• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bifurcation mechanism of interfacial electrohydrodynamic gravity-capillary waves near the minimum phase speed under a horizontal electric field

    2021-07-30 13:34:52GexingXuZhiLin

    Gexing Xu, Zhi Lin

    School of Mathematical Sciences, Zhejiang University, Zhejiang 310027, China

    Keywords: Solitary waves Bifurcation mechanism Horizontal electric field Kelvin–Helmholtz instability

    A B S T R A C T We investigate the evolution of interfacial gravity-capillary waves propagating along the interface between two dielectric fluids under the action of a horizontal electric field. There is a uniform background flow in each layer, and the relative motion tends to induce Kelvin–Helmholtz (KH) instability. The combined effects of gravity, surface tension and electrically induced forces are all taken into account. Under the short-wave assumption, the expansion and truncation method of Dirichlet-Neumann (DN) operators is applied to derive a reduced dynamical model. When KH instability is suppressed linearly by a considerably large electric field, our numerical results reveal that in certain regions of parameter space, nonlinear symmetric traveling wave solutions can be found near the minimum phase speed. Additionally, the detailed bifurcation structures are presented together with typical wave profiles.

    Electrohydrodynamics (EHD), a subject dealing with the interplay of fluids with electric fields, has a wide range of applications in industry, chemistry and biology, such as industrial coating process, electrospray ionization and biological membranes, etc. [1–3] .Due to practical purposes, in-depth investigations about the wave formation and the bifurcation of EHD interfacial waves are necessary. It is well known that the effect of electric fields can be stabilizing or destabilizing, broadly depending on its orientation relative to the unperturbed interface. A typical work conducted by Taylor and Melcher [4] verified theoretically and experimentally that the vertical field can destabilize the interface between conducting and non-conducting fluids. On the contrary, the horizontal field has a dispersive stabilization to the interface, and can be employed to suppress the Rayleigh–Taylor (RT) and Kelvin–Helmholtz (KH) instabilities [ 5 , 6 ].

    Recently, the research of EHD has made a huge progress. There is a plethora of mathematical models proposed in terms of different physical backgrounds. Easwaran [7] derived first a Kortewegde Vries (KdV) for the motion of long waves on a conducting fluid layer under the influence of a vertical electric field, and its corresponding coefficients are related to the applied electric field. In the perfect dielectric fluid influenced by a horizontal field, Tilley et al. [8] derived an evolution equation including a Hilbert transform which is a nonlocal operator, and further showed the stabilizing effect of the electric field which can delay the formation of rupture.Papageorgiou [9] summarized systematically long-wave theories on film flows in the review paper. These studies were all based on the long-wave model. However, in present problem we derive a reduced short-wave model for gravity-capillary (GC) waves between two semi-infinite dielectric fluids.

    When the electric field is absent, the research of interfacial GC waves has been investigated by many scholars over the past few decades. It is noted that there are two conditions proposed by Akylas [10] for the existence of wavepacket solitary waves. The first one is the phase speed has a global extrema at the finite wavenumber. The other is that the associated nonlinear Schr?dinger (NLS) equation is of foucsing type. However, in the interfacial water waves problem, Laget and Dias [11] found wavepacket solitary waves that only exist with the finite amplitude by using the direct numerical simulation method to the full Euler equations when the NLS equation is defocusing (i.e., the second condition is not satisfied). On the side of the bifurcation theory, Wang et al. [12] proposed a dynamical model to further explain their bifurcation mechanism for finite-amplitude solitary waves. However, if a uniform background flow is introduced in each layer resulting in a velocity jump across the interface, Wessiman [13] showed that wavepacket solitaty waves also exist in linearly stable region, but it is susceptible to KH instability.

    In this paper, introducing two additional physical effects of the uniform background flow and the horizontal electric field, we consider interfacial GC waves propagating along the interface between two semi-infinite dielectric fluids. For the electrocaplliary waves,Grandison et al. [14] found that the horizontal electric field can linearly stabilize symmetric and antisymmetric modes supporting a tangential velocity discontinuity at the interface when the strength of the applied electric field is greater than a threshold required to suppress KH instability. In the nonlinear instability of KH problem for two dielectric fluids, Elhefnawy [15] showed that in the linearly stable regime the cubic NLS equation is an appropriate governing equation describing the amplitude of wavepackets under the action of an oblique electric field. Based on the argument above, we confine our attention in the linearly stable region to search for symmetric traveling wave solutions predicted by the cubic NLS equation in certain regions of parameter space where KH instability is suppressed by the applied electric field.

    Consider two immiscible, inviscid and incompressible dielectric fluid layers of infinite depth in the two-dimensional setting, with the lighter fluid lying atop the heavier one, influenced by a uniform horizontal electric field. In the undisturbed state withy= 0 ,the flows are supposed to be irrotational, and the upper layer (superscripts + ) and the lower layer (superscripts –) both have a horizontal uniform flow, a constant density and an electrical permittivity, denoted byU±,ρ±andε±, respectively. When the flows are perturbed infinitesimally, the interface can be describedy=η(x,t),wherex-direction is parallel with uniform flows andyis the vertical coordinate. If the electric field in each layer is denoted byE+andE?, they satisfy both ?E±= 0 due to the electrostatic limit of Maxwell equations, and hence we can introduce voltage potentialsV±. Under this setup, the perturbed flows must be irrotational in each half-layer due to the motion developing from an irrotational basic state. Hence velocity potentialsΦ±and voltage potentialsV±satisfy Laplace equation

    whereΔ=?xx+?yy. The total velocity potentialsΦ±can be decomposed into background plus perturbations

    It is obvious that perturbationsφ±m(xù)ust satisfy also Laplace equation. At the interfacey=η(x,t), the kinematic and dynamic conditions

    whereσis the coefficient of surface tension, n =is the unit normal vector at interface, pointing upwards from the lower-layer fluid, andarises from the Maxwell’s stress tensor {Σij}i,j=1,2 given by

    A tedious but straightforward calculation shows that

    In addition, there are two boundary conditions which voltage potentials have to satisfy at the interface, namely, the continuity of voltage potentials and the discontinuity of their normal derivatives

    As far away from the interfacial disturbances, the condition for voltage potentials should be imposed by

    For the sake of simplicity, we introduce modified voltage potentials by

    Taking into account gravity and surface tension, we choose[σ/(ρ?g)]1/2 , [σ/(ρ?g3)]1/4 andσ3/[(ρ?)3g]1/4 as length, time,potential scales respectively, and define the dimensionless parametersandε=ε?/ε+, hence the dynamic boundary condition can be recast into the dimensionless form

    with

    Eventually, the boundary conditions±∞ ) constitute the two-fluid system.

    We linearize the whole system by dropping nonlinear terms in Eqs. (4) , ( 5 ), ( 13 ) and ( 14 ), and apply the method of normal modes to get the phase speed ofas below

    where two phase speeds have both global extrema atIn subsequent analysis, we mainly consider the branch of largercpsince it is likely subject to KH instability. The critical velocity difference that destabilize the system is

    Throughout the paper, we mainly focus on the effect of the applied electric field on the system. As shown in Fig. 1 by fixed parameters:R= 0.4 ,ε= 0.2 , it illustrates the applied electric field can suppress KH instability since there is a greater velocity difference compared the case where the applied electric field is absent.In the subsequent numerical experiment, the analysis provides a guid for us to select the value of velocity differenceUin(1a,1b).

    Fig. 2. Examples of bright and generalized solitary waves. a The top shows the depression of bright solitary waves with c = 1 . 986 , and the bottom shows the depression of generalized solitary waves with c = 1 . 991 , using different com putational domains of 40 π/ k c (dotted line) and 48 π/ k c (solid line). b The top shows the elevation of bright solitary waves with c = 1 . 988 , and the bottom shows the elevation of generalized solitary waves with c = 1 . 9905 , using different com putational domains of 48 π/ k c (dotted line) and 60 π/ k c (solid line).

    Fig. 3. Speed-amplitude diagrams for the depression and elevation branch, corresponding to the panel a and b . The circles show the generalized solitary waves, and the triangles pointing downward and upward indicate the bright depression and elevation solitary waves, respectively. The amplitude parameter in all cases presented is [ max (η) ?min (η) ] / 2 .

    Fig. 4. a Speed-amplitude diagram (solid line) for the depression dark soliton branch with the concave-up middle phase near c min ≈1 . 9901 , and the amplitude parameter is [max (η) ?min (η) ]/2. b Typical wave profiles as the amplitude increases respectively correspond to points 4 a -4 d marked in the left plot using the different computational domains 51 π/ k c (dash line) and 63 π/ k c (solid line), and the NLS prediction is shown (dash-dot line).

    Fig. 5. a Speed-amplitude diagram (solid line) for the elevation dark soliton branch with the concave-up middle phase near c min ≈1 . 9901 , and the amplitude parameter [ max (η) ?min (η) ] / 2 . b Typical wave profiles as the amplitude increases respectively correspond to points 5 a -5 d marked in the left plot using the different com putational domains 51 π/ k c (dash line) and 63 π/ k c (solid line), and the NLS prediction is shown (dash-dot line).

    We introduce Dirichlet-Neumann (DN) operators to avoid solving the Laplace equation and use DN operators expansion to derive the evolution equation. If we denote velocity potentials and modified electric potentials across the interface asξ±=φ±(x,η(x,t),t)andW(x,t)=W±(x,η(x,t),t)respectively, and define DN operatorsG±(η)in the following

    Following Benjamin and Bridges [16] , we introduceξ=ξ??Rξ+, and in terms of Eqs. (19) and ( 20 ), it follows that

    Hence we can recast the boundary conditions at the interface in terms ofξ,ηand DN operators

    where

    Following Craig et al. [17] and Wang [18] , it follows that DN operators can expand as Taylor seriesandif theC1-norm ofηis smaller than a certain constant. The first three terms of Taylor series of DN operators are given as

    We assume thatξandηare all of orderO(?)in subsequent analysis and then set about deriving a cubic reduced model by expandingG±and truncating terms higher thanO(?3)in Eqs. (25) –( 27 ). After lengthy but straightforward calculation, one obtains a reduced quantitative model system for EHD interfacial GC waves in deep water

    with

    NLS equation provides a good prediction for wavepacket solitary waves. In the spirit of Dias and Iooss [19] , we introduceX=?x,T=?t,τ=?2tand pick e i(kx?wt)as the carrying wave. For brevity of the derivation, it is useful to point out the following formulae

    We can obtain NLS by substituting the following ansatz

    into the evolution system of Eqs. (30) and ( 31 ), and equate like powers of?. It is noted thatAjandBjinclude all the harmonic modes, namely,and so doesBj. First of all, the leading order termsO(?)result in the equations

    The nonzero solution implies the dispersion relation and the relation betweenAandB

    where

    The terms of orderO(?2)give the equations forA1andB1.The corresponding linear system is also degenerate because of the dispersion relation. The solvability condition for ei(kx?wt)indicates thatAhas an implicit dependence onT(i.e.,A(X?cgT,Y,τ)) and so doesB, whereis called the group velocity

    Finally the solvability condition of the mode ei(kx?wt)forO(?3)gives the cubic NLS equation

    whereand

    with

    Since the group velocity coincides with the phase velocity at the minimum phase speed, the wavepacket solitary waves may bifurcate from the free stream at the point as long as the associated NLS is of focusing type. In what follows, we confine ourselves to investigate the NLS coefficients at the minimum point.Atthe minimum isand the corresponding NLS reads

    with

    where

    It is seen from Eqs. (38) and (4 4) thatis positive definite atin the linearly stable regime whereU0 . Therefore, the nonlinear coefficientγin Eq. (43) is the only term determing the type of the associated cubic NLS equation. Asγ>0 , the cubic NLS equation is foucsing and admits a sech -type bright soliton solution. The other case,γ<0 ,it is defocusing and predicts a tanh -type dark soliton solution. In this paper, we are of primary concern for the latter case.

    For the sake of brevity, we first transform the system ( 31 ) into a single evolution equation in Fourier space by introducing

    and hence the system can be rewritten as follows

    Equations (48) and ( 49 ) are essentially equivalent sinceξandηare real. Moreover,ηandξcan be recovered

    where the asterisks imply the complex conjugate. In order to compute traveling solutions, Eq. (48) can be numerically solved using a pseudo-spectral method and Newton iterations, with an initial guess obtained by the vanishing pressure method [20] . To simply the prblem, we only compute the symmetric traveling wave solutions.

    We search for traveling wave based on the quantitative model under a given set of parameters:Ee= 5 ,ε= 0.2 ,R= 0.4 . Substituting the three values into Eq. (18) , we can obtain that two critical velocity differences are 2.326 , 3.8413 , respectively corresponding toE= 0 andE= 5 . Hence we choose an appropriate velocity difference at the interfaceU= 3 ∈(2.326,3.8413)for example. The coefficients of the associated cubic NLS equation in Eq. (43) become

    It is seen that the associated NLS equation is of defocusing type forγ<0 .

    It is well known that the defocusing NLS equation excludes the small-amplitude solitary waves, but finite-amplitude solitary waves also can be found [ 11 , 12 ]. Next, we use the numerical scheme to search for such solutions based on a quantitative reduced model.As shown in Fig. 2 , there are two kinds of finite-amplitude bright solitary waves in the system, namely, the depression and elevation solitary waves. The corresponding local bifurcation curves nearcminare illustratedin Fig. 3 . Take the depression branch for example, shown in Fig. 3 a. Following the curve by increasingc, we see that oncecexceedscmin, the finite-amplitude solitary waves will resonate with periodic waves (i.e., Stokes waves) resulting in the generalized solitary waves characterized by a localized midsection and non-decaying oscillatory tails. Further increasingc, the branch of generalized solitary waves are incorporated into the branch of periodic waves. In addition, we compute the generalized solitary waves with different domain sizes ( 40 π/kcand 48 π/kcfor the depression branch, 48 π/kcand 60 π/kcfor the elevation branch). It is seen from Fig. 2 that the profile computed in the larger domain is basically superposed the one with the smaller domain, only the periodic tails being added in the far field. The fact strongly implies the existence of real generalized solitary waves when domain size tends toward infinity. The bifurcation mechanism for the elevation branch is similar.

    In the following, we consider dark solitary waves which are predicted by the defocusing NLS equation. In order to avoid Stokes wave, a numerical trick documented in Ref. [21] suggests that we need to select a domain with size(2n+ 1)π/kcforn= 22,23,···,37 . We found the depression and elevation branch shown in Figs. 4 and 5 for dark solitary waves. The typical profiles,featuring the concave-down and concave-up middle phase respectively, are presented in Figs. 4 b and 5 b along the corresponding bifurcation curve respectively. Taking the depression branch for example shown in Fig. 4 , it is seen that the dark solitary waves bifurcate from infinitesimal periodic waves. Along the bifurcation curve by increasing the amplitude, the bifurcation curve shows a turning pointc≈1.9918 . Further increasing the amplitude, the corresponding waves evolve into multi-pulse generalized solitary waves, and finally develop into the multi-pulse bright solitary waves as passing through the bifurcation pointcminfrom its right to left. This bifurcation mechanism for the elevation branch is analogous.

    In this paper, for interfacial gravity-capillary waves, we proposed a quantitative reduced model via expanding and truncating DN operators in the full Euler equations when the physcial effects of gravity, surface tension, a horizontal field, a uniform flow were all taken into account. Moreover, we performed a linear stability analysis to clearly show the surface tension and the horizontal electric field provide a linearly dispersive stabilization to the system and to show the identification of parameter regime where the applied electric field can suppress linearly KH instability. In terms of the analysis, we used the pseudo-spectral method and Newton iterations to solve the proposed model and found symmetric traveling wave solutions at the linearly stable region. Additional,we further presented their the bifurcation structure in the vicinity of the minimum phase speed. It is also worth mentioning that the stability and dynamic properties of computed traveling waves merit further study in the future.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant 12071429 ).

    可以免费在线观看a视频的电影网站| 国产视频一区二区在线看| 欧美成人精品欧美一级黄| 两个人免费观看高清视频| www.999成人在线观看| 中国美女看黄片| 纯流量卡能插随身wifi吗| 另类亚洲欧美激情| cao死你这个sao货| 亚洲欧洲日产国产| a级毛片黄视频| 午夜福利视频在线观看免费| 99精国产麻豆久久婷婷| 少妇的丰满在线观看| netflix在线观看网站| 18禁观看日本| 波野结衣二区三区在线| 日本一区二区免费在线视频| 99久久99久久久精品蜜桃| 久久久久久人人人人人| 岛国毛片在线播放| 亚洲av成人精品一二三区| 亚洲精品久久午夜乱码| 丰满饥渴人妻一区二区三| 精品人妻在线不人妻| 国产成人精品久久久久久| 久久久精品国产亚洲av高清涩受| 一本综合久久免费| 国产真人三级小视频在线观看| 香蕉丝袜av| 日韩制服骚丝袜av| 精品少妇内射三级| 男人舔女人的私密视频| 最近中文字幕2019免费版| 国产精品秋霞免费鲁丝片| 脱女人内裤的视频| 悠悠久久av| 在线精品无人区一区二区三| 嫁个100分男人电影在线观看 | 亚洲,欧美,日韩| 婷婷色麻豆天堂久久| 国产激情久久老熟女| 欧美精品啪啪一区二区三区 | 午夜福利一区二区在线看| 伊人亚洲综合成人网| 又粗又硬又长又爽又黄的视频| 免费在线观看视频国产中文字幕亚洲 | 天天躁夜夜躁狠狠躁躁| 99精国产麻豆久久婷婷| 亚洲精品国产一区二区精华液| 热99国产精品久久久久久7| 亚洲国产毛片av蜜桃av| 国产有黄有色有爽视频| 亚洲精品国产一区二区精华液| 曰老女人黄片| 欧美老熟妇乱子伦牲交| 国产黄频视频在线观看| 久久 成人 亚洲| 久久久久久久国产电影| 午夜福利免费观看在线| 国产成人免费观看mmmm| av电影中文网址| videos熟女内射| 黄频高清免费视频| 国产精品三级大全| 在线观看www视频免费| 国产成人一区二区在线| 亚洲av成人精品一二三区| 精品少妇内射三级| 青春草视频在线免费观看| 99国产精品一区二区蜜桃av | 精品人妻熟女毛片av久久网站| 后天国语完整版免费观看| 人人妻人人添人人爽欧美一区卜| 亚洲图色成人| 亚洲欧美一区二区三区黑人| 男女国产视频网站| 悠悠久久av| 一二三四社区在线视频社区8| 51午夜福利影视在线观看| 两性夫妻黄色片| √禁漫天堂资源中文www| 一级毛片女人18水好多 | 日韩大片免费观看网站| 欧美日韩av久久| 久热这里只有精品99| 男女高潮啪啪啪动态图| 一区二区三区四区激情视频| 欧美国产精品va在线观看不卡| 亚洲熟女毛片儿| 久久久国产欧美日韩av| 久久久欧美国产精品| 免费在线观看完整版高清| 性高湖久久久久久久久免费观看| 亚洲九九香蕉| 天天躁夜夜躁狠狠久久av| 18在线观看网站| av福利片在线| 亚洲精品乱久久久久久| 熟女少妇亚洲综合色aaa.| 亚洲欧洲精品一区二区精品久久久| 久久国产精品人妻蜜桃| 国产高清videossex| 午夜福利视频精品| 我要看黄色一级片免费的| 我要看黄色一级片免费的| 999精品在线视频| 看免费成人av毛片| 亚洲综合色网址| a 毛片基地| 久久久欧美国产精品| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 在线观看www视频免费| 啦啦啦 在线观看视频| 精品一区二区三区四区五区乱码 | 亚洲精品美女久久av网站| bbb黄色大片| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 操出白浆在线播放| 成年人午夜在线观看视频| 精品人妻在线不人妻| 国产黄频视频在线观看| 校园人妻丝袜中文字幕| 男人爽女人下面视频在线观看| 午夜免费观看性视频| 又大又爽又粗| 精品少妇内射三级| av视频免费观看在线观看| 国产黄频视频在线观看| 亚洲欧美清纯卡通| 18禁国产床啪视频网站| 菩萨蛮人人尽说江南好唐韦庄| 2021少妇久久久久久久久久久| 精品视频人人做人人爽| 别揉我奶头~嗯~啊~动态视频 | 无遮挡黄片免费观看| 纵有疾风起免费观看全集完整版| 久久99热这里只频精品6学生| 嫩草影视91久久| 国产成人精品久久久久久| 久久久久精品国产欧美久久久 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影观看| 国语对白做爰xxxⅹ性视频网站| 男女无遮挡免费网站观看| 国产精品成人在线| av电影中文网址| 成人午夜精彩视频在线观看| 免费观看a级毛片全部| 咕卡用的链子| 亚洲精品一二三| 在线观看免费午夜福利视频| 夜夜骑夜夜射夜夜干| 国产主播在线观看一区二区 | 精品亚洲成a人片在线观看| 大型av网站在线播放| 久久ye,这里只有精品| 妹子高潮喷水视频| 肉色欧美久久久久久久蜜桃| 精品一区二区三区av网在线观看 | 精品国产国语对白av| 男女无遮挡免费网站观看| 国产精品成人在线| 丰满少妇做爰视频| 亚洲,欧美精品.| 亚洲av成人精品一二三区| 免费日韩欧美在线观看| 成年人免费黄色播放视频| e午夜精品久久久久久久| 亚洲欧美中文字幕日韩二区| 国产免费现黄频在线看| 成人影院久久| 免费黄频网站在线观看国产| 久久99精品国语久久久| 又黄又粗又硬又大视频| 黄色视频不卡| 免费av中文字幕在线| 飞空精品影院首页| 国产免费福利视频在线观看| 亚洲精品久久午夜乱码| 考比视频在线观看| 亚洲免费av在线视频| 午夜激情av网站| 国产一区二区三区综合在线观看| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网 | 欧美少妇被猛烈插入视频| 中文字幕亚洲精品专区| 久久99一区二区三区| 国产亚洲午夜精品一区二区久久| 在线 av 中文字幕| videos熟女内射| 性高湖久久久久久久久免费观看| 只有这里有精品99| 人人澡人人妻人| 飞空精品影院首页| 免费在线观看完整版高清| 亚洲av国产av综合av卡| 精品国产乱码久久久久久小说| 交换朋友夫妻互换小说| 人人妻人人澡人人看| 久久99热这里只频精品6学生| 久久久久久人人人人人| 欧美日韩亚洲综合一区二区三区_| 国产成人一区二区三区免费视频网站 | av片东京热男人的天堂| 日本欧美国产在线视频| 亚洲成人免费av在线播放| 国产成人精品久久久久久| 午夜久久久在线观看| 国产精品久久久久成人av| 日本91视频免费播放| 精品国产一区二区三区久久久樱花| 亚洲免费av在线视频| 中文字幕精品免费在线观看视频| 老司机亚洲免费影院| 精品亚洲乱码少妇综合久久| 大陆偷拍与自拍| 久久这里只有精品19| av国产久精品久网站免费入址| 我要看黄色一级片免费的| 丝袜喷水一区| 欧美激情极品国产一区二区三区| 中文欧美无线码| 国产片内射在线| 亚洲欧美一区二区三区久久| 热re99久久精品国产66热6| 熟女av电影| 久久久亚洲精品成人影院| 国产一区二区在线观看av| xxxhd国产人妻xxx| 亚洲成人免费电影在线观看 | 最黄视频免费看| 午夜免费鲁丝| 国产高清视频在线播放一区 | 亚洲人成网站在线观看播放| 国产高清不卡午夜福利| 欧美日韩福利视频一区二区| 久久热在线av| 韩国高清视频一区二区三区| 久久精品国产a三级三级三级| 男人添女人高潮全过程视频| 叶爱在线成人免费视频播放| 人人妻人人澡人人看| 人人妻人人添人人爽欧美一区卜| 天堂俺去俺来也www色官网| 精品视频人人做人人爽| 人体艺术视频欧美日本| 免费不卡黄色视频| 国产99久久九九免费精品| 国产日韩欧美视频二区| 久久精品aⅴ一区二区三区四区| 老司机影院毛片| 又大又黄又爽视频免费| 精品一区二区三区av网在线观看 | 在线精品无人区一区二区三| 人成视频在线观看免费观看| 成年女人毛片免费观看观看9 | 欧美日韩视频精品一区| 成年女人毛片免费观看观看9 | 久久久国产一区二区| 王馨瑶露胸无遮挡在线观看| 18禁观看日本| 90打野战视频偷拍视频| 久久精品久久久久久噜噜老黄| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲| 麻豆av在线久日| 日本av手机在线免费观看| www.自偷自拍.com| 精品福利永久在线观看| 丰满迷人的少妇在线观看| 三上悠亚av全集在线观看| 亚洲av成人不卡在线观看播放网 | 精品少妇内射三级| 日日摸夜夜添夜夜爱| 99国产精品99久久久久| 夜夜骑夜夜射夜夜干| 九色亚洲精品在线播放| 热re99久久精品国产66热6| 亚洲成人免费电影在线观看 | 黄色视频不卡| www.av在线官网国产| 精品国产乱码久久久久久男人| 欧美日韩成人在线一区二区| 又大又黄又爽视频免费| 99久久综合免费| 波多野结衣av一区二区av| 大话2 男鬼变身卡| 精品欧美一区二区三区在线| 亚洲欧美日韩另类电影网站| 欧美黑人欧美精品刺激| 免费久久久久久久精品成人欧美视频| 国产xxxxx性猛交| 国产一区二区在线观看av| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩视频精品一区| 啦啦啦啦在线视频资源| 只有这里有精品99| 少妇 在线观看| 天堂中文最新版在线下载| 精品卡一卡二卡四卡免费| 亚洲久久久国产精品| 国产高清videossex| 久久狼人影院| 日韩av免费高清视频| 午夜福利视频在线观看免费| 午夜老司机福利片| 欧美成人精品欧美一级黄| 一区二区三区精品91| 一区二区三区乱码不卡18| 国产精品久久久人人做人人爽| 成人国产av品久久久| 精品卡一卡二卡四卡免费| 久久久久精品人妻al黑| 亚洲欧美日韩高清在线视频 | 久久狼人影院| 国产男女内射视频| 久久精品熟女亚洲av麻豆精品| 欧美黄色淫秽网站| 国产野战对白在线观看| 桃花免费在线播放| av在线app专区| 国产极品粉嫩免费观看在线| 成人国产一区最新在线观看 | 天天影视国产精品| 日韩中文字幕视频在线看片| 免费黄频网站在线观看国产| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 色婷婷av一区二区三区视频| 涩涩av久久男人的天堂| 精品一区二区三区四区五区乱码 | 久久精品亚洲av国产电影网| 亚洲精品在线美女| 亚洲色图 男人天堂 中文字幕| 建设人人有责人人尽责人人享有的| 男女边摸边吃奶| 亚洲午夜精品一区,二区,三区| 国产av国产精品国产| 一区二区日韩欧美中文字幕| 亚洲精品国产色婷婷电影| av欧美777| 久久久国产一区二区| 免费少妇av软件| 欧美黄色淫秽网站| 天天躁狠狠躁夜夜躁狠狠躁| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲成a人片在线观看| 极品人妻少妇av视频| 老熟女久久久| 欧美黄色淫秽网站| 美女午夜性视频免费| 国产男人的电影天堂91| 一区二区日韩欧美中文字幕| 中文字幕最新亚洲高清| 欧美激情 高清一区二区三区| 欧美另类一区| 久久久欧美国产精品| 色综合欧美亚洲国产小说| 久久久久久人人人人人| 黄色一级大片看看| 欧美黑人精品巨大| 只有这里有精品99| 脱女人内裤的视频| 欧美在线黄色| 别揉我奶头~嗯~啊~动态视频 | 亚洲,一卡二卡三卡| 日本欧美视频一区| 欧美日韩视频精品一区| 老司机亚洲免费影院| 啦啦啦 在线观看视频| 国产男女内射视频| 欧美+亚洲+日韩+国产| 欧美精品人与动牲交sv欧美| 午夜福利视频精品| 91麻豆精品激情在线观看国产 | 1024视频免费在线观看| 欧美日韩国产mv在线观看视频| 日本91视频免费播放| 69精品国产乱码久久久| 99久久人妻综合| av片东京热男人的天堂| 日韩视频在线欧美| 伦理电影免费视频| 亚洲,欧美,日韩| 精品少妇久久久久久888优播| 日本黄色日本黄色录像| 国产免费一区二区三区四区乱码| 免费高清在线观看日韩| 老司机亚洲免费影院| 精品福利永久在线观看| 亚洲中文字幕日韩| 别揉我奶头~嗯~啊~动态视频 | 最近中文字幕2019免费版| 国产在视频线精品| 精品福利永久在线观看| 国产日韩欧美视频二区| 婷婷色综合大香蕉| 日本五十路高清| 久久久久视频综合| 人妻 亚洲 视频| 亚洲av电影在线观看一区二区三区| 久久亚洲国产成人精品v| 50天的宝宝边吃奶边哭怎么回事| 大香蕉久久网| 一本大道久久a久久精品| 天堂中文最新版在线下载| 成年人午夜在线观看视频| 日韩一本色道免费dvd| 久久人人爽人人片av| 成人手机av| 丝袜在线中文字幕| 国产精品秋霞免费鲁丝片| 丁香六月天网| 一边亲一边摸免费视频| 国产91精品成人一区二区三区 | 中文字幕最新亚洲高清| 在线天堂中文资源库| 热re99久久国产66热| 香蕉丝袜av| 成年人午夜在线观看视频| 久久天躁狠狠躁夜夜2o2o | 桃花免费在线播放| 久久亚洲精品不卡| 久久热在线av| 欧美黄色片欧美黄色片| 日本猛色少妇xxxxx猛交久久| 午夜免费成人在线视频| 777米奇影视久久| 亚洲人成网站在线观看播放| 免费av中文字幕在线| 国产精品麻豆人妻色哟哟久久| 欧美黄色淫秽网站| 久久久精品免费免费高清| 国产一区亚洲一区在线观看| 精品亚洲成国产av| 久久久久国产一级毛片高清牌| 国产淫语在线视频| 久久综合国产亚洲精品| 国产男女超爽视频在线观看| 国产精品久久久久久精品电影小说| 又大又爽又粗| 91字幕亚洲| 国产一区亚洲一区在线观看| 国产一卡二卡三卡精品| 高清不卡的av网站| 精品国产乱码久久久久久男人| 美女国产高潮福利片在线看| 日韩大片免费观看网站| 少妇精品久久久久久久| 日日爽夜夜爽网站| 亚洲av电影在线进入| 婷婷成人精品国产| 国产一区二区在线观看av| 国产xxxxx性猛交| 欧美大码av| 亚洲中文av在线| 老司机深夜福利视频在线观看 | 只有这里有精品99| 91字幕亚洲| 各种免费的搞黄视频| 久热这里只有精品99| 亚洲精品久久午夜乱码| 精品国产乱码久久久久久男人| 午夜激情av网站| 亚洲熟女精品中文字幕| 国产亚洲av片在线观看秒播厂| 多毛熟女@视频| 久久久久精品人妻al黑| 婷婷色综合www| 一级片免费观看大全| 美女视频免费永久观看网站| 最新在线观看一区二区三区 | xxx大片免费视频| 久久狼人影院| 高清av免费在线| 精品国产一区二区三区四区第35| 国产日韩一区二区三区精品不卡| 人人妻人人澡人人爽人人夜夜| 老司机影院成人| 成人手机av| 97在线人人人人妻| av一本久久久久| 岛国毛片在线播放| 国产老妇伦熟女老妇高清| 亚洲五月婷婷丁香| 99久久人妻综合| 国产亚洲午夜精品一区二区久久| 亚洲精品美女久久av网站| 夜夜骑夜夜射夜夜干| 这个男人来自地球电影免费观看| 自线自在国产av| 国产亚洲欧美精品永久| 国产在线视频一区二区| 热99国产精品久久久久久7| 一区二区三区精品91| 午夜免费成人在线视频| 久久久久精品国产欧美久久久 | 伊人亚洲综合成人网| 晚上一个人看的免费电影| 国产97色在线日韩免费| 18禁国产床啪视频网站| 99九九在线精品视频| 一级,二级,三级黄色视频| 18禁观看日本| 亚洲欧洲日产国产| 性高湖久久久久久久久免费观看| 丝袜脚勾引网站| 最黄视频免费看| 日韩 欧美 亚洲 中文字幕| 校园人妻丝袜中文字幕| 大话2 男鬼变身卡| 十八禁网站网址无遮挡| 不卡av一区二区三区| 中文欧美无线码| 免费黄频网站在线观看国产| 黑人欧美特级aaaaaa片| 你懂的网址亚洲精品在线观看| 欧美日韩av久久| 日韩大码丰满熟妇| 久久精品久久久久久久性| 国产一区二区三区av在线| 婷婷成人精品国产| 久久九九热精品免费| 久久久精品区二区三区| 日韩大码丰满熟妇| 欧美成人午夜精品| 在线观看免费日韩欧美大片| 久久久久久免费高清国产稀缺| 久久性视频一级片| 久久久精品区二区三区| 香蕉国产在线看| 丝袜在线中文字幕| 欧美日韩福利视频一区二区| 欧美日韩亚洲高清精品| 日本一区二区免费在线视频| 韩国精品一区二区三区| 国产成人免费观看mmmm| 午夜影院在线不卡| 大片电影免费在线观看免费| 一区二区日韩欧美中文字幕| 国产人伦9x9x在线观看| 99re6热这里在线精品视频| 日日爽夜夜爽网站| 波野结衣二区三区在线| 亚洲成人手机| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 国产女主播在线喷水免费视频网站| 水蜜桃什么品种好| 欧美日韩成人在线一区二区| 国产一级毛片在线| 精品久久久久久电影网| 精品视频人人做人人爽| 在线观看国产h片| 亚洲,欧美精品.| 午夜福利视频精品| 亚洲av国产av综合av卡| 午夜福利视频在线观看免费| 久久99热这里只频精品6学生| 大型av网站在线播放| 亚洲 国产 在线| www.熟女人妻精品国产| 国产高清不卡午夜福利| 激情视频va一区二区三区| xxx大片免费视频| 美女高潮到喷水免费观看| 亚洲专区国产一区二区| 99久久精品国产亚洲精品| 高清视频免费观看一区二区| 成年人午夜在线观看视频| 亚洲欧洲国产日韩| 国产午夜精品一二区理论片| 最近手机中文字幕大全| 99香蕉大伊视频| 国产精品久久久人人做人人爽| 女人爽到高潮嗷嗷叫在线视频| 制服诱惑二区| 久久精品aⅴ一区二区三区四区| 国产免费一区二区三区四区乱码| 青草久久国产| 亚洲图色成人| 高清av免费在线| 精品少妇黑人巨大在线播放| 欧美日韩av久久| 99热网站在线观看| 99re6热这里在线精品视频| 欧美日韩av久久| e午夜精品久久久久久久| 一二三四社区在线视频社区8| 欧美日韩精品网址| 亚洲av男天堂| 亚洲国产日韩一区二区| 亚洲欧美日韩另类电影网站| 久久久久视频综合| 性高湖久久久久久久久免费观看| 亚洲中文字幕日韩| 高清av免费在线| 99精国产麻豆久久婷婷| 免费在线观看影片大全网站 | 亚洲av在线观看美女高潮| 成人三级做爰电影| 高清视频免费观看一区二区| 青春草亚洲视频在线观看| 97精品久久久久久久久久精品| 麻豆av在线久日| 在线亚洲精品国产二区图片欧美| 国产精品亚洲av一区麻豆| avwww免费| 亚洲情色 制服丝袜| 精品久久久久久久毛片微露脸 | 搡老乐熟女国产|