• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed Resource Allocation via Accelerated Saddle Point Dynamics

    2021-07-23 10:20:22WenTingLinYanWuWangChaojieLiandXinghuoYu
    IEEE/CAA Journal of Automatica Sinica 2021年9期

    Wen-Ting Lin, Yan-Wu Wang,, Chaojie Li, and Xinghuo Yu,

    Abstract—In this paper, accelerated saddle point dynamics is proposed for distributed resource allocation over a multi-agent network, which enables a hyper-exponential convergence rate.Specifically, an inertial fast-slow dynamical system with vanishing damping is introduced, based on which the distributed saddle point algorithm is designed. The dual variables are updated in two time scales, i.e., the fast manifold and the slow manifold. In the fast manifold, the consensus of the Lagrangian multipliers and the tracking of the constraints are pursued by the consensus protocol. In the slow manifold, the updating of the Lagrangian multipliers is accelerated by inertial terms. Hyper-exponential stability is defined to characterize a faster convergence of our proposed algorithm in comparison with conventional primal-dual algorithms for distributed resource allocation. The simulation of the application in the energy dispatch problem verifies the result,which demonstrates the fast convergence of the proposed saddle point dynamics.

    I. INTRODUCTION

    A. Motivation and Related Works

    RESOURCE allocation among autonomous multi-agents,which have preference over alternative resources and participate in the decision making of the resource allocation[1], has received increasing attention due to its promising applications in the smart grid [2]–[4], wireless and social networks [5]–[7], and robotics [8].

    A possible approach for solving the resource allocation problem is the centralized optimization method, since the problem can be modeled into an optimization problem with globally coupled equality constraints and an uncoupled objective function. The problem exists widely, for instance, in the load sharing problem in smart grids [9], the allocation problem with 5G virtualized networks [10], the energyefficient power allocation of wireless power transfer-enabled orthogonal frequency-division multiple access (OFDMA)multicell networks [11], the peer-to-peer energy trading problem of smart grids [12], and the resource allocation of cognitive radio networks [13]. By the aid of the centralized optimization method, decision making is accomplished by solving a mathematical program. Though the centralized optimization method is feasible, it requires heavy computation for solving a large-scale resource allocation problem.Moreover, privacy issues arise with the exchange of the objective function and constraints among the agents.

    As we can see, the objective function of the resource allocation problem is uncoupled. Based on this formulation,one option to solve the resource allocation problem is using the distributed optimization method over a multi-agent network. These algorithms are designed by coordinative computing among a number of agents, see [14]–[16], which overcome the disadvantages of scalability problems and privacy issues. Multi-agent based distributed optimization algorithms have been studied by many researchers, and they can be categorized as algorithms with a sub-linear convergence rate (asymptotical convergence for continuoustime systems), linear convergence rate (exponential convergence for continuous-time systems), super-linear convergence rate (super-exponential convergence for continuous-time systems) and fixed-time convergence rate.For the first category, early work in [17] is a gradient descent based method with a sub-linear convergence rate for the convex optimization problem, which cannot deal with globally coupled constraints. To address globally coupled constraints that are known by all agents, in [18], by employing the projected primal-dual sub-gradient method, an algorithm with a sub-linear convergence rate is proposed. In practice, globally coupled constraints are not always available for all agents,thus, the algorithm in [18] may lose its effectiveness unless there is a central coordinator, which means the algorithm is not fully distributed. Concerning the decoupling of the constraints, algorithms based on a continuous-time network is proposed in [19], [20], where the augmented Lagrange function is introduced for dealing with the coupled constraints. In [19], by introducing the penalty terms in the Lagrange function, the constraints are decoupled. The penalty coefficient in [19] depends on the global information of the coupled constraints, which implies the proposed algorithm is not initialization-free. In [20], by employing projected primal dual dynamics which is based on the augmented Lagrange function, an initialization-free approach is proposed. In [21],by combining the projected primal-dual dynamic with the consensus method, an initialization-free algorithm is proposed. In [19]–[21], the algorithms can only converge to the optimal solution asymptotically (sub-linear convergence rate). Recently, by using the linear Laplacian-gradient, a distributed algorithm based on a continuous-time multi-agent network is revealed in [22] for the resource allocation problem. The proposed algorithm in [22] can avoid directly dealing with coupled constraints by using an interior point method and converges asymptotically. Under the same framework, an algorithm based on a second-order network is disclosed in [23], which also shows an asymptotical convergence rate. Since the interior point method is employed,both of the algorithms in [22], [23] are not initialization-free.For the second category that can achieve exponential convergence with the globally coupled constraints being known by all agents, the algorithm of [24] over a continuoustime network is proposed, where primal-dual dynamics are employed to achieve an exponential convergence rate(corresponding to the linear convergence rate) for problems with only equality constraints. For problems with a quadratic objective, in [25], based on the primal-dual dynamics, a twotime-scale initialization-free algorithm is proposed, which can achieve an exponential convergence rate. In [26], for problems with a nonsmooth objective, differentiated projection operations and differential inclusions are introduced and a distributed continuous-time algorithm is proposed to achieve an exponential convergence rate. For the third category, in[27], an algorithm with a super convergence rate is proposed with Nesterov’s acceleration. This can achieve a super exponential convergence rate, which is faster than the conventional exponential convergence rate. However, it is limited to the unconstrained problem.

    For the fourth category, note that the aforementioned distributed algorithms for constrained optimization can only reach an asymptotical or an exponential convergence rate,which cannot fulfill the efficiency demand for algorithms in engineering application. In [28], [29], by using the graph Laplacian, the fixed-time algorithm based on a nonlinear protocol for the resource allocation problem is proposed,which can converge in fixed time if the constraints are satisfied during the initialization procedure.

    From the above discussion, the convergence rate of the existing distributed algorithms for solving the resource allocation problem is limited. Furthermore, fixed-time convergent algorithms require an initialization which brings additional computational cost. In this case, the requirement for the global information of the constraints in the initialization process may also lead to leakage of the privacy information with respect to the constraints.

    In this paper, we will design an initialization-free distributed algorithm to solve the resource allocation problem with a faster convergence rate. By employing the inertial accelerated method, a dual accelerated algorithm is proposed for the optimization problem.

    B. Contributions

    The proposed algorithm can be seen with accelerated saddle point dynamics for constrained optimization. The contributions of our paper versus the existing literature are summarized as follows.

    1) Accelerated saddle point dynamics are firstly proposed for resource allocation over a multi-agent network, which enables a hyper-exponential convergence rate. Hyperexponential stability is defined to characterize a faster convergence of our proposed algorithm in comparison with conventional primal-dual algorithms. With the objective function being strongly convex and its gradient being Lipschitz continuous, the proposed algorithm achieves a hyper-exponential convergence rate, which is faster than algorithms in [22]–[24].

    2) The proposed algorithm is initialization-free. Although in[28], [29], the fixed-time convergent algorithm is proposed, in which convergence to the optimal solution for optimization with globally coupled constraints can be achieved in fixed time, and they require that the globally coupled constraints are fulfilled during the initialization procedure. In the proposed algorithm, we do not require that the globally coupled constraints are fulfilled during the initialization procedure,which means there is no need to reveal the information related to constraints. Therefore, privacy related to constraint information can be preserved efficiently.

    3) An inertial fast-slow dynamical system with vanishing damping is introduced, based on the distributed saddle point algorithm designed. The dual variables are updated in two time scales through this formulation, which enables the acceleration of the dual dynamic. Specifically, the consensus of Lagrangian multipliers and the tracking of the constraints is designed in the fast manifold. In the slow manifold, the updating of Lagrangian multipliers is accelerated by inertial terms. This acceleration makes the proposed algorithm converge faster than saddle point dynamics in [25].

    II. PRELIMINARIES

    A. Notations and Definitions

    Definition 1:Consider the nonautonomous system

    Fig. 1. The convergence rate comparison between HS and ES.

    Thus, we can obtain that

    Lemma 2 gives us suggestions on designing accelerated saddle point dynamics to achieve a fast convergence rate,which will be presented in the next section.

    B. Problem Formulation

    In this paper, the following resource allocation problem is considered

    C. Assumptions

    First, the Lagrangian function for (11) is constructed as follows:

    Then, by characterizing the primal-dual solutions of the optimization problem as the saddle point of the augmented Lagrangian function and motivated by Lemma 2, the following algorithm is proposed for seeking the saddle point in a distributed manner

    Similar to acceleration methods in [33], classical results in ODE theory do not directly imply the existence of the solutions to (14). However, through the Lyapunov analysis,we can ensure the wellposedness of (14), which will be shown in the next section.

    Remark 2:Due to the introduction of saddle point dynamics, the algorithm cannot achieve fixed-time convergence, however, it is initialization-free and the coupled constraints are satisfied with the convergence of the algorithm. Compared with the centralized algorithm withO(n)computational complexity (linear complexity), the computational complexity of the proposed algorithm isO(1) (constant complexity). This means the computation complexity of the proposed algorithm will not increase with the increase of the problems’ dimension.

    IV. STABILITY ANALYSIS

    For the convenience of stability analysis, the proposed algorithm (14) is rewritten as follows:

    In order to show the stability of (15), we will follow the following steps. First, by employing the time-scale decomposition method (Section 11.2 in [30]), algorithm (15)is decomposed into the reduced system and the boundarylayer system. Then, the stability of these two systems are analyzed, respectively. At last, the stability analysis is combined and the stability of the whole algorithm is obtained via Lyapunov’s method.

    Following the aforementioned steps, we decompose algorithm (15) first. According to the singular perturbation theorem, we can obtain the boundary-layer system as follows:

    A. Stability Analysis of the Reduced System

    Defineh=[xT,,yT]T. Letx?,andy?be the vectors satisfying the following equalities:

    where

    Hence, we can obtain that

    By substituting (33) into (37), we can obtain

    Now, we have proven the exponential stability of the reduced model. To determine the stability of algorithm (15),we need to perform further analysis of the stability of the boundary-layer system (16).

    B. The Stability Analysis of the Boundary-Layer System

    where

    V. APPLICATION TO THE SMART GRID

    In this section, the effectiveness of algorithm (14) is illustrated by applying it to the economic dispatch problem of the smart grid, which is investigated in [29]. Here, a system with 10 generators is considered. This problem consists of finding the optimal strategy for 10 generators which minimizes the total generation cost. At the same time, the supply and demand, which can be modeled into globally coupled constraint, should be satisfied. First, based on the characteristics of power generators, similar to [22], [23] and[25] in the manuscript. The cost function of generatoriin the system can be modeled as

    TABLE I THE CHARACTERISTIC PARAMETERS OF GENERATORS

    A 10 agents based network is chosen to solve (67). It is undirected and circularly connected. Each agent represents one generator. The proposed algorithm (17) is used.

    For comparison, the best known optimal solutions are listed in Table II, and the distributed algorithm in [22], [23] and [25]are also carried out.andC3, the relative error with algorithmC2 creeps down while it ebbs with algorithmC3, which shows a smaller slope than bothC1 andC4. Furthermore, to verify robustness of the proposed algorithm with regard to the initial condition, in Table III, under 20 sets of random initial conditions, the average convergence time ofC1,C2,C3 andC4 is compared.From both Fig. 4 and Table III, we can see that the convergence rate of the proposed algorithm (15) is faster than the algorithm with an exponential convergence rate in [25].Moreover, it is also faster that the algorithm in [22], and the algorithm in [23], which is asymptotically convergent and requires that the constraint is fulfilled during the initialization procedure. This means the inertial terms we employed in the proposed algorithm (15) perform well in the acceleration of the algorithm. Combining this with the two-time-scale property of the proposed algorithm (15), the inertial accelerated method leads to hyper-exponential stability of the proposed algorithm (15), which verifies the statement in Theorem 2.

    TABLE II THE BEST KNOWN OPTIMAL SOLUTIONS

    Fig. 2. The evolutions of xi (i=1,2,...,10).

    Fig. 3. The evolutions of

    Fig. 4. The convergence rate comparison.

    TABLE III CONVERGENCE TIME UNDER RANDOM INITIAL CONDITIONS

    VI. CONCLUSIONS

    In this paper, a distributed dual accelerated algorithm for the distributed optimization problem with coupled linear equality constraints has been proposed. By designing the algorithm in two time scales, the proposed algorithm avoids the consensus updating of the multipliers, and the tracking of constraints being executed at the same speed with saddle point seeking,which makes the inertial acceleration possible. Moreover, by introducing inertial terms in the dual dynamic, saddle point dynamics are accelerated. With the aid of saddle point dynamics, the proposed algorithm is initialization free, which means that the globally coupled constraints do not need to be fulfilled at the initialization procedure; thus, the privacy related to constraint information is well-preserved. Notably,the proposed algorithm has been proven to converge to an optimal solution faster than the ordinary saddle point dynamics, with a so-called hyper-exponential convergence rate. Simulation of the energy dispatch problem in smart grid has shown that the proposed algorithm converges faster than the exponentially convergent and asymptotically convergent algorithms.

    少妇 在线观看| 亚洲三级黄色毛片| 女人久久www免费人成看片| 免费人妻精品一区二区三区视频| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久av不卡| 久久精品久久久久久久性| 日本欧美视频一区| 欧美日韩综合久久久久久| 国产真实伦视频高清在线观看| 多毛熟女@视频| 一本一本综合久久| 成人一区二区视频在线观看| 久久国产精品大桥未久av | 777米奇影视久久| 欧美日韩国产mv在线观看视频 | 97超视频在线观看视频| 最近手机中文字幕大全| 国产大屁股一区二区在线视频| 免费看光身美女| 91午夜精品亚洲一区二区三区| 最近最新中文字幕免费大全7| 女人十人毛片免费观看3o分钟| 国产视频内射| 97超碰精品成人国产| 91久久精品电影网| 欧美精品国产亚洲| 赤兔流量卡办理| 国产男女超爽视频在线观看| 丰满人妻一区二区三区视频av| 亚洲aⅴ乱码一区二区在线播放| 成年免费大片在线观看| 久久av网站| 男人舔奶头视频| 大片电影免费在线观看免费| 国产淫片久久久久久久久| 精品亚洲成a人片在线观看 | 国产淫片久久久久久久久| 丝袜喷水一区| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美在线一区| 51国产日韩欧美| 在线观看免费视频网站a站| 国产免费福利视频在线观看| 我的女老师完整版在线观看| videossex国产| 亚洲精品一区蜜桃| 欧美日韩综合久久久久久| 亚洲综合色惰| 色婷婷久久久亚洲欧美| 大又大粗又爽又黄少妇毛片口| 伦理电影大哥的女人| 看非洲黑人一级黄片| 久久精品久久精品一区二区三区| 免费黄网站久久成人精品| 国产精品人妻久久久久久| 久久精品人妻少妇| 在线观看美女被高潮喷水网站| 国产乱来视频区| 欧美高清成人免费视频www| 国产永久视频网站| 成人漫画全彩无遮挡| 国产精品一二三区在线看| 久久亚洲国产成人精品v| 婷婷色麻豆天堂久久| 成人特级av手机在线观看| 狂野欧美白嫩少妇大欣赏| 国产在线男女| 国产女主播在线喷水免费视频网站| 2018国产大陆天天弄谢| 99热全是精品| 日韩在线高清观看一区二区三区| av播播在线观看一区| 在线观看国产h片| 国产中年淑女户外野战色| 久久久精品免费免费高清| 中文天堂在线官网| 中文精品一卡2卡3卡4更新| 一本久久精品| 最近最新中文字幕大全电影3| 高清午夜精品一区二区三区| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 岛国毛片在线播放| 丰满人妻一区二区三区视频av| 亚洲av免费高清在线观看| 精品一区二区三卡| 国产亚洲5aaaaa淫片| 在线观看国产h片| 建设人人有责人人尽责人人享有的 | 一级毛片黄色毛片免费观看视频| 各种免费的搞黄视频| 国产精品久久久久成人av| 国产一区有黄有色的免费视频| 天堂中文最新版在线下载| 国产一区亚洲一区在线观看| 99热全是精品| 国产精品99久久久久久久久| 久久久成人免费电影| 亚洲综合精品二区| 国产午夜精品一二区理论片| av国产免费在线观看| 91精品国产国语对白视频| 亚洲不卡免费看| 插逼视频在线观看| 久久久精品94久久精品| 欧美 日韩 精品 国产| 久久久久久久久久久免费av| 亚洲av福利一区| 国产精品一区www在线观看| 赤兔流量卡办理| 欧美精品一区二区免费开放| 国模一区二区三区四区视频| 国产午夜精品一二区理论片| 精品人妻视频免费看| av国产精品久久久久影院| 国产91av在线免费观看| 我的老师免费观看完整版| 国产精品三级大全| 欧美成人精品欧美一级黄| 亚洲成色77777| 七月丁香在线播放| 亚洲国产精品成人久久小说| 国产在线视频一区二区| 在线观看三级黄色| 国产视频内射| 少妇高潮的动态图| 一边亲一边摸免费视频| 男人狂女人下面高潮的视频| 全区人妻精品视频| 丰满迷人的少妇在线观看| 91精品国产九色| .国产精品久久| 日韩三级伦理在线观看| 久久99热6这里只有精品| 亚洲最大成人中文| 爱豆传媒免费全集在线观看| 三级国产精品片| 久久鲁丝午夜福利片| 九九久久精品国产亚洲av麻豆| 99久国产av精品国产电影| a级一级毛片免费在线观看| 日产精品乱码卡一卡2卡三| 日本av手机在线免费观看| 亚洲美女搞黄在线观看| 国产爱豆传媒在线观看| 91久久精品国产一区二区成人| av黄色大香蕉| 国产免费一级a男人的天堂| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久久免| 免费观看在线日韩| 色视频在线一区二区三区| 丝瓜视频免费看黄片| 国产免费福利视频在线观看| 欧美一区二区亚洲| 久久精品国产鲁丝片午夜精品| 精品熟女少妇av免费看| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av蜜桃| 欧美xxⅹ黑人| 久久ye,这里只有精品| 久久久久久久大尺度免费视频| 成人亚洲欧美一区二区av| 午夜激情久久久久久久| 国产v大片淫在线免费观看| 亚洲成人av在线免费| 日韩av不卡免费在线播放| 精品少妇久久久久久888优播| 精品亚洲乱码少妇综合久久| 天堂中文最新版在线下载| 免费播放大片免费观看视频在线观看| 水蜜桃什么品种好| av在线老鸭窝| 亚洲国产高清在线一区二区三| 欧美另类一区| 如何舔出高潮| 国产成人精品久久久久久| 狂野欧美激情性xxxx在线观看| 熟妇人妻不卡中文字幕| 国产免费福利视频在线观看| 91久久精品国产一区二区成人| 欧美一级a爱片免费观看看| 亚洲欧美精品专区久久| 在现免费观看毛片| 亚洲av二区三区四区| 中文精品一卡2卡3卡4更新| 妹子高潮喷水视频| 国内少妇人妻偷人精品xxx网站| 嫩草影院新地址| 最近最新中文字幕大全电影3| 国产精品国产三级专区第一集| 久久 成人 亚洲| 中文字幕久久专区| 国产精品av视频在线免费观看| 亚洲精品日本国产第一区| 麻豆成人av视频| 一级毛片 在线播放| 少妇 在线观看| 国产黄片美女视频| 狂野欧美激情性xxxx在线观看| 亚洲av在线观看美女高潮| 国产女主播在线喷水免费视频网站| 天美传媒精品一区二区| 秋霞伦理黄片| 3wmmmm亚洲av在线观看| 久久久久国产精品人妻一区二区| 全区人妻精品视频| 国产成人免费无遮挡视频| 中文字幕久久专区| 高清日韩中文字幕在线| 蜜桃亚洲精品一区二区三区| 中文天堂在线官网| 毛片一级片免费看久久久久| 免费人成在线观看视频色| 精品久久久久久久久亚洲| 五月天丁香电影| 日韩国内少妇激情av| 97超视频在线观看视频| 蜜桃亚洲精品一区二区三区| 交换朋友夫妻互换小说| 欧美成人一区二区免费高清观看| 亚洲国产精品999| 亚洲av成人精品一二三区| 51国产日韩欧美| 一个人看的www免费观看视频| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看 | 精品亚洲成a人片在线观看 | 直男gayav资源| 91久久精品电影网| 国语对白做爰xxxⅹ性视频网站| 18+在线观看网站| 亚洲综合色惰| 国产69精品久久久久777片| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦中文免费视频观看日本| 久久国产精品男人的天堂亚洲 | 国产亚洲av片在线观看秒播厂| 亚洲精品视频女| videossex国产| 久久久欧美国产精品| 少妇丰满av| 乱系列少妇在线播放| 黄色一级大片看看| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 婷婷色综合www| 亚洲精品一二三| 少妇人妻久久综合中文| 99热全是精品| 大话2 男鬼变身卡| 国产在视频线精品| 成人亚洲精品一区在线观看 | 国产色爽女视频免费观看| 亚洲欧美日韩无卡精品| 亚洲精品第二区| 九九在线视频观看精品| 久久 成人 亚洲| 91精品一卡2卡3卡4卡| 国产一区亚洲一区在线观看| 中文在线观看免费www的网站| 成人黄色视频免费在线看| 国产人妻一区二区三区在| 国产精品一区二区在线观看99| 偷拍熟女少妇极品色| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片| 一级av片app| 两个人的视频大全免费| 春色校园在线视频观看| 最近中文字幕2019免费版| 最近中文字幕高清免费大全6| h视频一区二区三区| 99热网站在线观看| 国产久久久一区二区三区| 亚洲欧美日韩无卡精品| 日本黄色片子视频| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av成人精品| 看免费成人av毛片| 午夜免费鲁丝| 亚洲人成网站在线观看播放| 多毛熟女@视频| 少妇精品久久久久久久| 亚洲怡红院男人天堂| 韩国高清视频一区二区三区| 日日啪夜夜撸| 一本一本综合久久| 大陆偷拍与自拍| 18禁在线播放成人免费| 久久久精品免费免费高清| 久久久久久久久大av| 超碰97精品在线观看| 欧美精品人与动牲交sv欧美| 亚洲精品日本国产第一区| 国产av精品麻豆| 久久97久久精品| 国产午夜精品一二区理论片| 一级毛片电影观看| 赤兔流量卡办理| 亚洲av福利一区| 久久精品国产亚洲av天美| 国产真实伦视频高清在线观看| 秋霞在线观看毛片| 日日啪夜夜撸| 国产美女午夜福利| 91久久精品电影网| 熟女人妻精品中文字幕| 日本-黄色视频高清免费观看| 美女福利国产在线 | 有码 亚洲区| 一级爰片在线观看| 爱豆传媒免费全集在线观看| 99热这里只有是精品50| 亚洲av福利一区| 在线观看人妻少妇| 七月丁香在线播放| 国产久久久一区二区三区| 精品久久久久久久久亚洲| 性色av一级| 男人舔奶头视频| 国产精品久久久久久精品电影小说 | 亚洲国产精品一区三区| 国产淫语在线视频| 欧美bdsm另类| 毛片一级片免费看久久久久| 国产亚洲午夜精品一区二区久久| 欧美成人精品欧美一级黄| 亚洲av中文字字幕乱码综合| 免费观看a级毛片全部| 大香蕉97超碰在线| 看免费成人av毛片| 国产亚洲欧美精品永久| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| av卡一久久| 97超碰精品成人国产| 久久久久视频综合| 蜜桃亚洲精品一区二区三区| 欧美xxⅹ黑人| 亚洲国产欧美人成| 欧美日韩亚洲高清精品| 街头女战士在线观看网站| 日韩免费高清中文字幕av| 日韩,欧美,国产一区二区三区| 欧美日韩视频高清一区二区三区二| 久久毛片免费看一区二区三区| 久久久国产一区二区| 一级爰片在线观看| 少妇的逼好多水| 男人添女人高潮全过程视频| 夫妻午夜视频| h视频一区二区三区| 2018国产大陆天天弄谢| av视频免费观看在线观看| 色哟哟·www| 国产色婷婷99| 欧美精品国产亚洲| 亚洲av中文字字幕乱码综合| 国产精品三级大全| 91精品一卡2卡3卡4卡| 成人特级av手机在线观看| h视频一区二区三区| 日韩三级伦理在线观看| 欧美一级a爱片免费观看看| 各种免费的搞黄视频| videos熟女内射| 午夜激情福利司机影院| 亚洲av中文av极速乱| 亚洲精品国产av成人精品| 在线观看人妻少妇| 直男gayav资源| 精品国产露脸久久av麻豆| 久久ye,这里只有精品| 极品教师在线视频| 午夜福利在线观看免费完整高清在| 亚洲国产欧美人成| 欧美高清性xxxxhd video| av在线蜜桃| 嫩草影院新地址| 国产淫语在线视频| 看非洲黑人一级黄片| 99久久精品国产国产毛片| 欧美高清成人免费视频www| 日韩不卡一区二区三区视频在线| 18禁裸乳无遮挡免费网站照片| 80岁老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| 美女内射精品一级片tv| 尾随美女入室| 七月丁香在线播放| 香蕉精品网在线| 边亲边吃奶的免费视频| 麻豆国产97在线/欧美| 国产 精品1| 欧美激情极品国产一区二区三区 | 综合色丁香网| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 51国产日韩欧美| 精品国产一区二区三区久久久樱花 | 国产成人精品婷婷| 国产91av在线免费观看| 久久久午夜欧美精品| 免费观看的影片在线观看| 国产一区二区三区综合在线观看 | 下体分泌物呈黄色| 女性生殖器流出的白浆| 我要看日韩黄色一级片| 老师上课跳d突然被开到最大视频| 国产极品天堂在线| 好男人视频免费观看在线| 国产精品人妻久久久久久| 亚洲av.av天堂| 久久精品夜色国产| 99精国产麻豆久久婷婷| 国产精品爽爽va在线观看网站| 国产久久久一区二区三区| 国产精品成人在线| 王馨瑶露胸无遮挡在线观看| 久久亚洲国产成人精品v| 日韩中文字幕视频在线看片 | 男人舔奶头视频| 免费观看的影片在线观看| 国产精品.久久久| 丰满乱子伦码专区| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 少妇人妻精品综合一区二区| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 久久av网站| 多毛熟女@视频| 日韩视频在线欧美| 一级毛片 在线播放| 欧美高清性xxxxhd video| av播播在线观看一区| 黄色视频在线播放观看不卡| 看十八女毛片水多多多| 超碰av人人做人人爽久久| 成年女人在线观看亚洲视频| 国产精品av视频在线免费观看| 韩国高清视频一区二区三区| 交换朋友夫妻互换小说| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区免费观看| 多毛熟女@视频| 国产色婷婷99| 菩萨蛮人人尽说江南好唐韦庄| 美女视频免费永久观看网站| 久久久亚洲精品成人影院| 久久国内精品自在自线图片| 日韩欧美精品免费久久| 91狼人影院| a级毛片免费高清观看在线播放| 国产一区有黄有色的免费视频| 亚洲激情五月婷婷啪啪| 精品一区二区免费观看| 久久久色成人| 精品熟女少妇av免费看| 成人无遮挡网站| 看十八女毛片水多多多| 嫩草影院新地址| 99久久精品一区二区三区| 亚洲内射少妇av| 日韩欧美一区视频在线观看 | 在线观看一区二区三区| 97精品久久久久久久久久精品| 99国产精品免费福利视频| 久久久国产一区二区| 极品少妇高潮喷水抽搐| 草草在线视频免费看| 国产精品久久久久久久久免| 亚洲av欧美aⅴ国产| 一本一本综合久久| 国产免费福利视频在线观看| 国语对白做爰xxxⅹ性视频网站| 黄色日韩在线| 91精品国产国语对白视频| 精品少妇黑人巨大在线播放| 激情 狠狠 欧美| 国产在线男女| 男女边吃奶边做爰视频| 在线观看一区二区三区激情| 国产精品av视频在线免费观看| 纯流量卡能插随身wifi吗| 91aial.com中文字幕在线观看| 少妇熟女欧美另类| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 99视频精品全部免费 在线| av国产久精品久网站免费入址| 亚洲国产日韩一区二区| 一级毛片久久久久久久久女| 欧美日本视频| 久久久久人妻精品一区果冻| 十八禁网站网址无遮挡 | 麻豆精品久久久久久蜜桃| 26uuu在线亚洲综合色| 久久精品国产鲁丝片午夜精品| 午夜激情久久久久久久| 精品一品国产午夜福利视频| 久久影院123| 岛国毛片在线播放| 99久久精品国产国产毛片| 免费人妻精品一区二区三区视频| 国产91av在线免费观看| 国产成人精品婷婷| 亚洲久久久国产精品| 亚洲精品国产av成人精品| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 美女国产视频在线观看| 国产色婷婷99| 精品少妇久久久久久888优播| 九九在线视频观看精品| 麻豆乱淫一区二区| 免费播放大片免费观看视频在线观看| 国产欧美日韩精品一区二区| 综合色丁香网| 三级国产精品欧美在线观看| 韩国av在线不卡| 99热网站在线观看| 久热这里只有精品99| 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 麻豆精品久久久久久蜜桃| 久久久久精品久久久久真实原创| 免费少妇av软件| 在线观看国产h片| 老司机影院毛片| 狂野欧美激情性bbbbbb| 26uuu在线亚洲综合色| 日韩视频在线欧美| 最近中文字幕高清免费大全6| 日本免费在线观看一区| 少妇熟女欧美另类| 成人国产av品久久久| 国产美女午夜福利| 少妇被粗大猛烈的视频| videos熟女内射| 久久久精品94久久精品| 人人妻人人澡人人爽人人夜夜| 亚洲精品日本国产第一区| 午夜福利在线在线| 香蕉精品网在线| 成人国产av品久久久| 免费看日本二区| 国内揄拍国产精品人妻在线| av黄色大香蕉| 大片电影免费在线观看免费| 精品少妇黑人巨大在线播放| videossex国产| 日韩成人伦理影院| 国产乱人视频| 高清日韩中文字幕在线| 特大巨黑吊av在线直播| 日韩人妻高清精品专区| 乱系列少妇在线播放| 纵有疾风起免费观看全集完整版| 一区二区三区免费毛片| 免费看光身美女| 国产免费视频播放在线视频| 亚洲最大成人中文| 啦啦啦视频在线资源免费观看| av福利片在线观看| 97热精品久久久久久| 欧美日韩综合久久久久久| 美女cb高潮喷水在线观看| 人妻夜夜爽99麻豆av| 久久久久精品性色| 午夜日本视频在线| 欧美3d第一页| 精品久久久久久久久亚洲| 精品人妻一区二区三区麻豆| 日韩大片免费观看网站| 老女人水多毛片| 高清av免费在线| 成人午夜精彩视频在线观看| a级毛片免费高清观看在线播放| 99re6热这里在线精品视频| 久久精品久久精品一区二区三区| 免费大片黄手机在线观看| 国模一区二区三区四区视频| 亚洲欧美精品专区久久| tube8黄色片| 欧美zozozo另类| 午夜福利高清视频| 中文在线观看免费www的网站| 久久人人爽av亚洲精品天堂 | 最近中文字幕高清免费大全6| 精品熟女少妇av免费看| 久久久久久久国产电影| 夫妻午夜视频| 你懂的网址亚洲精品在线观看| 国产亚洲一区二区精品| 一边亲一边摸免费视频| 国产精品一区二区在线观看99| 国产69精品久久久久777片| 中文精品一卡2卡3卡4更新| 成人亚洲精品一区在线观看 | 我的老师免费观看完整版| 精品99又大又爽又粗少妇毛片| 狂野欧美激情性xxxx在线观看| 全区人妻精品视频| 久久久久久久国产电影| 日韩强制内射视频| 身体一侧抽搐| 如何舔出高潮| 搡老乐熟女国产| 99视频精品全部免费 在线| 欧美日韩亚洲高清精品| 精品久久久久久久久av|