Fig. 4(c). It is worth noting that SSE decreases more slowly than SFD when either the second integrator parameterIormis small, which should be considered when the SSE is taken as an indicator for parameter optimization. Overall,the experimental results over the entire comparison process were in good agreement with the simulations. A rejection ratio of 107 was achieved by dividing the slope of the black dashed line in Fig.4(a),and the green dashed line in Fig.4(b). During a week-long locking of clock with optimized second integrator parameters and the remaining same parameters, the relative servo error uncertainty was determined to be 1.9×10-18,which was enhanced by an order of magnitude compared to that only with the simple integrator algorithm.

    5. Conclusion

    In summary, we simulated the servo response and servo error of a single ion optical clock with different second integrator parameters. Frequency comparisons between two clocks were carried out to verify the simulation results. The experimental results coincided well with the simulation. With the optimized parameters,the SFD was suppressed by a factor of 107. The relative uncertainty of the servo error was evaluated as 1.9×10-18during a week-long comparison of the clocks,a 10-fold improvement compared with the simple integrator algorithm under the same laser frequency drift rate. The double integrator algorithm has shown significant potential in building a 10-18level optical clock.

    Acknowledgment

    The authors would like to thank Shaomao Wang and Ping Zhang for the preliminary work on the development of the transportable single40Ca+ion optical clocks.

    猜你喜歡
    華林
    The Best Time to Visit Israel
    華林 加速全球布局
    華林 向愛而行
    不忘初心 逐夢遠航——華林致敬三十五年風雨征程
    華林 修身立德 以道致遠
    華林 一企千人助萬家
    華林 行穩(wěn)致遠
    華林:首發(fā)全球26款全系純電動環(huán)衛(wèi)車
    專用汽車(2016年9期)2016-03-01 04:16:59
    華林九大總部:事業(yè)新引擎
    華林 國際大棋局
    色哟哟·www| 国产中年淑女户外野战色| 能在线免费观看的黄片| 久久人人爽人人爽人人片va| 精品久久久久久久久亚洲 | 日韩欧美在线二视频| 综合色av麻豆| 热99在线观看视频| 国产亚洲精品综合一区在线观看| 51国产日韩欧美| 两个人视频免费观看高清| 亚洲精品乱码久久久v下载方式| 免费观看人在逋| 五月玫瑰六月丁香| 亚洲成av人片在线播放无| 最近最新免费中文字幕在线| 欧美精品国产亚洲| 免费av毛片视频| 91av网一区二区| 久久99热6这里只有精品| 久久这里只有精品中国| 韩国av一区二区三区四区| 级片在线观看| 亚洲欧美激情综合另类| 永久网站在线| 久久久久久久久中文| 国产精品久久久久久av不卡| 噜噜噜噜噜久久久久久91| 国产高清视频在线观看网站| www日本黄色视频网| 国产精品综合久久久久久久免费| 老司机深夜福利视频在线观看| 国产精品久久电影中文字幕| 很黄的视频免费| 最近在线观看免费完整版| 欧美bdsm另类| 日日摸夜夜添夜夜添av毛片 | 老女人水多毛片| 午夜老司机福利剧场| 国产一区二区在线av高清观看| 一区福利在线观看| 此物有八面人人有两片| 亚洲人成网站在线播放欧美日韩| 在线国产一区二区在线| 久久精品国产鲁丝片午夜精品 | 色5月婷婷丁香| 真实男女啪啪啪动态图| 日日干狠狠操夜夜爽| 国产av不卡久久| 在线观看一区二区三区| 精品一区二区三区视频在线观看免费| 小蜜桃在线观看免费完整版高清| 亚洲av电影不卡..在线观看| 国产真实乱freesex| 日本 欧美在线| 91久久精品国产一区二区三区| 日韩精品有码人妻一区| 在线a可以看的网站| 99热精品在线国产| 亚洲avbb在线观看| 乱系列少妇在线播放| 成人无遮挡网站| 狂野欧美激情性xxxx在线观看| 日韩欧美一区二区三区在线观看| 欧美三级亚洲精品| 伊人久久精品亚洲午夜| 国产av麻豆久久久久久久| x7x7x7水蜜桃| 高清毛片免费观看视频网站| 一个人免费在线观看电影| 一夜夜www| 一区二区三区四区激情视频 | 一级黄片播放器| 18禁黄网站禁片午夜丰满| 国产美女午夜福利| 在线观看美女被高潮喷水网站| 欧美绝顶高潮抽搐喷水| 色视频www国产| 51国产日韩欧美| 日本黄色片子视频| 精品欧美国产一区二区三| 99国产精品一区二区蜜桃av| 琪琪午夜伦伦电影理论片6080| 99热网站在线观看| 亚洲第一区二区三区不卡| 亚洲成人免费电影在线观看| 在线天堂最新版资源| 日本成人三级电影网站| 久久精品国产亚洲av涩爱 | 无遮挡黄片免费观看| 人妻夜夜爽99麻豆av| 欧美精品啪啪一区二区三区| 色5月婷婷丁香| 在线播放无遮挡| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩高清在线视频| 尤物成人国产欧美一区二区三区| 久久99热6这里只有精品| 日本黄色片子视频| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品成人综合色| 免费大片18禁| 一本久久中文字幕| 亚洲精品色激情综合| 少妇丰满av| 午夜福利18| 国产乱人视频| 男女啪啪激烈高潮av片| 亚洲成人免费电影在线观看| 欧美日韩国产亚洲二区| 看片在线看免费视频| 联通29元200g的流量卡| 真人做人爱边吃奶动态| 中国美白少妇内射xxxbb| 国产精品一区二区性色av| 国产 一区精品| 日日撸夜夜添| 精品久久国产蜜桃| 一个人免费在线观看电影| 岛国在线免费视频观看| 日本爱情动作片www.在线观看 | 亚洲精品亚洲一区二区| 国产午夜精品久久久久久一区二区三区 | 伊人久久精品亚洲午夜| 黄色一级大片看看| 身体一侧抽搐| 999久久久精品免费观看国产| 婷婷精品国产亚洲av在线| 国产视频一区二区在线看| 亚洲午夜理论影院| 麻豆一二三区av精品| 老女人水多毛片| 国产精品久久久久久久久免| 熟女人妻精品中文字幕| 少妇的逼好多水| 亚洲av免费在线观看| 亚州av有码| 亚洲av成人av| 精品久久国产蜜桃| 最近视频中文字幕2019在线8| or卡值多少钱| 国产一区二区三区av在线 | 十八禁网站免费在线| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利欧美成人| 午夜a级毛片| 18禁黄网站禁片免费观看直播| 2021天堂中文幕一二区在线观| 动漫黄色视频在线观看| 在线观看免费视频日本深夜| 久久香蕉精品热| 99久久九九国产精品国产免费| 午夜精品一区二区三区免费看| 久久人妻av系列| 精品99又大又爽又粗少妇毛片 | 午夜福利在线观看免费完整高清在 | ponron亚洲| 亚洲av二区三区四区| 1000部很黄的大片| 成年版毛片免费区| 亚洲午夜理论影院| 久久久久免费精品人妻一区二区| 18+在线观看网站| 黄色一级大片看看| 国内精品美女久久久久久| 国产高潮美女av| 一级黄色大片毛片| 成年女人看的毛片在线观看| 最好的美女福利视频网| 久久亚洲精品不卡| 中文字幕av成人在线电影| 成年女人看的毛片在线观看| 少妇被粗大猛烈的视频| www日本黄色视频网| 国产亚洲91精品色在线| 99九九线精品视频在线观看视频| 俄罗斯特黄特色一大片| 少妇猛男粗大的猛烈进出视频 | 嫩草影院新地址| 免费大片18禁| 久久天躁狠狠躁夜夜2o2o| 免费观看人在逋| 少妇裸体淫交视频免费看高清| 免费大片18禁| 一本一本综合久久| 亚洲精品影视一区二区三区av| 国产精品久久视频播放| 久9热在线精品视频| 久久久久性生活片| 日韩欧美国产在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久久久免| 尤物成人国产欧美一区二区三区| 成人欧美大片| 欧美激情国产日韩精品一区| 国产白丝娇喘喷水9色精品| 内射极品少妇av片p| 999久久久精品免费观看国产| 尾随美女入室| 久久久久久久久久成人| 国产白丝娇喘喷水9色精品| 亚洲中文字幕日韩| 两个人的视频大全免费| 精品人妻偷拍中文字幕| 色在线成人网| 国产不卡一卡二| 免费电影在线观看免费观看| 国产91精品成人一区二区三区| 久久精品影院6| 黄色视频,在线免费观看| 欧美成人a在线观看| 一本一本综合久久| 国产日本99.免费观看| 国产单亲对白刺激| 国内久久婷婷六月综合欲色啪| 精品一区二区三区av网在线观看| 少妇的逼水好多| 欧美绝顶高潮抽搐喷水| 日本成人三级电影网站| 一进一出抽搐gif免费好疼| 婷婷色综合大香蕉| 国产主播在线观看一区二区| 国产精品三级大全| 免费人成视频x8x8入口观看| 99在线视频只有这里精品首页| 国产亚洲欧美98| 美女高潮的动态| 亚洲在线观看片| 中文在线观看免费www的网站| 亚洲午夜理论影院| 国产午夜福利久久久久久| 精品人妻视频免费看| 欧美日韩精品成人综合77777| 五月玫瑰六月丁香| 欧美成人性av电影在线观看| 亚洲人与动物交配视频| 亚洲av电影不卡..在线观看| 国内精品久久久久精免费| 欧美日韩瑟瑟在线播放| 午夜免费成人在线视频| 亚洲国产欧洲综合997久久,| 女生性感内裤真人,穿戴方法视频| 亚洲av一区综合| 一边摸一边抽搐一进一小说| 1024手机看黄色片| 国产综合懂色| 国语自产精品视频在线第100页| 永久网站在线| 97碰自拍视频| 精品午夜福利在线看| 亚洲七黄色美女视频| 亚洲最大成人手机在线| 特大巨黑吊av在线直播| 联通29元200g的流量卡| 在线天堂最新版资源| 亚洲精品日韩av片在线观看| 他把我摸到了高潮在线观看| 国产成人福利小说| 狠狠狠狠99中文字幕| 热99re8久久精品国产| 老师上课跳d突然被开到最大视频| 天堂av国产一区二区熟女人妻| 搞女人的毛片| 又紧又爽又黄一区二区| 午夜福利18| 免费高清视频大片| 一个人观看的视频www高清免费观看| 给我免费播放毛片高清在线观看| 老司机福利观看| 亚洲中文日韩欧美视频| 小说图片视频综合网站| 久久人人精品亚洲av| 国产男人的电影天堂91| 日本爱情动作片www.在线观看 | 男女做爰动态图高潮gif福利片| 国产一区二区在线av高清观看| 少妇丰满av| 亚洲无线在线观看| av视频在线观看入口| 99精品久久久久人妻精品| 国产久久久一区二区三区| 日韩欧美在线乱码| 变态另类成人亚洲欧美熟女| 日韩欧美国产一区二区入口| 在线免费观看的www视频| 国产精品女同一区二区软件 | 精品久久久噜噜| 成人高潮视频无遮挡免费网站| 国产亚洲精品久久久久久毛片| 精品人妻1区二区| 国产精品,欧美在线| 琪琪午夜伦伦电影理论片6080| 亚洲va在线va天堂va国产| 亚洲欧美精品综合久久99| 欧美潮喷喷水| 亚洲,欧美,日韩| 老熟妇仑乱视频hdxx| 国产精品,欧美在线| 国产精品久久视频播放| 中出人妻视频一区二区| 日本熟妇午夜| 亚洲人成网站在线播放欧美日韩| 精品人妻1区二区| 黄色视频,在线免费观看| 亚洲精品久久国产高清桃花| 国产在视频线在精品| 三级男女做爰猛烈吃奶摸视频| www.色视频.com| 午夜福利在线观看吧| 国产视频内射| 欧美高清成人免费视频www| 欧美+亚洲+日韩+国产| 成人特级av手机在线观看| 国产美女午夜福利| 精品久久久噜噜| 日韩精品中文字幕看吧| 久久精品91蜜桃| 男女下面进入的视频免费午夜| АⅤ资源中文在线天堂| 国产精华一区二区三区| 国产高清三级在线| 欧美区成人在线视频| 亚洲国产精品sss在线观看| 长腿黑丝高跟| 日本爱情动作片www.在线观看 | 18禁在线播放成人免费| 国产人妻一区二区三区在| 久久久久久久久久久丰满 | 精品人妻视频免费看| 最近视频中文字幕2019在线8| bbb黄色大片| 色尼玛亚洲综合影院| 国产精品不卡视频一区二区| 97碰自拍视频| 国产精品一区二区三区四区久久| 最后的刺客免费高清国语| 99热这里只有精品一区| 黄色丝袜av网址大全| 黄色一级大片看看| 亚洲精品日韩av片在线观看| 精品久久国产蜜桃| 在线免费十八禁| 直男gayav资源| 欧美日韩瑟瑟在线播放| 午夜影院日韩av| 狂野欧美激情性xxxx在线观看| 99精品久久久久人妻精品| 久久久精品大字幕| 国产白丝娇喘喷水9色精品| 亚洲自拍偷在线| 一个人免费在线观看电影| 俺也久久电影网| 亚洲avbb在线观看| 一个人看视频在线观看www免费| 国产三级中文精品| 99在线人妻在线中文字幕| 99久久无色码亚洲精品果冻| 国产69精品久久久久777片| 淫妇啪啪啪对白视频| 欧美区成人在线视频| 婷婷六月久久综合丁香| 亚洲av熟女| 国产成人av教育| 国产成人a区在线观看| 欧美人与善性xxx| 亚洲精品一区av在线观看| 成人特级av手机在线观看| 国产真实乱freesex| av在线老鸭窝| 欧美日韩综合久久久久久 | 长腿黑丝高跟| 久久久色成人| 亚洲欧美日韩高清在线视频| av.在线天堂| 美女黄网站色视频| 好男人在线观看高清免费视频| 国产精品一区二区免费欧美| 国产高清不卡午夜福利| 99热只有精品国产| 国产淫片久久久久久久久| 麻豆av噜噜一区二区三区| 日韩欧美在线乱码| 免费看a级黄色片| 成年女人永久免费观看视频| 国产在线男女| 此物有八面人人有两片| 舔av片在线| 欧美日韩亚洲国产一区二区在线观看| 人妻制服诱惑在线中文字幕| 国产一区二区在线观看日韩| 色精品久久人妻99蜜桃| 两个人的视频大全免费| 久久国产乱子免费精品| 日本免费a在线| 成人鲁丝片一二三区免费| 不卡视频在线观看欧美| 久久精品夜夜夜夜夜久久蜜豆| 日本 欧美在线| 欧美国产日韩亚洲一区| 变态另类成人亚洲欧美熟女| 国产男人的电影天堂91| 夜夜夜夜夜久久久久| 天天一区二区日本电影三级| 美女免费视频网站| 欧美在线一区亚洲| 国产久久久一区二区三区| 国产高清视频在线播放一区| АⅤ资源中文在线天堂| 久99久视频精品免费| 成人综合一区亚洲| 大型黄色视频在线免费观看| 国产精品女同一区二区软件 | 国产精品综合久久久久久久免费| 18禁在线播放成人免费| 中出人妻视频一区二区| 黄色日韩在线| 91麻豆精品激情在线观看国产| 人妻少妇偷人精品九色| 国产老妇女一区| 国产91精品成人一区二区三区| 亚洲欧美日韩高清专用| 小蜜桃在线观看免费完整版高清| 色在线成人网| 69av精品久久久久久| 午夜久久久久精精品| 身体一侧抽搐| 欧美一区二区亚洲| 欧美3d第一页| 老熟妇乱子伦视频在线观看| 国产亚洲91精品色在线| 成人二区视频| .国产精品久久| 国产欧美日韩精品亚洲av| 日韩 亚洲 欧美在线| 中文资源天堂在线| 国产不卡一卡二| 成人无遮挡网站| 亚洲天堂国产精品一区在线| 亚洲第一区二区三区不卡| 国国产精品蜜臀av免费| 国产69精品久久久久777片| 99久久九九国产精品国产免费| 久久中文看片网| 午夜爱爱视频在线播放| 色5月婷婷丁香| 日韩中字成人| 亚洲va在线va天堂va国产| 欧美潮喷喷水| 国产午夜精品久久久久久一区二区三区 | 极品教师在线视频| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 热99re8久久精品国产| 伦精品一区二区三区| 色综合亚洲欧美另类图片| 亚洲人与动物交配视频| 亚洲欧美日韩东京热| 十八禁网站免费在线| 51国产日韩欧美| 欧美绝顶高潮抽搐喷水| 精品乱码久久久久久99久播| 18禁黄网站禁片午夜丰满| 99久久九九国产精品国产免费| АⅤ资源中文在线天堂| 精品无人区乱码1区二区| 久久久久久国产a免费观看| 成人午夜高清在线视频| 大又大粗又爽又黄少妇毛片口| 午夜影院日韩av| 中亚洲国语对白在线视频| 精品久久久久久成人av| 成人毛片a级毛片在线播放| 日韩欧美免费精品| 十八禁国产超污无遮挡网站| 国产精品无大码| 一个人观看的视频www高清免费观看| 亚洲精品456在线播放app | av中文乱码字幕在线| 99riav亚洲国产免费| 人人妻人人看人人澡| 88av欧美| 久久草成人影院| 亚洲第一区二区三区不卡| 五月玫瑰六月丁香| 中出人妻视频一区二区| 日本-黄色视频高清免费观看| 国产精品女同一区二区软件 | 亚洲乱码一区二区免费版| 男插女下体视频免费在线播放| 黄色欧美视频在线观看| 波野结衣二区三区在线| 丰满人妻一区二区三区视频av| 亚洲国产精品成人综合色| 免费在线观看日本一区| 久久精品国产自在天天线| 亚洲欧美日韩高清专用| 一个人看视频在线观看www免费| 色吧在线观看| bbb黄色大片| h日本视频在线播放| 国国产精品蜜臀av免费| 国产久久久一区二区三区| 中文字幕av成人在线电影| 性插视频无遮挡在线免费观看| 真人做人爱边吃奶动态| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 国产精品98久久久久久宅男小说| 亚洲性夜色夜夜综合| 国产色婷婷99| 少妇被粗大猛烈的视频| 国产成人aa在线观看| 国产精品1区2区在线观看.| 久久精品影院6| 日本在线视频免费播放| 国产男靠女视频免费网站| 欧美激情国产日韩精品一区| www.色视频.com| 国产单亲对白刺激| 国产精品一区二区性色av| 国产精品久久久久久av不卡| 天堂av国产一区二区熟女人妻| 亚洲av.av天堂| 成熟少妇高潮喷水视频| 波多野结衣高清无吗| a在线观看视频网站| 特级一级黄色大片| 国产一区二区激情短视频| 久久久久精品国产欧美久久久| 国产午夜精品久久久久久一区二区三区 | 直男gayav资源| 99国产极品粉嫩在线观看| 久久久色成人| 国产高清不卡午夜福利| 欧美zozozo另类| 免费av观看视频| 亚洲美女黄片视频| 69人妻影院| 天堂av国产一区二区熟女人妻| 精品午夜福利在线看| 亚洲图色成人| 国产三级在线视频| 国产精品美女特级片免费视频播放器| 国产白丝娇喘喷水9色精品| 99九九线精品视频在线观看视频| 亚洲欧美日韩高清在线视频| 男女做爰动态图高潮gif福利片| 男人狂女人下面高潮的视频| 国产精品综合久久久久久久免费| 成人无遮挡网站| 婷婷亚洲欧美| 久久久久久久午夜电影| 成人亚洲精品av一区二区| .国产精品久久| 欧美性猛交黑人性爽| 天堂网av新在线| 搡女人真爽免费视频火全软件 | 久久久成人免费电影| 日本黄色片子视频| 日韩精品青青久久久久久| 一边摸一边抽搐一进一小说| 欧美激情国产日韩精品一区| 日韩强制内射视频| 欧美潮喷喷水| 欧美黑人欧美精品刺激| 久久精品国产鲁丝片午夜精品 | 成人av在线播放网站| 国产精品久久久久久久电影| 嫩草影院入口| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人福利小说| 亚洲av成人精品一区久久| 99久久精品热视频| 如何舔出高潮| 国产 一区精品| 麻豆精品久久久久久蜜桃| 一区二区三区高清视频在线| 亚洲av免费高清在线观看| 日韩中文字幕欧美一区二区| 97热精品久久久久久| 国产高清不卡午夜福利| 丝袜美腿在线中文| 亚洲国产精品合色在线| 亚洲av熟女| 久久精品国产亚洲av涩爱 | 国产精品一区二区免费欧美| 亚洲av.av天堂| 亚洲图色成人| 国产免费av片在线观看野外av| 成人亚洲精品av一区二区| 3wmmmm亚洲av在线观看| 欧美高清性xxxxhd video| 婷婷色综合大香蕉| 精品午夜福利视频在线观看一区| 深夜a级毛片| 欧美3d第一页| 搡老岳熟女国产| 精品日产1卡2卡| 欧美bdsm另类| 人妻久久中文字幕网| 男女下面进入的视频免费午夜| 欧美成人免费av一区二区三区| 亚洲国产精品sss在线观看| 中出人妻视频一区二区| 国产精品无大码| 久久精品国产99精品国产亚洲性色| 国产三级在线视频| 麻豆av噜噜一区二区三区| 亚洲成人精品中文字幕电影| 精品午夜福利视频在线观看一区| 久久国产乱子免费精品| 91精品国产九色| 色噜噜av男人的天堂激情| 日本撒尿小便嘘嘘汇集6| 亚洲成人精品中文字幕电影|