• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Positivity-preserving Conservative Semi-Lagrangian Multi-moment Global Transport Model on the Cubed Sphere

    2021-07-26 14:38:22JieTANGChungangCHENXueshunSHENFengXIAOandXingliangLI
    Advances in Atmospheric Sciences 2021年9期

    Jie TANG ,Chungang CHEN ,Xueshun SHEN ,Feng XIAO ,and Xingliang LI*

    1National Meteorological Center/Center of Numerical Weather Predication,China Meteorological Administration,Beijing 100081,China

    2State Key Laboratory for Strength and Vibration of Mechanical Structures & School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    3Department of Mechanical Engineering,Tokyo Institute of Technology,Tokyo 152-8850,Japan

    ABSTRACT A positivity-preserving conservative semi-Lagrangian transport model by multi-moment finite volume method has been developed on the cubed-sphere grid.Two kinds of moments (i.e.,point values (PV moment) at cell interfaces and volume integrated average (VIA moment) value) are defined within a single cell.The PV moment is updated by a conventional semi-Lagrangian method,while the VIA moment is cast by the flux form formulation to assure the exact numerical conservation.Different from the spatial approximation used in the CSL2 (conservative semi-Lagrangian scheme with second order polynomial function) scheme,a monotonic rational function which can effectively remove non-physical oscillations is reconstructed within a single cell by the PV moments and VIA moment.To achieve exactly positive-definite preserving,two kinds of corrections are made on the original conservative semi-Lagrangian with rational function (CSLR)scheme.The resulting scheme is inherently conservative,non-negative,and allows a Courant number larger than one.Moreover,the spatial reconstruction can be performed within a single cell,which is very efficient and economical for practical implementation.In addition,a dimension-splitting approach coupled with multi-moment finite volume scheme is adopted on cubed-sphere geometry,which benefitsthe implementation of the 1D CSLR solver with large Courant number.The proposed model is evaluated by several widely used benchmark tests on cubed-sphere geometry.Numerical results show that the proposed transport model can effectively remove nonphysical oscillations and preserve the numerical nonnegativity,and it has the potential to transport the tracers accurately in a real atmospheric model.

    Key words:global transport model,cubed-sphere grid,multi-moment method,single-cell-based scheme,conservative semi-Lagrangian method

    1.Introduction

    Global advection transport describes the motion of various passive tracers in the atmosphere,which is a basic process in atmospheric dynamics.The advection transport model is important in developing general circulation models (GCMs).The traditional latitude-longitude grid is very easy for application but has singularities at the poles.Moreover,its nonuniform grid system would also seriously affect computational efficiency.To address these issues,quasi-uniform grid systems without singularities or with weak singularities,such as the cubed-sphere grid,Yin-Yang grid,and icosahedral grid are becoming more and more popular in developing global transport models.Among those grids,the cubed-sphere grid is usually preferred due to its computational merits,such as locally structured grid and quasi-uniform grid.Recently,many transport models have been developed on the cubed-sphere grid,such as the discontinuous Galerkin transport models (Nair et al.,2005;Guo et al.,2014,2016),the conservative semi-Lagrangian multitracer (CSLAM) model (Lauritzen et al.,2010),the finite volume transport model (Norman and Nair,2018),and the multi-moment transport models (Chen et al.,2011;Tang et al.,2018).In this study,the cubed-sphere grid with gnomonic projection is adopted for our transport model.

    The semi-Lagrangian method is a popular choice for developing a global transport model,since it allows a large time step without reducing accuracy.The traditional semi-Lagrangian method defines a set of parcels that arrive at the Euler computational grid at every time step,and then these parcels are traced back to find their departure locations at the previous time step.A review of the semi-Lagrangian method can be seen inStaniforth and C?té (1991).However,the traditional semi-Lagrangian method has a serious shortcoming regarding mass conservation.To deal with this,many efforts have been made to develop the conservative semi-Lagrangian method.The finite-volume semi-Lagrangian (FVSL) method is a popular one which can be probably separated into two categories (departure volume based and flux form based).The departure volume based FVSL method initially finds the departure volume and then remaps the departure volume from the given Euler computational grid.Examples of using this method can be seen inNair and Machenhauer (2002),Nair et al.(2002),Zerroukat et al.(2002),andLauritzen et al.(2010).The flux form based FVSL method calculates the flux traveling across the interfaces of a cell and uses a flux form formulation to update.Lin and Rood (1996)is a typical example of this kind.

    Nakamura et al.(2001)proposed a flux-form FVSL method based on their previous Constrained Interpolation Profile (CIP) scheme (Yabe and Aoki,1991),calling it CIPCSL.In their method,the point values at cell boundaries and the cell-averaged value are used to reconstruct the piecewise interpolation profile.The point values are updated by the semi-Lagrangian approach,while the cell-average or volume-average values are calculated by the flux-form formulation.The semi-Lagrangian approach permits a large time step,and the flux-form formulation of updating cell-average values makes the scheme inherently conservative in terms of cell-integrated average values.Xiao and Yabe(2001)introduced a slope limiter in the CIP-CSL scheme to suppress oscillations around discontinuities,but the stencil for spatial reconstruction extended from one cell to three cells.Instead of the cubic polynomial function used in CIPCSL2,Xiao et al.(2002)utilized a rational interpolation as an alternative,calling it the CSLR scheme,which used only one cell as stencil to reconstruct the interpolation function and could remove nonphysical oscillations simultaneously.However,this scheme can’t completely preserve positivity.In this paper,we make some modifications on the CSLR scheme to make it non-negative and extend it to the cubedsphere grid to develop a global transport model.

    The paper is organized as follows.In section 2,we introduce the algorithm of the CSLR method and its modifications on the Cartesian geometry.In section 3,we extend this formula to the cubed-sphere grid.Section 4 presents several kinds of benchmark tests to evaluate the performance of the proposed global transport model.And a brief summary is given in section 5.

    2.CSLR methods on Cartesian geometry

    2.1.CSLR method in one dimension

    2.1.1.Spatial reconstruction

    To reconstruct the spatial approximation profile,two kinds of moments are introduced in each cell,as illustrated inFig.1.Point value (PV) moments at cell boundaries and the volume integrated average (VIA) moment in Ci(i=1,2,...,N) are defined as:

    Fig.1.Illustration of moments in one dimension.

    after which the coefficients can be determined as

    where βiis predetermined in Eq.(3) [seeXiao et al.(2002)for details],γi=1+βi?x,and ε is a very small number,such as ε=1×10?20,for avoiding a zero denominator in Eq.(10).

    2.1.2.Moments updating

    Consider the following one-dimensional transport equation,

    whereuis the velocity.

    ● Updating the PV moments:

    The PV moments are updated by the traditional semi-Lagrangian approach.Rewriting Eq.(11) in an advection form gives

    and it can be viewed as an advection equation plus a source term,?q?u/?x.The advection part is calculated by the semi-Lagrangian concept

    2.1.3.Modifications for positivity preserving

    Preserving the positivity of certain physical quantities requires that the minimum valueqminshould not be less than zero.However,the point values calculated by Eq.(15) may produce negative values.Since the conservation of the PV moment is not required in the context of the multi-moment finite volume scheme,an easy and effective modification for the PV moments is used:

    Despite this modification,in the specific case when a“valley” shape near the lower boundary is transported,the negative values may still appear.As illustrated inFig.2,if the PV moments at the cell boundary are bigger than the VIA moment,the reconstructed rational function would produce “undershoots”.Thus,a further modification of the approximation profile is needed:

    Fig.2.Illustration of the rational reconstruction when a“valley” is advected.

    whereqmaxis the maximum value of transport quantity and ε is a small parameter,such as ε=10?3.It should be noted that the modification of Eq.(19) can guarantee the spatial approximation profile is above zero,and by using the fluxform formula of VIA moment we can obtain an absolutely positive result.Therefore,after utilizing these two modifications the numerical result can strictly preserve positivity.

    In this paper,the scheme using Eq.(3) for spatial reconstruction is called CSLR1,and the scheme with two-step modifications is called CSLR1-M hereafter.When β=0 in Eq.(3),the scheme reduces to CSL2 (Yabe et al.,2001).

    Given the known PVs and VIAs at the previous time step,the CSLR1-M algorithm updating procedure can be summarized as follows:

    1) Using Eq.(3) and the modification of Eq.(19),the reconstructed profile within each cell can be determined.

    2) Point values are updated by Eq.(13) and Eq.(15).

    3) Cell-averaged values are updated by Eq.(16).

    4) Modifying the PV moments by Eq.(18) ensures positive PV moments at next time step.

    It is noted that given the monotonicity of rational function and the PVs at cell boundaries as predicted variables,the CSLR1-M scheme can easily facilitate a positive-preserving property,as shown in this paper.

    2.2.CSLR methods in two dimensions

    A second order Strang dimension-splitting time-stepping (Strang,1968) technique is adopted to extend the 1D algorithm to the two-dimensional Cartesian case.For the sake of simplicity,we collectively define the 1D CSLR1 and CSLR1-M algorithm as

    where ?xand ?yare grid spacing in thex- andy-directions,respectively.

    ● Point value (PV):four point-values located at vertices

    ● Line-integrated average values along-direction

    Fig.3.Illustration of moments defined in a two-dimensional case.

    ● Line-integrated average value alongy-direction

    Consider the two-dimensional transport equation in the Cartesian coordinates:

    whereuandvare the velocity in thex- andy-directions,respectively.

    By using the dimension-splitting technique,the transport Eq.(25) is split into two 1D equations:

    3.Extension to the cubed-sphere grid

    In this section,we extend the proposed scheme to the cubed-sphere grid to develop a global transport model.The quasi-uniform cubed-sphere grid (Sadourny,1972) with equiangular central projection is adopted in this paper,as shown inFig.4,which has six identical cube faces with local coordinate (α,β)=[?π/4,π/4].It is worth mentioning that the conventional tropic-belt arrangement (Nair et al.,2005) is used in this paper although the staircase arrangement (Chen,2021) is a good interlock pattern which has better symmetry for patch information exchange.The two-dimensional transport equation in local coordinates can be written as

    As shown inFig.5,we divided the cubed-sphere grid into three directions (ξ,η,ζ),and Eq.(28) is split into three sequential 1D equations along three directions (Guo et al.,2014):

    Fig.4.Schematic of a cubed-sphere grid with 1 2×12×6 meshes.

    Fig.5.Schematic for three directions on the cubed-sphere grid.Top left is the ξ-direction along the αdirection on Patch 1,Patch 2,Patch 3,and Patch 4;Top right is the η-direction along the β-direction on Patch 1,Patch 3,Patch 5,and Patch 6;bottom is the ζ-direction along the β-direction on Patch 2 and Patch 4 and along the α-direction on Patch 5 and Patch 6.

    whereUξ,Uη,andUζare the velocity along ξ -,η-,and ζ-directions,respectively.

    Then,the numerical solutions are updated by the splitting algorithm.In each direction,the moments are updated by the one-dimensional algorithm,similar to the case in the two-dimensional Cartesian geometry.Given the known point values,line-integrated values,and cell-integrated values,the final updating procedures on a sphere for a time step ?tare summarized as follows:

    4) Update in η-direction for another ?t/2 as in step 2;

    5) Update in ξ-direction for ?t/2 as in step 1.

    Note that the cubed-sphere grid is not continuous across the cube patch boundaries,and some special treatments are needed.In Eq.(14),if the first guess pointmoves across the cube patch boundary,we first calculate the time that the arrival point reaches the cube patch boundary:

    wherexbis the coordinate of cube patch boundary.Then,the departure point is calculated by:

    whereubis the velocity atxb.At cube patch boundaries,the‘source term’ is calculated by one-side difference instead of the central difference in Eq.(15).

    We should note that the flux across the cube patch boundaries is calculated only once in this study.As shown inFig.6,A is the arrival point on a patch boundary and Adis the corresponding departure point on Patch 4.The point value of point A is calculated on Patch 4,and the flux across A is calculated by integrating the spatial approximation profile on Patch 4 along the Ad?A line segment.If Adis on Patch 1,the same process is executed for Patch 1,and so on for each patch boundary.

    4.Numerical simulations

    To verify the performance of the proposed transport model,several widely used benchmark tests,including solid body rotation,moving vortices,and deformational flow tests are performed on the spherical mesh.

    The normalized errors proposed byWilliamson et al.(1992)are used:

    Fig.6.Illustration of departure points along patch boundary.

    where ? is the whole computational domain andqandqtrefer to numerical solutions (volume-integrated average in our paper) and exact solutions,respectively.

    4.1.Solid-body rotation tests

    The solid-body rotation test (Williamson et al.,1992) is widely used in two-dimensional spherical transport modeling to evaluate the performance of a transport model.The wind components in the latitude-longitude coordinates (λ,θ)are defined as:

    where (us,vs) is the velocity vector,u0=2πR/1036800(1036800 s equals 12 days),which means it takes 12 days to complete a full revolution on the sphere,R is the radius of the sphere,and α is a parameter which controls the rotation angle.In this test,two kinds of initial conditions are used,including a cosine bell and a step cylinder.

    4.1.1.Solid body rotation of a cosine bell

    The initial condition of a cosine bell test is specified as:

    whererdis the great circle distance between ( λ,θ) and the center of the cosine bell,located at ( 3π/2,0),r0=7πR/64 is the radius of the cosine bell,andh0=1.

    The normalized errors on 32×32×6 meshes and with 256 time steps compared with other existing published semi-Lagrangian schemes,the PPM-M scheme (Zerroukat et al.,2007) and CSLAM-M (Lauritzen et al.,2010),are presented inTable 1.The result shows that CSLR1 and CSLR1-M get almost the same result.And our scheme is com-parable to the PPM-M scheme,and the result in the nearpole flow direction (α =π/2 and α=π/2?0.05) is better than the CSLAM-M scheme.

    Table 1.Comparison of the normalized errors of rotation of a cosine bell after one revolution with other published schemes.

    To check the influence of the weak singularities at the eight vertices of the cubed-sphere gird,this test is conducted with α=π/4 to pass through four vertices.The history of normalized errors (CSLR1 and CSLR1-M are almost the same,so we only present the result of CSLR1-M here) are shown inFig.7.We can see that the normalized errors have little fluctuations (except thel∞errors at around day 4 and day 10) when the flow passes four weak singularities.

    To demonstrate the ability of the CSLR1-M scheme using a large Courant number to transport,we use 72 time steps (local maximum Courant number is about 1.78) with rotation angle α=π/2 to complete one revolution.The normalized errors arel1=0.052,l2=0.046,andl∞=0.061.

    4.1.2.Solid body rotation of a step cylinder

    Fig.7.History of normalized errors of the solid body rotation of a cosine bell for one revolution on grid N=32 (number of cells in one direction on each cell),256 time steps and with α =π/4.

    A non-smooth step cylinder is calculated to evaluate the non-oscillatory property.The initial distribution is specified as

    whererdis the great circle distance between (λ,θ) and(3π/2,0),which is the center of the step cylinder,r1=2/3Randr2=1/3R.

    In this test,we set α=π/4,which is the most challenging case of the rotation test where the step cylinder moves through four vertices and along two boundary edges of the cubed-sphere grid to complete a full revolution.Here,we use 90×90×6 meshes and 720 time steps to conduct this test.The numerical results after 12 days are shown inFig.8,and we can see that the CSL2 scheme will generate obvious oscillations around the discontinuities.By using the CLSR1 and CSLR1-M approaches,these nonphysical oscillations are effectively removed.The maximum and minimum value of CSL2 areqmax=1034.23 andqmin=?2.45,and for CLSR1 and CSLR1-M they areqmax=1001.85 andqmin=0.The history of relative mass errors is given inFig.9,which shows that the relative mass errors are up to the tolerance of machine precision,therefore the proposed global transport model is exactly mass conservative during the simulation procedure.

    4.2.Moving vortices on the sphere

    The second benchmark test we used is the moving vortices test proposed byNair and Jablonowski (2008).The wind component of this test is a combination of the solid body rotation test and two vortices,and it is much more complicated than the solid body rotation test.The velocity fields on the sphere are specified as:

    Fig.8.Numerical results of solid body rotation of the step cylinder after one revolution (12 days).(a) is the result of CSL2,(b) is the result of CSLR1,and (c) is the result of CSLR1-M.

    Fig.9.The time history of relative mass error for solid body rotation of the step cylinder test case by the CSLR1-M scheme.

    whereusandvsare calculated by Eqs.(37) and (38),and the rotation angle of this test is set to be α=π/4.ρ0=3,λc(t)and θc(t) are the center of the moving vortex at timet,and the calculation procedure of λc(t) and θc(t) can be found in(Nair and Jablonowski,2008).

    The tracer field is defined as:

    where γ is a parameter to control the smoothness of the tracer field,(λ′,θ′) is the rotated spherical coordinates,which can be calculated by:

    This test is conducted on 80 × 80 × 6 meshes and uses 400 time steps to move forward 12 days.The contour plots inFig.10show that compared with the exact solution,our proposed scheme can simulate this complicated procedure well.The plot along the equator is presented inFig.11,and it shows that there are no obvious oscillations around large gradients.The normalized errors of CSLR1 and CSLR1-M are almost the same,beingl1=5.295×10?2,l2=0.1295,andl∞=0.5667,respectively.The histories of minimum values are shown inFig.12,where we can see that the CSLR1 scheme would produce negative values during the simulation procedure,while the minimum values of CSLR1-M can completely preserve positivity (the minimum values are within the machine precision).

    4.3.Deformational flow test

    The last benchmark test used in our paper is the deformational flow test proposed byNair and Lauritzen (2010),which is the most challenging test case.The nondivergent and time-dependent flow fields are defined as:

    where κ =2,T=5,and λ′=λ?(2πt/T).

    Two kinds of initial conditions are checked here,including the twin slotted cylinders case to evaluate the positivity preserving property and correlated cosine bells to evaluate the nonlinear correlations between tracers (Lauritzen and Thuburn,2012).By the given flow fields,the initial distributions will be deformed into thin bars during the first half period,then return to its initial state during the second half period.

    Fig.10.Contour plot of moving vortices after 12 days.(a) is the exact solution,(b) is the result of the CSLR1-M scheme.

    Fig.11.Plot along the equator for the moving vortices test at 12 days.

    4.3.1.Deformation of twin slotted cylinders

    The initial condition is defined as:

    wherer0=0.5 andri(i=1,2) represent the great circle distances between the center of the two slotted cylinders and a given point.The centers of the two slotted cylinders are located at (λ1,θ1)=(5π/6,0) and (λ2,θ2)=(7π/6,0),respectively.

    Fig.12.The histories of minimum values qmin of the moving vortices test.(a) is the result of the CSLR1 scheme,(b) is the result of the CSLR1-M scheme.

    The numerical results of deformational flow of the CSLR1-M scheme with 90 × 90 × 6 meshes and with 390 time steps (local maximum Courant number is about 3) are shown inFig.13.As shown inFig.13b,the two slotted cylinders are deformed into two thin filaments by the background flow field during the first half period.Figure 13 cgives the counters of the slotted cylinders at the final time,and it is indicated that the proposed scheme can correctly reproduce this complicated deformational flow and does not produce oscillations.The histories of minimum values are shown inFig.14,which indicates that the CSLR1 scheme would produce negative values,while the CSLR1-M scheme keeps minimum values within the tolerance of machine precision,which can be viewed as non-negativity.The Normalized errors arel1=0.3287,l2=0.3321,andl∞=0.9415 for both the CSLR1 and CSLR1-M schemes.

    4.3.2.Deformation of correlated cosine bells

    To check the ability of preserving nonlinearly correlated relations between two tracers,we used two kinds of tracers.One is the quasi-smooth twin cosine bells:

    The other one is the correlated cosine bells:

    where ψ (q)=?0.8q2+0.9.

    This test is conducted on 90×90×6 meshes with 1800 time steps.The scatter plot of numerical result att=T/2 is shown inFig.15.The solution of cosine bells is in the x-direction,and the correlated cosine bells is in the y-direction.The mixing diagnostics arelr=1.05×10?3,lu=2.40×10?5,andl0=5.57×10?4,respectively (seeLauritzen and Thuburn,2012) for the detail definition of these three parameters).The CSLR1-M scheme is built using a monotone rational polynomial with modest accuracy,which always overly flattens the maximum and minimum values,as shown in the bottom-right corner ofFig.15.In the whole,the scattering points of the CSLR1-M scheme are almost located inside the convex hull which means that the CSLR1-M scheme can preserve nonlinearly correlated relations between tracers well.

    5.Summary

    In this paper,a non-negativity and conservative semi-Lagrangian transport scheme based on a multi-moment finite volume method has been developed on the cubed-sphere grid.By using the PV moment and VIA moment,a rational function is constructed as a spatial approximation function within a single cell instead of the non-monotonic CSL2 scheme to suppress the numerical oscillations and keep the monotonicity.In terms of multi-moment concepts,the VIA moment is cast by utilizing the flux form formulation to guarantee the exact numerical conservation.In the CSLR1 scheme,the semi-Lagrangian method is adopted to update the PV moments,which keeps good properties of the semi-Lagrangian scheme.To simplify the implementation in curvilinear (cubed-sphere) geometry,a dimension-splitting time stepping strategy is combined with the multi-moment finite volume method.In the case of a valley of the transported field,two kinds of modifications are conducted on the original CSLR1 scheme for exactly positive-definite preservation.Note that the improved CSLR1-M scheme dose not degrade the accuracy of the original CSLR1 scheme.The numerical results show that the CSLR1-M scheme is nonoscillatory and can preserve the non-linear correlations between tracers.In addition,the semi-Lagrangian approach permits a large time step,which can greatly improve computational efficiency.The quality of the present transport modelling has been demonstrated by the widely used benchmark tests on a cubed-sphere grid.The results reveal that the developed transport modelling not only can effectively remove nonphysical oscillations,but it can also preserve the non-negativity of numerical solutions,which indicates that it has the potential to simulate the various tracers accurately for real applications.When the mass sources such as evaporation,condensation,etc.are involved in real simulation,they can be added to each PV variable through a fractional step in the multi-moment model after the tracers are advected by the CSLR scheme.Furthermore,a positivity constraint is also imposed on the source terms.

    Fig.13.Numerical result of deformational flow of slotted cylinder after one period by the CSLR1-M scheme.(a) is the exact solution,(b) is the numerical solution at half cycle,(c) is the numerical solution after one cycle.

    Fig.14.Histories of minimum values qmin of deformation of the twin slotted cylinder test case.(a) is the result of the CSLR1 scheme,(b) is the result of the modified CSLR1-M scheme.

    Fig.15.Scatter plot of nonlinearly correlated cosine bell at t=T/2.

    Acknowledgments.This work was supported by the National Key Research and Development Program of China (Grant Nos.2017YFC1501901 and 2017YFA0603901) and the Beijing Natural Science Foundation (Grant No.JQ18001).

    Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use,distribution,and reproduction in any medium,provided the original author(s) and the source are credited.This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    免费在线观看完整版高清| 在线观看www视频免费| 国产成+人综合+亚洲专区| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩东京热| 日韩精品中文字幕看吧| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产高清在线一区二区三| 免费在线观看影片大全网站| 免费看a级黄色片| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久国内视频| 别揉我奶头~嗯~啊~动态视频| √禁漫天堂资源中文www| 亚洲va日本ⅴa欧美va伊人久久| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 舔av片在线| 亚洲一卡2卡3卡4卡5卡精品中文| 脱女人内裤的视频| 老汉色∧v一级毛片| 国产精品久久久人人做人人爽| 精品免费久久久久久久清纯| 久久精品国产99精品国产亚洲性色| 亚洲午夜理论影院| 午夜福利在线在线| 久久香蕉国产精品| av福利片在线| 亚洲av中文字字幕乱码综合| 亚洲精品中文字幕在线视频| 国产av不卡久久| 给我免费播放毛片高清在线观看| 成人18禁高潮啪啪吃奶动态图| 国语自产精品视频在线第100页| 午夜福利欧美成人| 欧美日韩乱码在线| 亚洲五月天丁香| 欧美中文日本在线观看视频| 欧美成狂野欧美在线观看| 亚洲欧美一区二区三区黑人| 九色成人免费人妻av| 香蕉丝袜av| 啪啪无遮挡十八禁网站| 大型av网站在线播放| 亚洲色图 男人天堂 中文字幕| 亚洲人成电影免费在线| 欧美中文日本在线观看视频| 啦啦啦观看免费观看视频高清| 国产伦一二天堂av在线观看| 久热爱精品视频在线9| 日韩免费av在线播放| 国内揄拍国产精品人妻在线| 黄色视频不卡| 99国产精品一区二区蜜桃av| 麻豆国产av国片精品| 99热6这里只有精品| 99热这里只有精品一区 | 两人在一起打扑克的视频| 制服人妻中文乱码| 国产1区2区3区精品| 黄色 视频免费看| 国产欧美日韩精品亚洲av| 真人一进一出gif抽搐免费| xxx96com| 妹子高潮喷水视频| 长腿黑丝高跟| 免费在线观看黄色视频的| 成人欧美大片| 日本五十路高清| 欧美性猛交╳xxx乱大交人| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 人人妻人人澡欧美一区二区| 18禁美女被吸乳视频| 国产一区二区三区视频了| 欧美黑人欧美精品刺激| 一级作爱视频免费观看| 国产激情偷乱视频一区二区| 此物有八面人人有两片| 久久中文字幕一级| 午夜福利成人在线免费观看| 久久国产精品影院| 亚洲18禁久久av| 1024手机看黄色片| 免费一级毛片在线播放高清视频| 欧美又色又爽又黄视频| 亚洲av电影在线进入| 日本撒尿小便嘘嘘汇集6| 在线国产一区二区在线| 午夜影院日韩av| 精华霜和精华液先用哪个| 中文字幕熟女人妻在线| 午夜福利视频1000在线观看| 色综合欧美亚洲国产小说| www日本在线高清视频| 午夜福利欧美成人| 日韩高清综合在线| 99精品在免费线老司机午夜| 神马国产精品三级电影在线观看 | 欧美激情久久久久久爽电影| 他把我摸到了高潮在线观看| 好男人在线观看高清免费视频| 国产精品野战在线观看| 免费看a级黄色片| 久久精品国产亚洲av高清一级| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av| 国产欧美日韩一区二区三| 午夜免费激情av| 中文字幕人妻丝袜一区二区| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| 男人舔奶头视频| 少妇裸体淫交视频免费看高清 | 大型黄色视频在线免费观看| 国产伦人伦偷精品视频| www.精华液| 久久国产精品影院| 国产午夜精品久久久久久| 精品一区二区三区四区五区乱码| 不卡av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲午夜精品一区,二区,三区| 丰满的人妻完整版| 欧美成狂野欧美在线观看| 精品久久久久久久人妻蜜臀av| 日本五十路高清| а√天堂www在线а√下载| 成人亚洲精品av一区二区| 亚洲色图av天堂| 亚洲av美国av| 国产精品美女特级片免费视频播放器 | 成人国语在线视频| 国产精品1区2区在线观看.| 午夜a级毛片| 男人的好看免费观看在线视频 | 叶爱在线成人免费视频播放| 性欧美人与动物交配| 好看av亚洲va欧美ⅴa在| 精品电影一区二区在线| 国产一区二区在线观看日韩 | 最近最新中文字幕大全电影3| 国产99久久九九免费精品| 老汉色∧v一级毛片| 中文字幕熟女人妻在线| 日本三级黄在线观看| 亚洲精品中文字幕在线视频| 日韩欧美免费精品| 美女扒开内裤让男人捅视频| 欧美日韩黄片免| 露出奶头的视频| 精品午夜福利视频在线观看一区| 国产精品久久久久久久电影 | 香蕉av资源在线| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av香蕉五月| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美网| www日本黄色视频网| 男人的好看免费观看在线视频 | 男女视频在线观看网站免费 | 我要搜黄色片| 久久国产精品人妻蜜桃| 日韩欧美国产一区二区入口| 日日干狠狠操夜夜爽| 日本在线视频免费播放| 久久久久久九九精品二区国产 | 国产精品免费视频内射| 哪里可以看免费的av片| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区精品视频观看| 亚洲国产欧美人成| 欧美中文综合在线视频| 大型黄色视频在线免费观看| 久久亚洲真实| 波多野结衣巨乳人妻| 国产真人三级小视频在线观看| 男插女下体视频免费在线播放| 亚洲av片天天在线观看| 午夜a级毛片| 国产真实乱freesex| 亚洲自偷自拍图片 自拍| 91麻豆精品激情在线观看国产| 操出白浆在线播放| 免费无遮挡裸体视频| 波多野结衣高清作品| 国产69精品久久久久777片 | 国产av不卡久久| 国产成人欧美在线观看| 国产一区二区三区视频了| 91av网站免费观看| 精品久久久久久久久久免费视频| 午夜福利18| 久久久久国内视频| 国产精品亚洲美女久久久| 亚洲成人国产一区在线观看| 成人国语在线视频| 人妻夜夜爽99麻豆av| 制服丝袜大香蕉在线| 九色国产91popny在线| tocl精华| 国产亚洲精品综合一区在线观看 | 精品久久久久久久久久免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 黄片大片在线免费观看| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 久久久久性生活片| 一二三四在线观看免费中文在| 欧美一区二区国产精品久久精品 | 国产av在哪里看| 1024视频免费在线观看| 国产午夜精品论理片| 一进一出好大好爽视频| 免费在线观看成人毛片| 小说图片视频综合网站| 久久久精品欧美日韩精品| 黄色丝袜av网址大全| 国产精品久久久久久亚洲av鲁大| 亚洲五月婷婷丁香| 少妇熟女aⅴ在线视频| 中文字幕人妻丝袜一区二区| 桃色一区二区三区在线观看| 亚洲 欧美 日韩 在线 免费| 狠狠狠狠99中文字幕| 看免费av毛片| 国产爱豆传媒在线观看 | 日韩免费av在线播放| 久久亚洲真实| 亚洲一区二区三区不卡视频| 久久精品影院6| 国产激情久久老熟女| 每晚都被弄得嗷嗷叫到高潮| 色精品久久人妻99蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久精品国产亚洲av高清涩受| 国产亚洲av高清不卡| 极品教师在线免费播放| 国产精品电影一区二区三区| 免费av毛片视频| 久久久久性生活片| 免费在线观看影片大全网站| 亚洲精品久久国产高清桃花| 好看av亚洲va欧美ⅴa在| 国产精品一区二区三区四区久久| 国产成人啪精品午夜网站| 国产精品影院久久| 一本一本综合久久| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 国产精品电影一区二区三区| 18禁国产床啪视频网站| 成人国语在线视频| 日韩欧美国产一区二区入口| 最近在线观看免费完整版| 手机成人av网站| 免费高清视频大片| 国产成人啪精品午夜网站| av中文乱码字幕在线| 成年人黄色毛片网站| 亚洲一区中文字幕在线| 精品国产乱码久久久久久男人| 淫妇啪啪啪对白视频| 色噜噜av男人的天堂激情| 免费在线观看亚洲国产| 精品国产超薄肉色丝袜足j| 欧美zozozo另类| 国产成人精品久久二区二区免费| 国产成年人精品一区二区| 色av中文字幕| 亚洲美女黄片视频| 国产成人aa在线观看| 亚洲中文字幕日韩| 麻豆av在线久日| 又黄又粗又硬又大视频| 女生性感内裤真人,穿戴方法视频| 黄色丝袜av网址大全| 国产精品久久久av美女十八| 亚洲欧美激情综合另类| 一进一出抽搐gif免费好疼| 日韩高清综合在线| 欧美精品亚洲一区二区| 岛国在线免费视频观看| 国产伦在线观看视频一区| 亚洲熟妇熟女久久| 夜夜躁狠狠躁天天躁| 男女做爰动态图高潮gif福利片| av片东京热男人的天堂| 国产三级中文精品| 国产真实乱freesex| 熟女电影av网| 日本 欧美在线| 欧美性长视频在线观看| 国产精品自产拍在线观看55亚洲| 亚洲精品av麻豆狂野| 1024香蕉在线观看| 在线播放国产精品三级| 亚洲片人在线观看| 午夜福利成人在线免费观看| 美女大奶头视频| 免费在线观看成人毛片| 国产三级中文精品| 国产麻豆成人av免费视频| 国产一区二区三区视频了| 在线观看午夜福利视频| 777久久人妻少妇嫩草av网站| 欧美日韩亚洲综合一区二区三区_| 久久久精品大字幕| 国产欧美日韩一区二区三| 亚洲精品国产一区二区精华液| 久久人人精品亚洲av| 操出白浆在线播放| 亚洲成人久久性| 久久精品成人免费网站| 亚洲色图av天堂| 91av网站免费观看| 又黄又粗又硬又大视频| 日本免费a在线| 亚洲av中文字字幕乱码综合| 久久久久久久久久黄片| 国产片内射在线| 午夜免费成人在线视频| 国产精品美女特级片免费视频播放器 | 大型黄色视频在线免费观看| 一进一出抽搐动态| 伊人久久大香线蕉亚洲五| 欧美人与性动交α欧美精品济南到| 亚洲国产高清在线一区二区三| 午夜福利在线观看吧| 国产精品国产高清国产av| 免费观看人在逋| 91在线观看av| 国产精品av久久久久免费| 99国产精品99久久久久| 欧美性猛交黑人性爽| 可以在线观看毛片的网站| 国产高清视频在线观看网站| 一级毛片女人18水好多| 19禁男女啪啪无遮挡网站| 怎么达到女性高潮| 免费高清视频大片| 成人欧美大片| 久久久久久大精品| netflix在线观看网站| 亚洲av日韩精品久久久久久密| 免费在线观看日本一区| 99热6这里只有精品| 午夜视频精品福利| 在线观看免费午夜福利视频| 老司机靠b影院| 国产av又大| 国产一区二区三区视频了| 青草久久国产| 不卡一级毛片| av福利片在线| 欧美又色又爽又黄视频| 亚洲免费av在线视频| 精品人妻1区二区| 很黄的视频免费| 此物有八面人人有两片| 成年免费大片在线观看| 国产在线观看jvid| 亚洲国产中文字幕在线视频| 香蕉av资源在线| 日韩欧美国产在线观看| 亚洲男人天堂网一区| 国产av一区在线观看免费| 久久婷婷人人爽人人干人人爱| 亚洲国产中文字幕在线视频| 91麻豆精品激情在线观看国产| 级片在线观看| 国产成年人精品一区二区| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 淫妇啪啪啪对白视频| 亚洲精品美女久久久久99蜜臀| 久久九九热精品免费| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 两个人的视频大全免费| 狂野欧美白嫩少妇大欣赏| 嫩草影视91久久| 午夜老司机福利片| 欧美日本亚洲视频在线播放| 亚洲第一欧美日韩一区二区三区| 日韩精品免费视频一区二区三区| 国产av一区在线观看免费| 1024香蕉在线观看| 一级毛片女人18水好多| a级毛片a级免费在线| 一级毛片高清免费大全| 俄罗斯特黄特色一大片| 成人高潮视频无遮挡免费网站| 日日干狠狠操夜夜爽| 曰老女人黄片| 男人的好看免费观看在线视频 | 国产亚洲欧美98| 午夜福利18| 亚洲欧美精品综合久久99| 一a级毛片在线观看| 国产成人啪精品午夜网站| 色综合亚洲欧美另类图片| 91大片在线观看| 国产成年人精品一区二区| 精品国内亚洲2022精品成人| 一个人免费在线观看的高清视频| 超碰成人久久| 亚洲国产欧美一区二区综合| 亚洲中文字幕日韩| 亚洲人成电影免费在线| 色在线成人网| 日本三级黄在线观看| 18禁国产床啪视频网站| 一级毛片精品| 亚洲九九香蕉| 日韩精品中文字幕看吧| 国产成人影院久久av| 亚洲精品中文字幕在线视频| 亚洲人成伊人成综合网2020| 18禁黄网站禁片免费观看直播| 国产精品久久电影中文字幕| 18禁国产床啪视频网站| 久久 成人 亚洲| 黄色视频,在线免费观看| 超碰成人久久| 丝袜人妻中文字幕| 一区二区三区高清视频在线| 老司机午夜十八禁免费视频| 美女免费视频网站| 亚洲第一电影网av| 国产欧美日韩精品亚洲av| 中文字幕av在线有码专区| 精品国产乱码久久久久久男人| 亚洲一区中文字幕在线| 国产亚洲av嫩草精品影院| 两个人的视频大全免费| 最新在线观看一区二区三区| 日本 av在线| 最新美女视频免费是黄的| 变态另类丝袜制服| 国产成+人综合+亚洲专区| 欧美在线一区亚洲| 夜夜看夜夜爽夜夜摸| 麻豆成人午夜福利视频| 国产野战对白在线观看| 法律面前人人平等表现在哪些方面| 国产91精品成人一区二区三区| 国产探花在线观看一区二区| 久久精品成人免费网站| 精品国产超薄肉色丝袜足j| 日本一区二区免费在线视频| 18禁黄网站禁片免费观看直播| 国产精品永久免费网站| 哪里可以看免费的av片| 又黄又粗又硬又大视频| www.www免费av| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区高清亚洲精品| 两个人免费观看高清视频| 九色国产91popny在线| 亚洲中文av在线| 国产免费男女视频| 国模一区二区三区四区视频 | 久久久国产精品麻豆| 无限看片的www在线观看| 色精品久久人妻99蜜桃| 国产爱豆传媒在线观看 | 欧美黄色片欧美黄色片| 亚洲av成人一区二区三| 色播亚洲综合网| 欧美日韩黄片免| xxxwww97欧美| 久久这里只有精品中国| 夜夜躁狠狠躁天天躁| 天天添夜夜摸| 久久国产精品影院| bbb黄色大片| 巨乳人妻的诱惑在线观看| 欧美大码av| 九九热线精品视视频播放| 欧美日韩瑟瑟在线播放| 午夜福利视频1000在线观看| 亚洲真实伦在线观看| 亚洲精品国产一区二区精华液| 欧美黑人欧美精品刺激| 国产伦一二天堂av在线观看| a在线观看视频网站| 91字幕亚洲| www国产在线视频色| 18禁国产床啪视频网站| 亚洲成av人片在线播放无| 男女视频在线观看网站免费 | 精品欧美一区二区三区在线| 亚洲男人天堂网一区| 韩国av一区二区三区四区| 精品久久久久久久末码| 亚洲专区中文字幕在线| 精品日产1卡2卡| 天堂动漫精品| 国产亚洲精品一区二区www| 免费看十八禁软件| 神马国产精品三级电影在线观看 | 床上黄色一级片| 99国产精品一区二区三区| 午夜免费激情av| 午夜免费成人在线视频| 午夜久久久久精精品| 久久久国产精品麻豆| 欧美日韩精品网址| 精品熟女少妇八av免费久了| 一a级毛片在线观看| 国产探花在线观看一区二区| 狠狠狠狠99中文字幕| 国产一区二区三区视频了| 欧美3d第一页| 深夜精品福利| 熟妇人妻久久中文字幕3abv| 在线观看免费日韩欧美大片| 久久久国产欧美日韩av| 国产又黄又爽又无遮挡在线| 亚洲狠狠婷婷综合久久图片| 在线a可以看的网站| 女警被强在线播放| 亚洲片人在线观看| 成人精品一区二区免费| 亚洲精华国产精华精| 伊人久久大香线蕉亚洲五| 欧美中文综合在线视频| 九九热线精品视视频播放| 国产精品1区2区在线观看.| bbb黄色大片| 草草在线视频免费看| 一级毛片高清免费大全| 午夜福利在线观看吧| 亚洲av成人不卡在线观看播放网| 丰满人妻熟妇乱又伦精品不卡| 欧美性猛交黑人性爽| 久热爱精品视频在线9| 免费在线观看亚洲国产| 国产精品,欧美在线| 女人爽到高潮嗷嗷叫在线视频| 午夜免费激情av| 久久国产乱子伦精品免费另类| 亚洲人成网站高清观看| 在线观看美女被高潮喷水网站 | 久久精品成人免费网站| 女人高潮潮喷娇喘18禁视频| 中文在线观看免费www的网站 | 日本成人三级电影网站| 久久这里只有精品19| 久久天堂一区二区三区四区| 亚洲一区二区三区不卡视频| 香蕉国产在线看| 美女大奶头视频| 国产探花在线观看一区二区| 99久久无色码亚洲精品果冻| 神马国产精品三级电影在线观看 | 最近视频中文字幕2019在线8| 国产亚洲精品久久久久久毛片| 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 日韩国内少妇激情av| 麻豆成人午夜福利视频| 久久精品夜夜夜夜夜久久蜜豆 | 免费高清视频大片| 手机成人av网站| 久久这里只有精品19| 久久中文看片网| 国产精品亚洲美女久久久| 亚洲欧美日韩高清专用| 亚洲国产看品久久| 99国产精品99久久久久| 日韩大码丰满熟妇| 国产在线观看jvid| 免费一级毛片在线播放高清视频| 免费看十八禁软件| 日韩欧美精品v在线| 一级毛片女人18水好多| 欧美黑人巨大hd| 此物有八面人人有两片| 精品第一国产精品| 亚洲精品中文字幕一二三四区| 国产爱豆传媒在线观看 | 亚洲av电影在线进入| 亚洲国产高清在线一区二区三| 特大巨黑吊av在线直播| 九九热线精品视视频播放| 夜夜看夜夜爽夜夜摸| 成人三级做爰电影| 国产三级黄色录像| 小说图片视频综合网站| 成年女人毛片免费观看观看9| 九色成人免费人妻av| 又紧又爽又黄一区二区| 两人在一起打扑克的视频| 亚洲精品美女久久久久99蜜臀| 午夜激情av网站| 99久久精品国产亚洲精品| 国产私拍福利视频在线观看| 超碰成人久久| 久久草成人影院| 女生性感内裤真人,穿戴方法视频| 黑人巨大精品欧美一区二区mp4| www国产在线视频色| 色综合站精品国产| 亚洲中文字幕日韩| 校园春色视频在线观看| 午夜福利免费观看在线| 精品一区二区三区视频在线观看免费| 91麻豆av在线| 欧美性猛交黑人性爽| 欧美日韩黄片免| 成人18禁在线播放| 男女之事视频高清在线观看|