• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Universal quantum control based on parametric modulation in superconducting circuits*

    2021-07-30 07:35:06DanYuLi李丹宇JiChu儲(chǔ)繼WenZheng鄭文DongLan蘭棟JieZhao趙杰ShaoXiongLi李邵雄XinShengTan譚新生andYangYu于揚(yáng)
    Chinese Physics B 2021年7期
    關(guān)鍵詞:新生

    Dan-Yu Li(李丹宇) Ji Chu(儲(chǔ)繼) Wen Zheng(鄭文) Dong Lan(蘭棟) Jie Zhao(趙杰)Shao-Xiong Li(李邵雄) Xin-Sheng Tan(譚新生) and Yang Yu(于揚(yáng))

    1National Laboratory of Solid State Microstructures,School of Physics,Nanjing University,Nanjing 210093,China

    2Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: superconducting qubits,parametric modulation,single-qubit gate,iSWAP gate

    1. Introduction

    Recent progress shows that superconducting quantum circuit is one of the most promising candidates for quantum computing.[1-4]While quantum chips with hundreds of qubits can be expected in the near future,[5,6]the expansion of electronic devices for quantum control has become a significant problem. There is an urgent need for a scalable and economical control scheme.

    The frequency of superconducting qubits generally lies in a range of 4 GHz-10 GHz.[7-9]To manipulate the qubits,sequences of microwave pulses with a duration from tens to hundreds of nanoseconds are injected into the quantum chip through control lines. Although such microwave pulses can be directly generated by digital-to-analog converters(DACs)with a high sampling rate,[10,11]the instruments are not economical for widespread integration. Currently, the up-conversion technology is widely used. The microwave signal is produced by mixing up a continuous microwave with intermediate frequency (IF) pulses, utilizing an IQ mixer. The IF pulses are produced by DACs with sampling rates of a few gigahertz.This method has the following drawbacks: (i) Each qubit requires at least two DACs and an IQ mixer for up-conversion,which has become a great cost when scaling up;(ii)Since the electrical performance of the mixer varies due to manufacturing and environmental influence, regular calibration is necessary to suppress image tones and carrier leakage.[12]The careful calibration of hundreds of IQ mixers regularly becomes a daunting task in real experiments. Besides, additional hardware is needed for the calibration,such as spectrum analyzers.To alleviate these problems,some efforts have been made recently by hardware improvement.[13,14]

    In this paper, we propose a simple and economical universal control scheme based on parametric modulation,[15-20]which provides a solution from another aspect. In the scheme,a continuous microwave signal is used as a global pump for all qubits in the chip. Each qubit is individually controlled by a sub-GHz parametric signal through itsZcontrol line. Both single-qubit manipulations and two-qubit gates can be realized through parametric modulation. The control scheme gets rid of IQ mixers, dramatically simplifies the input chain and reduces the potential source of errors. The demand for DACs has also been halved, reducing the cost. The rest of this paper is organized as follows. We introduce the control scheme and compare it with conventional methods in Section 2. We explain how to construct universal quantum gates using parametric modulation in Section 3 and analyze the control fidelity in Section 4. We summarize the article in the last section.

    2. Control scheme

    We illustrate our control scheme in Fig. 1(a). A continuous pump signal is injected into the quantum chip through a common drive line,which is coupled to all qubits. The pump signal drives all the qubits non-resonantly. Since the effective drive amplitude on the qubits (tens of megahertz in Rabi frequency)is generally much smaller than the frequency detuning between the qubits and the pump signal,negligible excitation is caused.

    To perform gate operations, we parametrically modulate a qubit’s frequency with a sinusoidal pulse,through its Z control line. When the frequency of the modulated pulse closely resonates with the detuning between the qubit and the pump signal,single-qubit excitation can be achieved. Two-qubit operations (typically iSWAP-type gates) are realized when the modulation frequency is closely resonant to the detuning between two coupled qubits.

    Fig.1. Illustration of three control schemes: (a)full parametric modulation;(b)full microwave control; (c)hybrid control including microwave control and frequency modulation. The left side shows the electronic circuits of the schemes and the middle part illustrates pulse sequences. The right side represents the quantum devices. For simplicity, control schemes for two coupled qubits are shown.

    In the gate scheme, all pulses are directly produced by DACs, without using any IQ mixer for up-conversion. Since the single-qubit gates(SQGs)and iSWAP gates can share the same control line and DACs,anN-qubit chip can be fully controlled byN Zcontrol lines andNDACs. The frequency difference between qubits and the pump signal is about 1 GHz-2 GHz, which means the sampling rate of DACs needs to be about 5 GHz. To reduce the limitations of the scheme, the qubit(typically transmon)can be biased at its sweet spot and the modulation frequency is then halved.[15,16,21,22]Therefore,DACs with a sampling rate of 2 GHz-3 GHz are sufficient for gate operations in experiments (See Supplementary material for details).

    Our gate scheme is fully based on the parametric frequency modulation of the qubits. We compare our scheme with conventional control schemes which are based on full microwave modulation[23-26]and the hybrid control.[4,27]In the full microwave scheme,both SQGs and two-qubit gates(typically CR gates) are realized with microwave pulses, which are upconverted from a continuous microwave using IQ mixers. SQGs and two-qubit gates share the same control line and room temperature equipments. In this scheme,two DACs and one mixer are needed to manipulate one qubit, see Fig. 1(b).In the hybrid control scheme, the SQGs are realized by upconverted microwave pulses injected through theXYlines,and two-qubit gates are realized by low-frequency pulses injected through theZlines, see Fig. 1(c). Although theZline andXYline can be merged in circuit design,[1,28]the microwave excitation and the frequency modulation still need independent DACs for control. Therefore,in the hybrid scheme,each qubit needs 3 DACs (two for microwave control and one for frequency modulation)and one mixer. The comparison shows that our scheme greatly simplifies the control system and completely gets rid of IQ mixers. Generally,each pump signal can control tens of qubits,with the frequencies of the qubits alternately arranged. For larger-scale quantum computation,more than one pump signals can be introduced.

    Although parametric modulation is preferred in our proposal,it is feasible to construct SQGs(iSWAP gates)by tuning qubit frequency into resonance with the pump frequency(frequency of neighboring qubit). However, there are two drawbacks in the latter case: i) The frequency crowding problem:during gate operations,the system may pass through unwanted crossings with neighboring qubit’s energy levels,causing state leakage; ii) Generally, the qubits are idly biased at the sweet spot with longer coherent time.Strongly tuning the qubit away from the sweet spot will cause severe decoherence. The parametric modulation enables frequency-selective gates and can effectively avoid these two problems.

    3. Universal quantum gates based on parametric modulation

    In this section, we theoretically explain how the SQGs and the iSWAP-type gates are constructed in our control scheme. For simplicity, here we consider two coupled qubitsQ1andQ2. The coupling strength between the two qubits isg12. The frequency of each qubit is tuned by an external flux signal. A global pump signal of amplitudePis injected into the quantum chip. The system Hamiltonian is(set ˉh=1)

    3.1. Single-qubit gates

    For SQGs, we consider the single qubitQ1. The corresponding modulation signal is in derivative formξ1(t)=ζ′1(t),whereζ1(t)=A(t)sin(Δp1t+φf(shuō)).Using Jacobi-Anger expansion,the first three terms in Eq.(3)becomes

    where Jn(z)is then-th-order Bessel function of the first kind.The rapid oscillation terms in the expansion are omitted using RWA,the effect of these terms will be discussed in Section 4.The phaseφf(shuō)controls the direction ofXYrotation and

    3.2. iSWAP-type gates

    For two-qubit gates between two coupled qubitsQ1andQ2, we consider a sinusoidal signalζ1(t)=A(t)sin(-Δ12t+φf(shuō)) onQ1(andζ2(t)=0 onQ2). The effective interaction Hamiltonian betweenQ1andQ2is

    3.3. Phase accumulation

    In real experiments, the non-resonance terms in the Jacobi-Anger expansion will cause frequency shift of the qubits during parametric modulation, known as Stark shift.[31,32]The frequency shift will introduce an additional phase accumulation on the qubits. The phase accumulations become more complicated when considering higher energy levels and nonlinear frequency response to external signal(Ref.[15]and Supplementary material). The phase accumulations can be measured by Ramsey experiments and cancelled by virtualZgates.[29]

    It is worth mentioning that the actual frequency modulationξ(t)is the derivation of primitive function:ξ(t)=ζ′(t)=A′(t)sin(ωt+φf(shuō))+ωA(t)cos(ωt+φf(shuō)).ξ(t) is also a sinusoidal modulation,the phase ofξ(t)is

    If the envelopeA(t)is slowly varied compared toω(A′(t)?ωA(t)),the phase can be approximated byφm=φf(shuō).

    4. Error analysis

    In the above discussion, only the resonant term (n=1)in the Jacobi-Anger expansion is considered. While the nonresonant interaction terms (n/=1) may cause unwanted transition and damage the control fidelity. We can use a simplified Rabi model to estimate the transition errors. During the parametric control,both the interaction strengthΩand the detuningΔof a non-resonant interaction in the Rabi model are treated as constants. The transition rate caused by the nonresonant interaction is

    In the case of large detuning(Δ ?Ω~1/Tgate),εis a rapid oscillation term. We use the average value to evaluate the gate error, the transition rate can be simplified asε ?Ω2/2Δ2.Since typical superconducting qubits such as transmons and C-shunted flux qubits are weakly anharmonic,[33,34]the error analysis should include the second excitation level. Thus,the lowest three levels of each qubit are considered in the following discussion.

    4.1. Errors of the parametric SQGs

    With the sinusoidal modulationζ(t)=A(t)sin(ωt+φf(shuō)),the Hamiltonian for the parametric SQGs is

    whereα1is the anharmonicity of the qubitQ1andΔp1is the detuning between pump signal andQ1.B=λPdenotes the effective pump strength on the qubit.

    The parametric SQGs are realized by setting the first order Bessel interaction into resonance (ω=Δp1,n=1). All the other terms are non-resonant interactions,the corresponding interaction strength and the estimated error rates with typical parameters are shown in Table 1. According to Eq. (9),the terms with relatively small detuning and large interaction strength generally cause dominant errors. Assuming the modulation amplitude is smaller than the detuning(|A(t)|<1),the terms withn >1 andn <0 can be neglected since these terms have both small interaction strength and large detuning. Notice that the transition errors should be multiplied by an extra factorf. For example, the error rates caused by interactions in subspace{|1〉,|2〉}should be multiplied byf=0.5, since such an interaction has no effect if the qubit is in state|0〉.

    All transition errors scale quadratically with the pump strengthB, as shown in Fig. 2(a). Since J0(A(t))~1 withA(t)<1, the 0th-order error is almost independent of the modulation amplitudeA(t). But the 1st-order interaction in{|1〉,|2〉}subspace is strongly related to the modulation amplitude. This error becomes dominant with largeA(t),shown as the dashed blue line in Fig.2(a). There is a trade-off between the gate time and the transition errors. Stronger pump strengthBor modulation strengthA(t) will result in shorter gate time but cause more transition errors. In all,we find that total error rates are smaller than 0.1%,with a gate time of about 60 ns.

    Fig.2.Error analysis of parametric modulation.(a)Gate time(black circles)and transition errors(solid lines)of X/2 gate versus pump strength B,with modulation factor A=0.27. The detuning between qubit’s frequency and the pump frequency is Δp1/2π =1.5 GHz. The anharmonicity of the qubit is α1/2π =-250 MHz. State leakage arising from 1st-order Bessel interaction becomes dominant in case of strong modulation amplitude(A=0.4),shown as the dashed blue line. (b)Gate time(black squares)and transition errors(solid lines)of iSWAP gates versus modulation factor A. The detuning between the two qubits is Δ12/2π=800 MHz and the coupling strength strength is g12/2π =6.7 MHz. The anharmonicities of both qubits are set as-250 MHz. The dashed black line shows the ZZ interaction error during the parametric modulation.

    Table 1. Non-resonant interactions in a parametric SQG.The error rates are evaluated as(Ω2/2Δ2)f,with B/2π=30 MHz,Δp1/2π =1.5 GHz,α1/2π =-250 MHz,and A(t)=0.27.

    4.2. Errors of the iSWAP gate

    Similar error analysis can be given to the iSWAP gates.The interaction Hamiltonian for two-qubit gates betweenQ1andQ2is

    The resonant condition isΔ12+ω=0. We show the nonresonant interaction terms in Table 2. Error rates caused by the terms withn >1 orn <0 are negligible. Notice that the strength of 0th-order interaction is in form of 1-J0(A),instead of J0(A), in the dressed eigenstates basis. The corresponding error rates of iSWAP gatesversusmodulation amplitude are shown in Fig. 2(b). The 1st-order terms in the subspace of{|11〉,|20〉}and{|11〉,|02〉}are the dominant sources of errors.

    In addition to transition errors, there is also intrinsicZZerror. TheZZcoupling strength is defined asη=ω11+ω00-ω01-ω10.[35-37]Due to the level repulsion effect of higher levels, theZZcoupling strength between two coupled qubits is[38,39]

    Table 2. Non-resonant interactions in a parametric iSWAP gate. The error rates are calculated with g12/2π =6.7 MHz,Δ12/2π =800 MHz,α1/2π =α2/2π =-250 MHz,and A(t)=1.

    5. Summary

    We propose a universal control scheme based on parametric frequency modulation. By halving the required DAC,this control scheme effectively saves the cost of large-scale quantum control. The input system has been greatly simplified.Because no IQ mixer is used, complicated calibration work is avoided. We theoretically explain how the universal gates are constructed by introducing a global microwave pump. The fidelity analysis shows that The error rate of parametric control is below 0.1% with a typical gate time of 60 ns (100 ns)for single-qubit (two-qubit) gates, proving its potential for a broad application.

    猜你喜歡
    新生
    重獲新生 庇佑
    張新生藏品
    張新生藏品
    新生月賽優(yōu)秀作品
    北廣人物(2020年21期)2020-06-01 07:37:58
    領(lǐng)途新生
    汽車觀察(2018年10期)2018-11-06 07:05:22
    新生
    讀者(2018年15期)2018-07-18 07:41:28
    堅(jiān)守,讓百年非遺煥新生
    海峽姐妹(2017年7期)2017-07-31 19:08:23
    狂熱新生力
    新生娃萌萌噠
    視野(2015年4期)2015-07-26 02:56:52
    新生改版
    成年人免费黄色播放视频| 国产av一区二区精品久久| 性色av一级| 国产在线一区二区三区精| 欧美老熟妇乱子伦牲交| 亚洲av国产av综合av卡| 天堂中文最新版在线下载| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜美腿诱惑在线| 国产1区2区3区精品| 国产精品久久久久久人妻精品电影 | 视频区图区小说| 久久这里只有精品19| 亚洲成国产人片在线观看| 伦理电影免费视频| 伦理电影免费视频| 啦啦啦中文免费视频观看日本| 久久国产亚洲av麻豆专区| 国产成+人综合+亚洲专区| 欧美激情久久久久久爽电影 | av天堂在线播放| 人妻 亚洲 视频| 欧美xxⅹ黑人| 爱豆传媒免费全集在线观看| 欧美精品啪啪一区二区三区 | 欧美日韩一级在线毛片| 国产免费视频播放在线视频| 国产在线一区二区三区精| 成人免费观看视频高清| 亚洲国产av新网站| 亚洲专区字幕在线| 国产真人三级小视频在线观看| 免费高清在线观看日韩| 国产一区二区在线观看av| 啦啦啦视频在线资源免费观看| 国产无遮挡羞羞视频在线观看| 两个人免费观看高清视频| 精品免费久久久久久久清纯 | 久久九九热精品免费| 正在播放国产对白刺激| 精品国产超薄肉色丝袜足j| 久久久欧美国产精品| 亚洲一码二码三码区别大吗| 大码成人一级视频| 午夜福利影视在线免费观看| 久久人人97超碰香蕉20202| 国产精品二区激情视频| 最黄视频免费看| 在线精品无人区一区二区三| 99国产精品一区二区蜜桃av | 一级毛片电影观看| 久久免费观看电影| 久久99一区二区三区| 免费人妻精品一区二区三区视频| 午夜老司机福利片| 国产精品亚洲av一区麻豆| svipshipincom国产片| av国产精品久久久久影院| 无限看片的www在线观看| 亚洲精品成人av观看孕妇| 成人av一区二区三区在线看 | 性少妇av在线| 国产片内射在线| 精品一区在线观看国产| 亚洲熟女毛片儿| 国产欧美日韩一区二区三 | 亚洲欧美一区二区三区久久| 亚洲第一av免费看| 1024视频免费在线观看| 久久久久久久精品精品| 亚洲精品国产av蜜桃| 国产一区二区激情短视频 | 日韩视频在线欧美| 麻豆av在线久日| www.熟女人妻精品国产| 一二三四在线观看免费中文在| 国产av一区二区精品久久| 又大又爽又粗| 久久久久久久久免费视频了| 纯流量卡能插随身wifi吗| 精品少妇黑人巨大在线播放| 亚洲色图 男人天堂 中文字幕| 淫妇啪啪啪对白视频 | 19禁男女啪啪无遮挡网站| 制服诱惑二区| 黄色怎么调成土黄色| 不卡一级毛片| 日韩视频一区二区在线观看| 欧美中文综合在线视频| 欧美日韩黄片免| 久久久水蜜桃国产精品网| 母亲3免费完整高清在线观看| 91麻豆精品激情在线观看国产 | 国产一区二区激情短视频 | 午夜福利一区二区在线看| 久久久水蜜桃国产精品网| 亚洲欧美精品自产自拍| 丝袜人妻中文字幕| 欧美成狂野欧美在线观看| 亚洲国产av影院在线观看| 伦理电影免费视频| 国产精品久久久久成人av| 一区二区三区激情视频| 欧美97在线视频| 精品亚洲成a人片在线观看| 啦啦啦 在线观看视频| 午夜精品久久久久久毛片777| 欧美久久黑人一区二区| 午夜精品国产一区二区电影| 成在线人永久免费视频| 一级片'在线观看视频| 国产成+人综合+亚洲专区| 美女午夜性视频免费| 亚洲黑人精品在线| 午夜免费鲁丝| 丁香六月天网| 汤姆久久久久久久影院中文字幕| 亚洲中文日韩欧美视频| 男人添女人高潮全过程视频| 欧美日韩成人在线一区二区| 啦啦啦视频在线资源免费观看| 人人妻,人人澡人人爽秒播| 国产亚洲精品久久久久5区| 大片电影免费在线观看免费| 蜜桃国产av成人99| 中文字幕人妻丝袜制服| 日本猛色少妇xxxxx猛交久久| 又紧又爽又黄一区二区| 成年人免费黄色播放视频| 99久久精品国产亚洲精品| 高清欧美精品videossex| 久久狼人影院| 国产欧美日韩一区二区精品| 亚洲av成人一区二区三| 宅男免费午夜| 极品人妻少妇av视频| 老司机影院成人| 在线永久观看黄色视频| 亚洲av男天堂| 亚洲五月色婷婷综合| 久久久水蜜桃国产精品网| 夜夜夜夜夜久久久久| 水蜜桃什么品种好| 国产成人精品在线电影| 久久久精品94久久精品| 涩涩av久久男人的天堂| a在线观看视频网站| 啦啦啦视频在线资源免费观看| 丝袜喷水一区| 亚洲精品久久久久久婷婷小说| 国产av国产精品国产| 精品亚洲成a人片在线观看| 电影成人av| 久久99热这里只频精品6学生| 极品少妇高潮喷水抽搐| 男女下面插进去视频免费观看| 久久久精品94久久精品| 好男人电影高清在线观看| 日韩欧美免费精品| 久久久久久久久免费视频了| 精品一区二区三卡| 国产精品偷伦视频观看了| 在线观看免费高清a一片| 国产一区有黄有色的免费视频| 亚洲国产欧美一区二区综合| 黄色a级毛片大全视频| 777久久人妻少妇嫩草av网站| 大型av网站在线播放| 99国产精品99久久久久| 色视频在线一区二区三区| 久久影院123| 色视频在线一区二区三区| 国产精品免费视频内射| 午夜福利视频在线观看免费| 成人亚洲精品一区在线观看| 美女主播在线视频| 丰满迷人的少妇在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲成人免费av在线播放| 国产三级黄色录像| 欧美成狂野欧美在线观看| 青春草亚洲视频在线观看| 一级a爱视频在线免费观看| 亚洲国产看品久久| 高清黄色对白视频在线免费看| 在线av久久热| 国产视频一区二区在线看| 高清视频免费观看一区二区| 久久久久国产一级毛片高清牌| 亚洲欧美日韩另类电影网站| 午夜两性在线视频| 天天添夜夜摸| 国产精品.久久久| 久久久国产精品麻豆| 久久亚洲精品不卡| 一本一本久久a久久精品综合妖精| 伊人亚洲综合成人网| 91麻豆av在线| 色婷婷久久久亚洲欧美| 国产xxxxx性猛交| 人人妻人人澡人人爽人人夜夜| 精品熟女少妇八av免费久了| 久久人人爽av亚洲精品天堂| 亚洲专区国产一区二区| 考比视频在线观看| 欧美xxⅹ黑人| 日本精品一区二区三区蜜桃| 国产精品99久久99久久久不卡| 国产成+人综合+亚洲专区| 国产视频一区二区在线看| 一个人免费看片子| 日本黄色日本黄色录像| 一级片免费观看大全| 亚洲成国产人片在线观看| 老司机亚洲免费影院| av欧美777| 视频在线观看一区二区三区| √禁漫天堂资源中文www| a 毛片基地| 男女无遮挡免费网站观看| 男女免费视频国产| 中文字幕色久视频| 美女福利国产在线| 久久久久久久大尺度免费视频| 欧美黄色片欧美黄色片| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 999久久久精品免费观看国产| 欧美日本中文国产一区发布| 欧美日韩视频精品一区| 国产1区2区3区精品| 日本91视频免费播放| 亚洲一区中文字幕在线| 少妇 在线观看| 考比视频在线观看| 精品国产一区二区三区四区第35| 一二三四社区在线视频社区8| 狠狠狠狠99中文字幕| 精品欧美一区二区三区在线| 国产精品久久久久成人av| 日本欧美视频一区| 交换朋友夫妻互换小说| 99热网站在线观看| 99久久综合免费| 99久久人妻综合| 亚洲av欧美aⅴ国产| 免费在线观看日本一区| 女人被躁到高潮嗷嗷叫费观| 亚洲精品粉嫩美女一区| 91国产中文字幕| 国产男女内射视频| 一本综合久久免费| 国产一区有黄有色的免费视频| www.av在线官网国产| 久久精品亚洲av国产电影网| 精品少妇久久久久久888优播| 成人三级做爰电影| 一本一本久久a久久精品综合妖精| 天堂中文最新版在线下载| 一级毛片电影观看| 嫩草影视91久久| 99国产精品一区二区蜜桃av | 欧美老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 丁香六月欧美| 久久久久久人人人人人| 午夜福利免费观看在线| 成人国语在线视频| 精品少妇久久久久久888优播| 黄网站色视频无遮挡免费观看| 久久国产精品男人的天堂亚洲| 精品免费久久久久久久清纯 | 精品久久久久久久毛片微露脸 | 国产精品久久久久久精品电影小说| 午夜福利乱码中文字幕| 啪啪无遮挡十八禁网站| 欧美久久黑人一区二区| 亚洲专区中文字幕在线| 天天添夜夜摸| 欧美日韩亚洲国产一区二区在线观看 | 人妻 亚洲 视频| 国产97色在线日韩免费| av天堂在线播放| 精品人妻1区二区| 久久久久久久久久久久大奶| 国产亚洲精品一区二区www | 国产伦理片在线播放av一区| √禁漫天堂资源中文www| 波多野结衣av一区二区av| 日本av免费视频播放| 欧美国产精品va在线观看不卡| videosex国产| 啦啦啦在线免费观看视频4| 亚洲精品一二三| 精品久久蜜臀av无| 波多野结衣av一区二区av| 黄色片一级片一级黄色片| 久久久精品区二区三区| 中国美女看黄片| 欧美 亚洲 国产 日韩一| 午夜福利免费观看在线| 中文字幕高清在线视频| 99re6热这里在线精品视频| 国产片内射在线| 日韩电影二区| 日韩中文字幕视频在线看片| 波多野结衣av一区二区av| 久久久精品国产亚洲av高清涩受| 嫩草影视91久久| 69精品国产乱码久久久| 亚洲精品国产区一区二| 国产精品偷伦视频观看了| 亚洲欧美精品综合一区二区三区| 永久免费av网站大全| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品国产精品久久久不卡| 欧美大码av| 两个人免费观看高清视频| 婷婷丁香在线五月| 一个人免费看片子| 精品久久蜜臀av无| 国产xxxxx性猛交| 日韩大片免费观看网站| 欧美av亚洲av综合av国产av| 可以免费在线观看a视频的电影网站| 性色av一级| 超色免费av| 午夜激情av网站| 成年美女黄网站色视频大全免费| 高清欧美精品videossex| 成在线人永久免费视频| 国产在视频线精品| 亚洲九九香蕉| 一本综合久久免费| 精品免费久久久久久久清纯 | 熟女少妇亚洲综合色aaa.| 国产精品久久久av美女十八| 成人黄色视频免费在线看| 亚洲欧美激情在线| 男女边摸边吃奶| 在线十欧美十亚洲十日本专区| 久久女婷五月综合色啪小说| 免费一级毛片在线播放高清视频 | 一区在线观看完整版| 亚洲熟女毛片儿| 色精品久久人妻99蜜桃| 欧美日韩av久久| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品电影小说| 满18在线观看网站| 欧美激情久久久久久爽电影 | 久久久久国产一级毛片高清牌| 国产亚洲精品第一综合不卡| 国产成人欧美在线观看 | 亚洲精品中文字幕在线视频| 亚洲熟女精品中文字幕| 久久久久久人人人人人| 黄色片一级片一级黄色片| 男人舔女人的私密视频| 免费在线观看黄色视频的| 亚洲国产成人一精品久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 91字幕亚洲| 亚洲天堂av无毛| 一区二区三区激情视频| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 男女之事视频高清在线观看| 日韩一卡2卡3卡4卡2021年| 免费观看av网站的网址| 欧美黄色淫秽网站| 在线十欧美十亚洲十日本专区| 国产精品国产av在线观看| 欧美日韩一级在线毛片| 啦啦啦视频在线资源免费观看| 成年动漫av网址| 日本一区二区免费在线视频| 亚洲精品成人av观看孕妇| 黑丝袜美女国产一区| 制服人妻中文乱码| 国产精品麻豆人妻色哟哟久久| tocl精华| 国产精品99久久99久久久不卡| 国产成人精品在线电影| 中文字幕最新亚洲高清| 国产精品一区二区精品视频观看| 久久久国产欧美日韩av| 久久精品成人免费网站| 丁香六月欧美| 啦啦啦免费观看视频1| av超薄肉色丝袜交足视频| 亚洲精品国产色婷婷电影| 妹子高潮喷水视频| 久久99一区二区三区| 国产精品一区二区在线不卡| 三上悠亚av全集在线观看| 国产伦人伦偷精品视频| 久久ye,这里只有精品| 99国产极品粉嫩在线观看| av超薄肉色丝袜交足视频| 9色porny在线观看| 极品少妇高潮喷水抽搐| 久久人妻熟女aⅴ| av国产精品久久久久影院| 久热这里只有精品99| 久久久精品国产亚洲av高清涩受| 99热全是精品| 一个人免费在线观看的高清视频 | 亚洲一区二区三区欧美精品| 亚洲人成77777在线视频| 淫妇啪啪啪对白视频 | 欧美黑人欧美精品刺激| 91麻豆av在线| 老熟妇乱子伦视频在线观看 | 亚洲成国产人片在线观看| 黄色 视频免费看| 久久人妻福利社区极品人妻图片| 在线观看免费高清a一片| 精品乱码久久久久久99久播| 91麻豆av在线| 自线自在国产av| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美一区二区三区久久| 国产91精品成人一区二区三区 | av一本久久久久| 亚洲av成人不卡在线观看播放网 | 男男h啪啪无遮挡| 欧美午夜高清在线| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美精品综合一区二区三区| 国产免费现黄频在线看| 午夜久久久在线观看| 久久精品国产a三级三级三级| 中国美女看黄片| 中文字幕精品免费在线观看视频| 欧美日本中文国产一区发布| 免费久久久久久久精品成人欧美视频| 成年女人毛片免费观看观看9 | bbb黄色大片| 不卡一级毛片| 精品国产一区二区久久| 少妇精品久久久久久久| 亚洲精品国产色婷婷电影| 美女高潮喷水抽搐中文字幕| 免费一级毛片在线播放高清视频 | 国产欧美日韩综合在线一区二区| av线在线观看网站| 国产男女内射视频| 午夜福利,免费看| 亚洲精品av麻豆狂野| 人人妻人人澡人人爽人人夜夜| 国产在视频线精品| 久久天躁狠狠躁夜夜2o2o| 久久久久久免费高清国产稀缺| 最黄视频免费看| 涩涩av久久男人的天堂| 欧美少妇被猛烈插入视频| 亚洲成人国产一区在线观看| 日本av手机在线免费观看| 人妻一区二区av| 伦理电影免费视频| 高清在线国产一区| 婷婷色av中文字幕| 免费观看人在逋| 国产片内射在线| tube8黄色片| 女警被强在线播放| 性色av一级| av超薄肉色丝袜交足视频| 中文字幕精品免费在线观看视频| 老司机影院毛片| 日本av手机在线免费观看| 91麻豆精品激情在线观看国产 | 我的亚洲天堂| 两个人免费观看高清视频| 大片电影免费在线观看免费| 久久久国产欧美日韩av| 女警被强在线播放| 老汉色∧v一级毛片| 欧美日韩成人在线一区二区| 男人爽女人下面视频在线观看| 国产福利在线免费观看视频| 不卡一级毛片| 99久久精品国产亚洲精品| 日韩精品免费视频一区二区三区| 人人妻人人添人人爽欧美一区卜| 大陆偷拍与自拍| 水蜜桃什么品种好| 欧美日韩福利视频一区二区| 国产精品久久久av美女十八| 久久久久久久久免费视频了| videosex国产| 手机成人av网站| 久9热在线精品视频| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 中文字幕人妻丝袜一区二区| 9191精品国产免费久久| 欧美精品一区二区大全| 中文字幕制服av| 爱豆传媒免费全集在线观看| 一本一本久久a久久精品综合妖精| 国产成人精品久久二区二区免费| 亚洲黑人精品在线| 999久久久国产精品视频| 日韩中文字幕视频在线看片| 日本精品一区二区三区蜜桃| 亚洲精品国产av成人精品| 免费高清在线观看视频在线观看| 日韩制服丝袜自拍偷拍| 多毛熟女@视频| 19禁男女啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片| 99国产极品粉嫩在线观看| 国产亚洲午夜精品一区二区久久| 国产欧美日韩精品亚洲av| 久久精品国产综合久久久| 国产精品 国内视频| 老汉色∧v一级毛片| 国产成人欧美在线观看 | 日韩 欧美 亚洲 中文字幕| 淫妇啪啪啪对白视频 | 国产成人免费无遮挡视频| 久久国产精品大桥未久av| 一级a爱视频在线免费观看| 99久久国产精品久久久| 午夜福利乱码中文字幕| 日日爽夜夜爽网站| 欧美精品一区二区大全| 老熟妇仑乱视频hdxx| 老司机福利观看| 国产一区二区三区综合在线观看| 欧美性长视频在线观看| 久久九九热精品免费| 免费黄频网站在线观看国产| av天堂久久9| 欧美日韩亚洲综合一区二区三区_| 97精品久久久久久久久久精品| 国产成人一区二区三区免费视频网站| 久久精品aⅴ一区二区三区四区| 啦啦啦视频在线资源免费观看| 啪啪无遮挡十八禁网站| 999久久久国产精品视频| 午夜成年电影在线免费观看| av有码第一页| 一边摸一边抽搐一进一出视频| 99精品久久久久人妻精品| 免费少妇av软件| 看免费av毛片| 永久免费av网站大全| 中文字幕制服av| 黑人猛操日本美女一级片| 成人亚洲精品一区在线观看| 99热全是精品| 夜夜夜夜夜久久久久| 黄片小视频在线播放| 国产成+人综合+亚洲专区| 亚洲美女黄色视频免费看| 亚洲成人免费av在线播放| 黑人欧美特级aaaaaa片| 男女免费视频国产| 国产高清视频在线播放一区 | 黄色视频不卡| 在线 av 中文字幕| 99久久国产精品久久久| 国产精品久久久人人做人人爽| 丰满少妇做爰视频| 大香蕉久久成人网| 国产亚洲av片在线观看秒播厂| 久久人人爽av亚洲精品天堂| 天堂中文最新版在线下载| 午夜视频精品福利| 亚洲综合色网址| 色94色欧美一区二区| 国产精品99久久99久久久不卡| 国产麻豆69| 高清视频免费观看一区二区| 免费日韩欧美在线观看| 99久久国产精品久久久| 久久久欧美国产精品| 我要看黄色一级片免费的| 成人黄色视频免费在线看| 国产精品香港三级国产av潘金莲| 亚洲av片天天在线观看| 免费看十八禁软件| 国产精品麻豆人妻色哟哟久久| xxxhd国产人妻xxx| 午夜福利在线观看吧| 国产精品影院久久| 人人妻人人添人人爽欧美一区卜| 最近最新中文字幕大全免费视频| 国产成人欧美| av一本久久久久| 少妇裸体淫交视频免费看高清 | 亚洲国产欧美一区二区综合| av天堂在线播放| 50天的宝宝边吃奶边哭怎么回事| av网站免费在线观看视频| 亚洲伊人色综图| 国产一区二区 视频在线| 久久精品国产亚洲av高清一级| 男人舔女人的私密视频| 久久热在线av| 大型av网站在线播放| 精品人妻一区二区三区麻豆| 淫妇啪啪啪对白视频 | 欧美 亚洲 国产 日韩一| 99香蕉大伊视频| 国产91精品成人一区二区三区 | 青春草视频在线免费观看| 色播在线永久视频| 制服诱惑二区| 考比视频在线观看| 又黄又粗又硬又大视频|