• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approximate analytical solutions and mean energies of stationary Schr¨odinger equation for general molecular potential

    2021-07-30 07:36:08EyubeRawenandIbrahim
    Chinese Physics B 2021年7期

    Eyube E S Rawen B O and Ibrahim N

    1Department of Physics,School of Physical Sciences,Modibbo Adama University of Technology,P M B 2076 Yola,Adamawa State,Nigeria

    2Directorate of Basic and Remedial Studies,Abubakar Tafawa Balewa University(ATBU),P M B 750001,Bauchi,Bauchi State,Nigeria

    3Department of Physics,Faculty of Science,P M B 1069,Maiduguri,Borno State,Nigeria

    Keywords: general molecular potential,Schr¨odinger equation,improved quantization rule

    1. Introduction

    The wave equations are of tremendous importance in the field of quantum mechanics due to the fact that they can provide the information about the quantum mechanical system.[1,2]However,the wave functions are obtained by solving Schr¨odinger equation with potential energy function describing the system. For a given quantum state defined by the vibrational and rotational quantum numbersνandJrespectively, the exact solution of the Schr¨odinger equation is limited to the harmonic oscillator and Coulombic potential.[3,4]For many other potential energy functions, the exact solution can be obtained only for the stateJ=0 (also known as the pure vibrational state).[5]For majority of the known potential energy functions,exact solutions of the Schr¨odinger equation are not feasible as a result of the spin-orbit or centrifugal term coupled to the effective potential.[1,5]For such potentials,approximate numerical or analytical solutions are necessary.[6,7]

    Analytical solutions have the advantage of being obtained in close form, a form that makes them useful in exploring the physical properties of the system which they represent.[8-10]It must be mentioned here that not all analytical solutions are reliable,the most accurate analytical solution is one that approximates more closely to its corresponding numerical solution.[11,12]Approximate analytical solution of the Schr¨odinger equation involves the application of a suitable approximation model to the spin-orbit term[13-15]and an appropriate solution method. Researchers have proposed an almost endless solution methods to solve the Schr¨odinger equation. Some of the solution methods include ansatz method,[16]asymptotic iteration method,[17]exact quantization rule,[18]Nikiforov-Uvarov method,[19]improved or proper quantization rule,[20]and so,on.

    Various models of potential energy functions have been used by researchers to solve the Schr¨odinger equation.[21-23]In their quest for constructing a potential energy function suitable for explaining molecular interactions,Yanaret al.have suggested the general molecular potential (GMP).[24]It is given by the following expression:

    whereA,B,C,D, ?q, andqare adjustable real potential parameters: ?qandqare dimensionless parameters,reis the equilibrium bond length,andr ∈(0,∞)is the internuclear separation of the interacting atoms.

    The Schr¨odinger equation has been solved in the presence of GMP, and the expression for the rovibrational energy was used to model the interaction among six diatomic molecules.[24]Ikotet al. have employed the asymptotic iteration method to solve the radial Schr¨odinger equation with GMP and used the obtained energy spectra to study the thermodynamic properties of potassium dimer.[17]Finally, to the best of our knowledge,these are the only researches reported in the literature about the(GMP).

    The researches about the GMP, which were earlier carried out are as follows. (i)In Ref.[24],the ansatz solution approach was used to solve the Schr¨odinger equation. However, explicit expression for energy eigenvalues was not given,which now entails obtaining separate explicit expression for energy eigenvalues for each of the potentials considered as special case.(ii)In Ref.[17],the expression for eigen energies of the GMP was obtained via asymptotic iteration method. Nonetheless,the result was neither subjected to a numerical test nor reduced into energy eigenvalues of other potential energy functions derivable from the GMP.(iii)The energy eigenvalues obtained for the GMP in previous researches are not valid forq=0. (iv) Even though the GMP remains finite asq →0,the form of the Pekeris approximation model used in Refs.[17,24]is infinite asq →0.

    The present work aims at obtaining approximate analytical solutions and mean energies of stationary Schr¨odinger equation with the general molecular potential. The objectives to be studied include: i) deriving the eigen energies of the GMP via the improved quantization rule and eigenfunctions by ansatz solution,with consideration for the cases ofq/=0 andq=0;ii)using a Pekeris-like approximation recipe to model the pseudospin orbit term of the effective potential; iii) deriving the formulas of expectation values of kinetic energy,potential energy, and total energy of the GMP, iv) computing the mean energies of the GMP for four diatomic molecules: H2, CO, HF, and O2; v) comparing the obtained results with those available from the literature.

    The rest of this paper is organized as follows.In Section 2,a brief review of the improved quantization rule is presented. In Section 3,we use ideas of improved quantization rule to derive the expression for bound state energy eigenvalues of the GMP,and obtain the corresponding eigenfunctions via ansatz solution. Mean kinetic energy and potential energy for the system are discussed in Section 4. Section 5 is devoted to the special cases of the GMP and numerical computations. Finally, some conclusions are drawn from the present work in Section 6.

    2. Review of improved quantization rule

    In this section,a brief outline of the rudiments of improved quantization rule applicable to the present work is given. A detailed narration of this concept is presented elsewhere.[25]The improved quantization rule comes into being due to the need to overcome some of the complicated integrals encountered in exact quantization rule.At the beginning, the exact quantization rule was used to solve the one-dimensional Schr¨odinger equation given by[25]

    where double prime denotes the second derivative ofψ(x) with respect to argumentx,ψ(x),x ∈(-∞,∞) is the one-dimensional wave function, andk(x) is the momentum of the system,and given in terms of the energyEand effective potentialVeff(x)by[18,25,26]

    In the usual notation,equation(2)expressed as a nonlinear Riccati equation is given as[18,25,26]

    The logarithmic derivativeφ(x) =ψ′(x)/ψ(x) of the wave functionψ(x) is the phase angle.[18,26]For the Sturm-Liouville problem, the phase angle must be monotonic with respect to the energy.[18,26]Therefore,from Eq. (2),ψ(x) must decreases monotonically with respect toxbetween two turning points whereE ≥Veff(x). Specifically, asxincreases across a node of the wave functionψ(x),φ(x) decreases to-∞, jumps to+∞,and then decreases again.[26]Having carefully studied the one-dimensional Schr¨odinger equation,the exact quantization rule is given as[18,25,26]

    where the turning pointsxAandxBare the roots of the equationVeff(x)=E. The number of nodesNofφ(x)in the regionE ≥Veff(x) is by 1 greater than the number of nodesνof the wave functionψ(x). That is,N=ν+1.[18,26]In Eq.(5),N πis the contribution from the nodes of the phase angle while the second term on the right-hand side is the quantum correction. The quantum correction is independent ofνfor all exactly solvable quantum systems. Accordingly, it is evaluated for the ground state (ν=0). For a spherically symmetric potential,equations(2)-(4)are expressed as[18,20,25,26]

    withL=J(J+1) being the angular momentum of the system. In a spherical coordinate system, equation (5)takes the form[18]

    where

    Settingν=0 in Eq. (11) and eliminatingQc, the improved quantization rule is written in compact form as follows:[18]

    3. Solution of stationary Schr¨odinger equation with GMP

    3.1. Solution of stationary Schr¨odinger equation with GMP corresponding to q/=0

    Substituting Eq.(1)into Eq.(10),we have

    Equation (6) has an exact solution in the presence of Eq.(15)only for the pure vibrational state(J=0). However,approximate analytical solutions are achievable if a suitable approximation scheme is employed to model the centrifugal term of the effective potential. In the earlier studies, the Pekeris-like approximation scheme used is given as[17,24]

    where the constant coefficientsc-1+j(j=1,2,3)are given by[17,24]

    Evidently,asq →0,equation(1)is finite. Also,from Eq.(19)we have

    which is also finite. Therefore, equation (18) holds for bothq/=0 andq=0. The “M” appearing in Eq. (20) is designated as “expression corresponding toq=0”. In the remainder part of this work, This notation will be used unless otherwise stated. Substituting Eq.(18)into Eq.(15)we have

    Using Eq. (22) to transform Eq. (8) into one involving variableτ,the Riccati equation leads to

    In order to satisfy the Sturm-Liouville requirement,we choose a first-degree polynomial as a trial wave function for the ground stateviz

    whereωandγare constant coefficients. Substituting Eq.(32)into Eq.(31)forν=0,we have Equation (33) is true if and only if the separate coefficients ofτ2,τ,andτ0each are equal to zero. This yields the following expressions

    The parameterωis obtained from Eq.(34a)as

    Withωandγgiven by Eqs. (35) and (34b) respectively,our trial solution defined by Eq.(32)is completely known. Our next task is to evaluate the momentum integral. Substituting Eq. (22) into Eq. (12) and inserting Eq.(30)into the resulting relation,we have

    With the help of standard integral (A1) in Appendix A,equation(37)gives

    Corresponding toν=0,equation(38)yields

    Inserting Eqs. (34a)-(34c) into Eq. (39) and conducting simplification, the resulting equation is obtained as follows:

    where

    subject to the following constraints:

    For a polynomial solution,[24]equation (46) has a solution given by

    where2F1(-ν,ν+2s+2t+1;2s+1;z) is the hypergeometric function. Equations (42) and (45) give the complete solution of the Schr¨odinger equation with the GMP,and these equations remain valid for none zero values ofq.

    3.2. Solution of stationary Schr¨odinger equation with GMP corresponding to q=0

    To obtain the solution of the Schr¨odinger equation with the GMP forq=0,first,it must be observed that by taking limits,equation(21)remains valid since

    Note that in arriving at Eq. (51a) from Eq. (34a), the negative square root is considered to meet the Sturm-Liouville requirements of a trial wave function of one node and zero-pole. Forq=0,equation(37)gives

    Inserting Eqs.(53)and(54)into Eq.(14), and eliminatingη0M,η1M,η2M,andην JM,we obtain

    The radial eigenfunctions are obtained by settingq=0 in Eq.(31),resulting in

    In order to solve Eq.(56),we assume a trial solution in the form of(Ref.[1])

    whereρandυare the parameters,Nν JMis the normalization constant, andφν JM(τ) is an unknown function ofτ.Substitution of Eq.(57)into Eq.(56)gives the Laguerre hypergeometric differential equation

    on condition that

    For bound state solution,equation(58)gives

    where1F1(-n,υ+1;ρ τ)is the Laguerre hypergeometric function.

    4. Mean values of kinetic energy and potentia energy in GMP

    Now that we have obtained explicit analytical relations for bound state energy eigenvalues of the GMP for cases whereq=0 andq/=0, we are in the position to apply these expressions to driving the important formulas for mean values of kinetic energy and potential energy. The Hellmann-Feynman theorem (HFT)[1,9,10]is used, and it states that if the HamiltonianHof a quantum mechanical system is a function of some parameterζ,thenH(ζ),ψν J(ζ),andEν J(ζ)are related by[1,9,10]

    4.1. Mean values of kinetic energy and potential energy of system in GMP for q/=0

    Choosingζ=L,equations(62)and(63)give

    ELis obtained by differentiating Eq.(42)with respect toL,and expressed as

    The mean value of the kinetic energy is found by settingζ=μ,separately,in Eqs.(62),(63),and(42). Thus,we have

    From Eqs. (80) and (81), we find the expectation value of the kinetic energy to be

    Another important relation which is deduced by the HFT is the expectation value of the GMP.Takingζseparately as potential parametersA,B, and ?q, we have the mean value of the GMP〈V〉as given below:

    LetΩν Jbe the sum of kinetic energy and potentials,then we have

    4.2. Mean values of kinetic energy and potential energy of system in GMP for q=0

    In the previous section,the equations derived for expectation values of kinetic energy and potential energy are valid only for nonzero values ofq. Corresponding toq=0,equations(70)and(74)transform into

    are obtained from Eq. (64) by takingζseparately asLand asμ,with the following expressions:

    Similarly,the mean value of the GMP〈V〉M,forq=0 is deduced from Eq.(75)and expressed as

    whereEAM,EBM,andE?qMare obtained by differentiating Eq. (55) with respect toAM,BM, and ?qM, their expressions are given below:

    5. Results and discussion

    Having obtain the explicit expressions for energy eigenvalues,eigenfunctions and expectation values of the GMP, at this point we will test the accuracy of our results. Through the suitable choice of parametersA,B,C,D,q,and ?q,we deduce the bound state energy eigenvalues, radial wave functions and expectation values of some potential models that are special cases of the GMP.

    5.1. Woods-Saxon potential

    The Woods-Saxon potential is a useful potential energy function and used as a major part of nuclear shell model to obtain nuclear energy level spacing and properties of electron distribution in atoms, nuclei and atomic clusters.[20]By choosingδ(0)=δ(2)=0,δ(1)=-V0,and the mappings

    in Eqs. (23) and (42), we obtain Eqs. (B1) and (B2)in Appendi B. These equations are identical to Eqs. (9)and (29) of Ref. [20], the effective potential and bound state energy eigenvalue of the Woods-Saxon potential inDdimensions. Here, sinceq/=0, it follows that equations(70)and(75)are applicable for the computation of expectation values of spin-orbit term and potential energy function. On the other hand, equation (74) is suitable for the mean kinetic energy of the potential.

    5.2. Morse potential

    The Morse potential has been described as an important empirical potential model suitable for representing vibration-rotation states of diatomic molecules.[2,24,28]Equations (B3) and (B4) shown in Appendix B are obtained for the following choice of potential parameters applied to Eqs.(23)and(42)respectively:By comparison,equarions(B3)and(B4)are identical to Eqs.(48)and(56)for the Morse potential in Ref.[1]. In this case,sinceq=0,equations(81),(80),and(86)are employed to compute mean values of kinetic energy,centrifugal term,and Morse potential function respectively.

    5.3. Tietz-Hua oscillator

    Equations (B5) and (B6) shown in Appendix B are obtained from Eqs.(23)and(42)respectively,subject to the following choice of potential parameters:δ(2)=de,?qD2=De, andB+2 ?qCD=2De. As it is evident that,equation(B5)corresponds to the expression for effective potential of the Tietz-Hua oscillator.[2,28,31]On the other hand,withq=chandbh=αM(1-ch),equation(B6)is just the Eq.(13)of Ref.[31]for the ro-vibrational energy.The Tietz-Hua oscillator is known to be more realistic than the Morse potential in the description of molecular dynamics at moderate and high rotational and vibrational quantum number,and it reduces to Morse potential whench=0.[28]Forch/=0,equations(70),(75),and(74)are appropriate for the computation of the mean value of centrifugal term,the mean value of the Tietz-Hua potential energy function,and the mean value of kinetic energy.

    5.4. M¨obius squared oscillator

    The M¨obius squared oscillator is a very important potential energy model that has wide applications in chemical physics, nuclear physics, molecular physics,and solid-state physics.[1,29]Bound state energy eigenvalues and some expectation values of this oscillator have been studied in the literature.[1,29]It is noted that with the following expressions

    equations (23) and (46) are transformed into the forms given by Eqs. (B7) and (B8) in the Appendix B. Except for the coefficientsd1,d2, andd3, equations (B7)and (B8) are respectively equivalent to Eqs. (16) and(37)in Ref.[1]for the effective potential energy and rovibrational energy of shifted-rotating M¨obius squared oscillator. If in addition,ηis reduced to zero and the coefficientsd-1+j(j=1,2,3)are chosen asα2,2α2e-α re,andα2e-2α rein Eqs. (B7) and (B8), the first term and second term of Eq. (B7) are correspondingly equivalent to Eqs. (5) and (6) of Ref. [29] for the Mobius squared potential and the approximation to the centrifugal term respectively,where for validity,D′=-C′. Furthermore,ifLis replaced with(D+2?-3)(D+2?-1)/4,equation(B8)is identical to the energy eigenvalues of M¨obius squared oscillator inDdimensions given by Eq.(17b)in Ref.[29],the parameterλis related toγof Eq.(17c)byλ=γ+1/2.

    The data in Table 1 show spectroscopic constants of four diatomic moleculesviz.H2,CO,HF,and O2studied in the present work.

    Table 1. Spectroscopic parameters of selected diatomic molecules used in the present study.

    We compute the bound state energy eigenvalues,expectation values of centrifugal term, potential energy function, kinetic energy, and total energy. The calculations are carried out for arbitrary rotational and vibrational quantum numbers. The results obtained using Eqs. (42), (70), (75), (74), and (79) for the parameters defined in Subsection 5.3 of the Tietz-Hua oscillator are shown in Tables 2-5. Also reported in the tables are the corresponding results for the parameters of Morse potential given in Subsection 5.2,which are calculated through Eqs.(55),(80),(86),(81),and(90).To enable our results to be compared with the existing data in the literature,we compute the binding energyde-Eν Jandde-Eν JMfor the Tietz-Hua and Morse potentials respectively.The computed results and those extracted from the literature are shown in the tables. For the four diatomic molecules considered in the present work,our computed bound state energy values are in nearly perfect agreement with the results obtained by generalized pseudospectral method[30]and by Nikiforov-Uvarov method.[2]

    Variations of expectation values of the kinetic energy, the potential energy, and the total energy with the vibrational quantum number are shown graphically in the following Figs.1-4.

    Fig. 1. The variation of the mean centrifugal term with the vibrational quantum number for(a)the Tietz-Hua oscillator,and(b)the Morse oscillator.

    Fig.2.The variation of the mean GMP with the vibrational quantum number for(a)the Tietz-Hua oscillator and(b)the Morse oscillator.

    Figure 1 shows the plot of expectation values of the centrifugal termversus ν. As indicated by the plot in Fig. 1(a), whenνis increased from zero,〈VL〉decreases linearly to some threshold value and afterwards increases. However,the opposite is true for the variation of〈VLM〉withνas represented in Fig.1(b).

    The variation of the expectation value of GMP withνis shown in Fig.2. In this case,asνis gradually raised from zero,〈V〉increases to a peak value,then decreases asνis further increased (Fig. 2(a)). Like the previous case,the variation of〈VM〉withνis opposite to the variation of〈V〉withν.

    In Fig. 3, we plot the expectation values of the kinetic energyversus ν. Figure 3(a) shows that asνis varied positively,〈T〉increases to a maximum value and afterwards decreases with theνfurther increasing. In Fig.3(b),〈TM〉increases approximately linearly with theνincreasing.

    Fig.3.The variation of the mean kinetic energy with the vibrational quantum number for(a)the Tietz-Hua oscillator,and(b)the Morse oscillator.

    The variations of total energy of the GMP withνare shown in Figs.4(a)and 4(b)for the Tietz-Hua potential and Morse potential. The plots reveal that asνincreases from zero, the total energy for each of the two oscillators increases slowly,then attains a maximum value,and finally decreases.

    Fig.4. The variation of the total energy with the vibrational quantum number for(a)the Tietz-Hua oscillator and(b)the Morse oscillator.

    ?

    ?

    ?

    ?

    6. Conclusions

    In the present work, bound state energy eigenvalues and radial eigenfunctions of the general molecular potential are obtained within the frameworks of improved quantization rule and ansatz solution method respectively. A Pekeris-like approximation model is used to model the pseudo-spin orbit term of the Schr¨odinger equation. With the help of Hellmann-Feynman theorem, closed form expressions for mean kinetic energy and mean potential energy are derived for the system.Equations for ro-vibrational energy, wave functions and mean energy of Woods-Saxon potential, Morse potential, M¨obius squared, and Tietz-Hua oscillators are deduced from the general molecular potential energy. Furthermore,we numerically compute the values for bound state energy eigenvalues and mean energy values for four diatomic moleculesviz.H2, CO, HF, and O2. The results obtained are in perfect agreement with existing data in the literature for the potentials and molecules. Our studies also reveal that as the vibrational quantum number increases, the mean kinetic energy of the system in Tietz-Hua potential increases slowly to a threshold value then decreases. On the other hand,in a Morse potential,the mean kinetic energy increases approximately linearly with the vibrational quantum number increasing.

    Appendix A:List of standard definite integral used in this work

    Appendix B:List of derived expressions of effective potential and bound state ro-vibrational energy for the special cases of general molecular potentials considered in this work

    B4. M¨obius squared oscillator

    午夜影院日韩av| 午夜爱爱视频在线播放| 色尼玛亚洲综合影院| 天天一区二区日本电影三级| 国产午夜精品久久久久久一区二区三区 | 婷婷色综合大香蕉| 超碰av人人做人人爽久久| 99久国产av精品国产电影| 别揉我奶头 嗯啊视频| 伊人久久精品亚洲午夜| 亚洲精品一区av在线观看| 国产精品人妻久久久影院| 性插视频无遮挡在线免费观看| 成年免费大片在线观看| 中文字幕av在线有码专区| av在线蜜桃| 国产精品,欧美在线| av卡一久久| 欧美极品一区二区三区四区| 欧美+日韩+精品| 又粗又爽又猛毛片免费看| 欧美精品国产亚洲| 麻豆国产av国片精品| 老女人水多毛片| 亚洲专区国产一区二区| 高清日韩中文字幕在线| 禁无遮挡网站| 联通29元200g的流量卡| 12—13女人毛片做爰片一| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 国产乱人偷精品视频| 亚洲av五月六月丁香网| 国产成人91sexporn| 亚洲国产精品成人综合色| 亚洲欧美精品综合久久99| 搡老熟女国产l中国老女人| 91午夜精品亚洲一区二区三区| 天堂动漫精品| 久久九九热精品免费| 久久久a久久爽久久v久久| 亚洲成人av在线免费| 草草在线视频免费看| 久久6这里有精品| 老司机午夜福利在线观看视频| 日韩成人伦理影院| 搡老岳熟女国产| 69人妻影院| 男人狂女人下面高潮的视频| 国产精品99久久久久久久久| 国产 一区精品| 欧美一区二区亚洲| 特大巨黑吊av在线直播| 在线a可以看的网站| 日韩制服骚丝袜av| 国产亚洲精品久久久com| 久久久a久久爽久久v久久| 中文亚洲av片在线观看爽| 日本 av在线| 色播亚洲综合网| 内地一区二区视频在线| 全区人妻精品视频| 欧美精品国产亚洲| 国产视频内射| 婷婷亚洲欧美| 亚洲一级一片aⅴ在线观看| 一边摸一边抽搐一进一小说| 淫妇啪啪啪对白视频| 精品一区二区三区视频在线观看免费| 精品久久国产蜜桃| 美女高潮的动态| 91狼人影院| 色在线成人网| 亚洲婷婷狠狠爱综合网| 成人美女网站在线观看视频| 久久精品人妻少妇| 免费观看人在逋| 欧美成人精品欧美一级黄| 国内精品一区二区在线观看| 男人舔女人下体高潮全视频| 男插女下体视频免费在线播放| 老师上课跳d突然被开到最大视频| 高清午夜精品一区二区三区 | 亚洲五月天丁香| 亚洲图色成人| 三级国产精品欧美在线观看| 国产欧美日韩精品亚洲av| 国产片特级美女逼逼视频| 青春草视频在线免费观看| 99久久久亚洲精品蜜臀av| 国产黄a三级三级三级人| 在线免费十八禁| 真人做人爱边吃奶动态| 一级a爱片免费观看的视频| 久久6这里有精品| 日本三级黄在线观看| av天堂中文字幕网| 床上黄色一级片| 亚洲成人久久爱视频| 成人精品一区二区免费| 婷婷色综合大香蕉| 男人的好看免费观看在线视频| 男女那种视频在线观看| 日产精品乱码卡一卡2卡三| 欧美日韩乱码在线| 精品人妻熟女av久视频| 久久久精品大字幕| 色哟哟哟哟哟哟| 国产精品无大码| 中文在线观看免费www的网站| 精品福利观看| АⅤ资源中文在线天堂| 亚洲精品456在线播放app| 日韩精品中文字幕看吧| 国产精品免费一区二区三区在线| 久99久视频精品免费| 成人精品一区二区免费| 精品国产三级普通话版| 国产淫片久久久久久久久| 亚洲av中文字字幕乱码综合| 一区福利在线观看| 麻豆成人午夜福利视频| av在线亚洲专区| 五月伊人婷婷丁香| 毛片女人毛片| 搡老熟女国产l中国老女人| 精品久久久久久久久亚洲| 嫩草影院入口| 亚洲av中文字字幕乱码综合| 日韩中字成人| 一本久久中文字幕| 国产在线男女| 热99在线观看视频| 午夜免费激情av| 日韩大尺度精品在线看网址| 精品人妻视频免费看| 男女视频在线观看网站免费| 老女人水多毛片| 久久热精品热| 天天躁日日操中文字幕| 看黄色毛片网站| 一级a爱片免费观看的视频| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线观看播放| 一级a爱片免费观看的视频| videossex国产| 精品人妻一区二区三区麻豆 | 天天躁日日操中文字幕| 国产精品人妻久久久久久| 美女大奶头视频| 性插视频无遮挡在线免费观看| 天堂网av新在线| 97碰自拍视频| 日韩av在线大香蕉| 精品国内亚洲2022精品成人| 3wmmmm亚洲av在线观看| 给我免费播放毛片高清在线观看| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 亚洲一区高清亚洲精品| av在线蜜桃| 一级毛片久久久久久久久女| 午夜精品一区二区三区免费看| 日日啪夜夜撸| 插阴视频在线观看视频| 18+在线观看网站| 欧美日韩精品成人综合77777| 亚洲精品久久国产高清桃花| 欧美日本视频| 在线免费观看的www视频| 国产成人aa在线观看| 一个人看视频在线观看www免费| 91麻豆精品激情在线观看国产| 最近2019中文字幕mv第一页| 国产视频一区二区在线看| 国产成人福利小说| 99久国产av精品| 在线观看免费视频日本深夜| 俄罗斯特黄特色一大片| 亚洲人成网站高清观看| 五月伊人婷婷丁香| 午夜激情福利司机影院| 成年女人看的毛片在线观看| 国产高清有码在线观看视频| 免费一级毛片在线播放高清视频| 亚洲精品日韩av片在线观看| 99在线视频只有这里精品首页| 久久久久久久久久成人| 国产男人的电影天堂91| 九九爱精品视频在线观看| 麻豆久久精品国产亚洲av| 深爱激情五月婷婷| 联通29元200g的流量卡| www.色视频.com| 一进一出抽搐动态| 在线观看免费视频日本深夜| or卡值多少钱| 国产大屁股一区二区在线视频| 日韩精品青青久久久久久| 丝袜美腿在线中文| 亚洲无线观看免费| 国产欧美日韩精品亚洲av| 亚洲精品456在线播放app| 国产极品精品免费视频能看的| 国产一区二区三区在线臀色熟女| 99热这里只有是精品50| 亚洲美女视频黄频| 久久久国产成人精品二区| 熟女电影av网| 69av精品久久久久久| 亚洲欧美日韩高清在线视频| 亚洲欧美成人综合另类久久久 | 高清毛片免费观看视频网站| 精品少妇黑人巨大在线播放 | 草草在线视频免费看| 一进一出抽搐动态| 国产午夜福利久久久久久| 一个人免费在线观看电影| 真实男女啪啪啪动态图| 色噜噜av男人的天堂激情| 人妻少妇偷人精品九色| 插逼视频在线观看| 日本a在线网址| 久久久精品大字幕| 国产精品久久久久久精品电影| 非洲黑人性xxxx精品又粗又长| 波野结衣二区三区在线| a级毛片免费高清观看在线播放| 精品99又大又爽又粗少妇毛片| 亚洲成人久久性| 两个人视频免费观看高清| 国产色婷婷99| av免费在线看不卡| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 精品久久久久久久末码| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久大精品| 午夜精品一区二区三区免费看| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 变态另类成人亚洲欧美熟女| 欧美一区二区亚洲| 午夜免费男女啪啪视频观看 | 在线国产一区二区在线| 久久精品国产清高在天天线| 成年免费大片在线观看| 嫩草影视91久久| 97热精品久久久久久| 97超碰精品成人国产| 亚洲av.av天堂| 久久99热6这里只有精品| 国内精品美女久久久久久| 两个人视频免费观看高清| 天堂av国产一区二区熟女人妻| avwww免费| 热99re8久久精品国产| 亚洲成人av在线免费| 观看美女的网站| 国产欧美日韩精品一区二区| 99久久精品热视频| 91精品国产九色| 22中文网久久字幕| 好男人在线观看高清免费视频| h日本视频在线播放| 91久久精品国产一区二区三区| 直男gayav资源| 免费看a级黄色片| 精品欧美国产一区二区三| 伦理电影大哥的女人| 综合色av麻豆| 欧美最黄视频在线播放免费| av国产免费在线观看| 热99re8久久精品国产| 成人特级黄色片久久久久久久| 搡老妇女老女人老熟妇| 日韩成人伦理影院| 淫秽高清视频在线观看| 国产精品电影一区二区三区| 欧美精品国产亚洲| 又爽又黄a免费视频| 自拍偷自拍亚洲精品老妇| 毛片女人毛片| 亚洲国产高清在线一区二区三| 最近中文字幕高清免费大全6| 赤兔流量卡办理| 久久中文看片网| 人妻久久中文字幕网| 此物有八面人人有两片| 51国产日韩欧美| 夜夜看夜夜爽夜夜摸| av在线播放精品| 亚洲精华国产精华液的使用体验 | 成人性生交大片免费视频hd| 午夜福利在线观看免费完整高清在 | 在线观看午夜福利视频| 免费av不卡在线播放| 观看美女的网站| 看黄色毛片网站| 免费高清视频大片| 淫妇啪啪啪对白视频| 色综合亚洲欧美另类图片| 欧美成人精品欧美一级黄| 日产精品乱码卡一卡2卡三| 国产真实乱freesex| 亚洲国产高清在线一区二区三| 国产成人a∨麻豆精品| 欧美人与善性xxx| 亚洲精品国产成人久久av| 国产成人a区在线观看| 国产高清激情床上av| 久久草成人影院| 国产av在哪里看| 精品一区二区三区视频在线| 国产成人精品久久久久久| 久久久久国内视频| 免费av不卡在线播放| 久久6这里有精品| 欧美人与善性xxx| 综合色av麻豆| 亚洲成av人片在线播放无| 长腿黑丝高跟| 成人综合一区亚洲| 国产欧美日韩精品亚洲av| 久久久a久久爽久久v久久| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人a∨麻豆精品| 免费看光身美女| 一级毛片久久久久久久久女| 熟妇人妻久久中文字幕3abv| 亚洲av一区综合| 中文字幕av在线有码专区| 长腿黑丝高跟| 国产av麻豆久久久久久久| 亚州av有码| 国产aⅴ精品一区二区三区波| 菩萨蛮人人尽说江南好唐韦庄 | 97热精品久久久久久| 看十八女毛片水多多多| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看| 嫩草影院入口| 欧美区成人在线视频| 久久韩国三级中文字幕| 免费无遮挡裸体视频| 亚洲av第一区精品v没综合| 中国美白少妇内射xxxbb| 国产精品爽爽va在线观看网站| 天堂av国产一区二区熟女人妻| 变态另类丝袜制服| 国产激情偷乱视频一区二区| 露出奶头的视频| 美女被艹到高潮喷水动态| 长腿黑丝高跟| 真人做人爱边吃奶动态| 中国国产av一级| 在线播放无遮挡| 97在线视频观看| 亚洲av中文字字幕乱码综合| 亚州av有码| 欧美高清性xxxxhd video| 日日啪夜夜撸| 一本一本综合久久| 天堂网av新在线| 色视频www国产| 亚洲无线观看免费| 亚洲熟妇中文字幕五十中出| 女人被狂操c到高潮| 亚洲专区国产一区二区| avwww免费| 简卡轻食公司| 国产精品国产高清国产av| 国产成年人精品一区二区| 久久精品国产亚洲网站| 亚洲丝袜综合中文字幕| 少妇人妻一区二区三区视频| 久久久久国内视频| 亚洲性久久影院| 亚洲av美国av| 插阴视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 亚洲成人中文字幕在线播放| 国内精品宾馆在线| 欧美绝顶高潮抽搐喷水| 久久精品国产亚洲av香蕉五月| 久99久视频精品免费| 真人做人爱边吃奶动态| 日韩欧美一区二区三区在线观看| 国产成人aa在线观看| 免费av不卡在线播放| 日韩强制内射视频| 尤物成人国产欧美一区二区三区| 午夜福利在线在线| 欧美在线一区亚洲| 亚洲天堂国产精品一区在线| 美女免费视频网站| 99热全是精品| 午夜福利在线观看免费完整高清在 | 亚洲av一区综合| 一个人看视频在线观看www免费| 日本a在线网址| 伦理电影大哥的女人| 亚洲婷婷狠狠爱综合网| 国产极品精品免费视频能看的| 麻豆国产av国片精品| 日韩人妻高清精品专区| 麻豆精品久久久久久蜜桃| 最好的美女福利视频网| 老司机午夜福利在线观看视频| 少妇丰满av| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 国内精品久久久久精免费| 天堂√8在线中文| 免费一级毛片在线播放高清视频| 免费大片18禁| 色综合色国产| 亚洲va在线va天堂va国产| 身体一侧抽搐| 日本撒尿小便嘘嘘汇集6| 国产 一区精品| 99热这里只有精品一区| 免费不卡的大黄色大毛片视频在线观看 | 自拍偷自拍亚洲精品老妇| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av香蕉五月| 真实男女啪啪啪动态图| 一级毛片电影观看 | 国产单亲对白刺激| 午夜a级毛片| 老女人水多毛片| 国产国拍精品亚洲av在线观看| 中文字幕av在线有码专区| 在线观看美女被高潮喷水网站| 婷婷亚洲欧美| 俺也久久电影网| 国产高清视频在线播放一区| 久久久久性生活片| 少妇丰满av| 国产 一区 欧美 日韩| 久久久久久久久久黄片| 中文字幕av在线有码专区| 亚洲最大成人av| 欧美人与善性xxx| av卡一久久| 国产极品精品免费视频能看的| 日韩 亚洲 欧美在线| 亚洲精品一区av在线观看| 午夜福利成人在线免费观看| 我的女老师完整版在线观看| 小蜜桃在线观看免费完整版高清| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 久久久色成人| 亚洲成人精品中文字幕电影| 99久久成人亚洲精品观看| 国产精品人妻久久久影院| 小蜜桃在线观看免费完整版高清| 岛国在线免费视频观看| 亚洲中文字幕日韩| 可以在线观看的亚洲视频| 国产三级在线视频| 亚洲不卡免费看| 国产男人的电影天堂91| 国产伦一二天堂av在线观看| 一边摸一边抽搐一进一小说| 日韩一本色道免费dvd| 最新在线观看一区二区三区| 亚洲美女视频黄频| 一级毛片aaaaaa免费看小| 一级毛片久久久久久久久女| 女同久久另类99精品国产91| 能在线免费观看的黄片| 精品久久久久久久久亚洲| 最近最新中文字幕大全电影3| 两个人视频免费观看高清| 亚洲经典国产精华液单| 国产人妻一区二区三区在| 亚洲乱码一区二区免费版| 欧美高清性xxxxhd video| 国产男人的电影天堂91| 欧美人与善性xxx| 97热精品久久久久久| 午夜福利高清视频| 人妻久久中文字幕网| 久久久久久久久久黄片| 亚洲无线观看免费| 最后的刺客免费高清国语| 天天躁夜夜躁狠狠久久av| 国产v大片淫在线免费观看| 亚洲综合色惰| 午夜视频国产福利| 卡戴珊不雅视频在线播放| 国内精品美女久久久久久| 美女高潮的动态| 亚洲av.av天堂| 亚洲中文日韩欧美视频| 欧美成人a在线观看| 成人毛片a级毛片在线播放| 欧美3d第一页| 免费不卡的大黄色大毛片视频在线观看 | 在线免费观看的www视频| 欧美高清成人免费视频www| 欧美zozozo另类| 精品一区二区三区视频在线观看免费| 最新在线观看一区二区三区| 免费电影在线观看免费观看| 尾随美女入室| 最近手机中文字幕大全| 久久久午夜欧美精品| 久久精品国产亚洲av天美| 哪里可以看免费的av片| 少妇熟女aⅴ在线视频| 给我免费播放毛片高清在线观看| 村上凉子中文字幕在线| 又黄又爽又刺激的免费视频.| 欧美性猛交╳xxx乱大交人| 三级男女做爰猛烈吃奶摸视频| 简卡轻食公司| 成人国产麻豆网| 日韩一区二区视频免费看| 69av精品久久久久久| 一区二区三区高清视频在线| 色av中文字幕| АⅤ资源中文在线天堂| 亚洲国产精品合色在线| 好男人在线观看高清免费视频| 美女大奶头视频| 天堂网av新在线| 最近中文字幕高清免费大全6| 国产一级毛片七仙女欲春2| 男人狂女人下面高潮的视频| 十八禁网站免费在线| 久久精品国产亚洲av涩爱 | 中文字幕久久专区| 校园人妻丝袜中文字幕| 亚洲欧美精品自产自拍| 99久国产av精品| 久久精品影院6| 黄色一级大片看看| 熟女人妻精品中文字幕| 日韩制服骚丝袜av| 在线播放无遮挡| 午夜免费激情av| 日韩欧美精品v在线| 丝袜喷水一区| 亚洲av一区综合| 寂寞人妻少妇视频99o| 又爽又黄无遮挡网站| 在线免费观看的www视频| 欧美+日韩+精品| 日韩亚洲欧美综合| 国产不卡一卡二| 午夜视频国产福利| 在线观看午夜福利视频| 久久人人精品亚洲av| av在线老鸭窝| 日本免费a在线| 亚洲中文字幕一区二区三区有码在线看| 夜夜夜夜夜久久久久| 国产成年人精品一区二区| 天天一区二区日本电影三级| 国产精品一区www在线观看| 男人舔女人下体高潮全视频| 赤兔流量卡办理| 午夜老司机福利剧场| 村上凉子中文字幕在线| 国产色婷婷99| av卡一久久| 蜜臀久久99精品久久宅男| 又黄又爽又刺激的免费视频.| 亚洲av第一区精品v没综合| 一进一出抽搐gif免费好疼| 九九爱精品视频在线观看| 国产一区二区三区在线臀色熟女| 亚洲电影在线观看av| 精品日产1卡2卡| 亚洲国产欧美人成| 国产老妇女一区| 男人狂女人下面高潮的视频| 床上黄色一级片| 在线观看66精品国产| 美女高潮的动态| 天堂√8在线中文| 亚洲精品一卡2卡三卡4卡5卡| 欧美色欧美亚洲另类二区| 丰满人妻一区二区三区视频av| 欧美+日韩+精品| 国产人妻一区二区三区在| 久久久成人免费电影| 亚洲性久久影院| 亚洲国产精品成人久久小说 | 亚洲精品国产av成人精品 | 男女那种视频在线观看| 亚洲欧美日韩卡通动漫| 91午夜精品亚洲一区二区三区| 国产大屁股一区二区在线视频| 日本爱情动作片www.在线观看 | 欧美成人免费av一区二区三区| 欧美一区二区国产精品久久精品| 国产亚洲精品久久久久久毛片| 亚洲欧美精品综合久久99| 亚洲无线在线观看| 精品熟女少妇av免费看| 老司机福利观看| 国产一区二区三区在线臀色熟女| 午夜福利在线观看免费完整高清在 | 又黄又爽又刺激的免费视频.| 女人十人毛片免费观看3o分钟| 又粗又爽又猛毛片免费看| 日本一本二区三区精品| 少妇猛男粗大的猛烈进出视频 | 亚洲av熟女| 午夜福利在线在线| 人妻丰满熟妇av一区二区三区|