• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein

    2021-07-23 10:08:20ShrukKhnMyurKleFlkSiddiquiNitinNem
    Digital Chinese Medicine 2021年3期

    Shruk Khn,Myur Kle,Flk Siddiqui,Nitin Nem

    a.Department of Pharmaceutical Chemistry,MUP’s College of Pharmacy(B Pharm),Washim,Maharashtra 444504,India

    b.Department of Pharmaceutical Chemistry,Government College of Pharmacy,Aurangabad,Maharashtra 431003,India

    c.Department of Pharmacology,Shri Vile Parle Kelavani Mandal’s(SVKM’s)Institute of Pharmacy,Dhule,Maharashtra 424001,India

    ABSTRACT Objective The study aimed to synthesize and characterize pyrimidine-linked benzimidazole hybrids,define their antimicrobial and antifungal activities in vitro,and determine their ability to inhibit the main protease and spike glycoprotein of SARS-CoV-2.Methods The ability of the synthesized compounds to inhibit the main protease and spike glycoprotein inhibitory of SARS-CoV-2 was investigated by assessing their mode of binding to the allosteric site of the enzyme using molecular docking.The structures of pyrimidine-linked benzimidazole derivatives synthesized with microwave assistance were confirmed by spectral analysis.Antibacterial and antifungal activities were determined by broth dilution.Results Gram-negative bateria(Escherichia coli and Pseudomonas aeruginosa)were more sensitive than grampositive bateria(Staphylococcus aureus and Streptococcus pyogenes)to the derivatives.Candida albicans was sensitive to the derivatives at a minimal inhibitory concentration(MIC)of 250 μg/mL.The novel derivatives had better binding affinity(kcal/mol)than nelfinavir,lopinavir,ivermectin,remdesivir,and favipiravir,which are under investigation as treatment for SARSCoV-2 infection.Compounds 2c,2e,and 2g formed four hydrogen bonds with the active cavity of the main protease.Many derivatives had good binding affinity for the RBD of the of SARSCoV-2 spike glycoprotein with the formation of up to four hydrogen bonds.Conclusion We synthesized novel pyrimidine-linked benzimidazole derivatives that were potent antimicrobial agents with ability to inhibit the SARS-CoV-2 spike glycoprotein.Understanding the pharmacophore features of the main protease and spike glycoprotein offers much scope for the development of more potent agents.We plan to optimize the properties of the derivatives using models in vivo and in vitro so that they will serve as more effective therapeutic options against bacterial and SARS-CoV-2 infections.

    Keywords SARS-CoV-2 inhibitor COVID-19 Molecular docking Pyrimidine-benzimidazole Bacteria Antifungal

    1 Introduction

    Coronavirus disease 2019(COVID-19)[1]induced by the novel severe acute respiratory syndrome-related coronavirus(SARS-CoV-2)has been declared by the World Health Organization(WHO)as a pandemic[2].Coronaviruses have triggered two other epidemics in addition to COVID-19,namely Middle East respiratory syndrome(MERS;2012),and severe acute respiratory syndrome(SARS;2002)[3].The National Health Commission of China declared in January 20th,2020 that SARS-CoV-2 infection is transmitted by person-to-person contact[4].SARS-CoV-2 belongs to the same familyBetacoronaviruses,as those that caused SARS and MERS[5,6].The novel coronavirus is a single-stranded positive-sense RNA with a diameter of 80-120 nm and 42 large viral RNA genomes[7].Coronaviruses are categorized as alpha-(α-COV),beta-(β-COV),gamma-(γ-COV),and delta-(δ-COV)types[8].Six of them have infected humans,and SARS-CoV-2 is the seventh after SARS-CoV and MERS-CoV[9].Symptoms of SARS-CoV-2 infection include fever,cough,dyspnea,myalgia,fatigue,decreased leukocyte counts,and pneumonia.Although numerous clinical trials have evaluated possible therapies for SARS-CoV-2 infection[10,11],treatment is not yet available for COVID-19[12].

    SARS-CoV-2 invades after binding to host cellular receptors[13,14].Host cell receptors and the receptorbinding domain(RBD)of SARS-CoV-2 might be viable targets of interest in treating SARS-CoV-2 infection[15].Nucleocapsid(N),envelope(E),membrane(M),and spike(S)proteins comprise the structural proteins of SARS-CoV-2[16,17].The spike protein consists of an RBD that specifically binds to human angiotensin-converting enzyme-2(hACE-2),which leads to host cell invasion[14,17].Much investigative focus is presently directed towards developing specific novel inhibitors of the RBD or hACE-2.

    Remdesivir is an approved treatment for COVID-19[18].Lopinavir and nelfinavir might inhibit SARSCoV-2 viral protease,and a clinical trial of favipiravir is underway for treating pneumonia induced by SARS-CoV-2[17].Favipiravir is a purine nucleoside that disrupts viral RNA synthesis[1],and ivermectin inhibits the replication of SARS-CoV-2in vitro[19].Therefore,we used remdesivir,nelfinavir,lopinavir,favipiravir,and ivermectin along with the native ligand in the crystal structure of SARS-CoV-2 main protease,that is,N3 as reference moieties for molecular docking studies[20].

    Heterocyclic compounds provide scaffolds upon which pharmacophores can assemble to yield potent and selective drugs[21].Among these,benzimidazole heterocyclics have attracted attention because they are easy to synthesize and have a wide range of biological activities.The benzimidazole ring is an essential component of vitamin-B12 in the form of 5,6-dimethyl-l-(alpha-D-ribofuranosyl)benzimidazole[22].Various benzimidazole derivatives with human and veterinary anthelmintic[23],anti-ulcer[24],cardiotonic[25],antihypertensive[26],analgesic[27],anticonvulsant[28],anticancer[29]properties have been developed[30,31].Pyrimidines and their derivatives also have anticancer[32],anxiolytic[33],antioxidant[34],antiviral[35],antifungal[36],anticonvulsant[36],antidepressant,and antibacterial properties[37].The United States Food and Drug Administration(USFDA)has approved many purine and pyrimidine derivatives for the management of cancer and viral diseases[38].Pyrimidine-fused bicyclic heterocyclic agents have anticancer,antiviral,and many other biological activities.

    To date,147 pyrimidine-fused bicyclic heterocyclic drugs have been approved for clinical application or are currently being clinically administered.The USFDA has authorized 57 of them to treat various diseases,among which,22 are currently being applied to treat various types of cancer[39].The pyrimidine ring system is abundant in nature as substituted and ring-fused compounds and equivalents,such as cytosine,thymine,uracil,thiamine(vitamin B1)and alloxan.It is also found in various synthetic compounds,including barbiturates and the HIV medication,zidovudine.Bacimethrin,a naturally occurring thiamine antimetabolite obtained in 1961 fromBacillus megatherium,is the most basic pyrimidine antibiotic,and it acts against many bacterial infections[40].Pyrimidine-fused bicyclic heterocyclic compounds can serve as scaffolds to find new and effective medicines for specific biological targets.

    The present study aimed to synthesize and characterize pyrimidine-linked benzimidazole hybrids with antimicrobial and antifungal activity as well as inhibitory activity against SARS-CoV-2 main protease and spike glycoprotein.We screened their antiviral inhibitory action by molecular dockingin silicoas we were unable to screen them for SARS-CoV-2 activityin vivodue to safety issues.We therefore investigated their antimicrobial and antifungal activitiesin vitroas preliminary evidence of their biological potential.Molecular dockingin silicovalidates the binding affinity of compounds for target molecules as a docking scores(kcal/mol).This allows the prediction of structural activity relationships between compounds and targets.

    2 Materials and methods

    2.1 Molecular docking

    Compounds were screened by molecular docking using the PyRx-Virtual Screening Tool[41]on a Lenovo ThinkPad with a 64-bit operating system,an Intel(R)CoreTMi5-4300M processor with a base frequency of 2.60 GHz and 4GB RAM.

    The structures of approved drugs remdesivir,lopinavir,nelfinavir,invermectin,favipiravir,and native ligand(Spatial Data File[SDF])were downloaded from the U.S.National Library of Medicine,Pub-Chem(https://pubchem.ncbi.nlm.nih.gov/),and the structures of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives were sketched in ChemDraw Ultra 8.0.Energy was minimized using a universal force field(UFF)[42].We investigated the binding affinity of the derivatives for the SARS-CoV-2 main protease(PDB ID:6LU7)and spike glycoprotein(6VSB).The crystal structures of 6LU7(https://www.rcsb.org/structure/6LU7)and 6VSB(https://www.rcsb.org/structure/6VSB)were downloaded from the RCSB Protein Data Bank.The native ligand in 6LU7 was N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-L-valyl-N~1~-((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-L-leucinamide[20].The crystal structure of 6VSB did not indicate a native ligand.Molecular docking proceeded as described[43-45].The interacting amino acid residues in the protein were identified using BIOVIA Discovery Studio Visualizer version 19.1.0.182 87(Dassault Systemes,Paris,France)[46].

    2.2 Design of novel pyrimidine-linked benzimidazole hybrids

    We designed derivatives by merging the 2-(chloromethyl)-1H-benzimidazole moiety with 1,2,3,4-tetrahydropyrimidine-2-thiol pyrimidine derivatives synthesized via the modified Biginelli reaction.Figure 1 shows the approach used to construct the derivatives.We then compared binding affinities of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives to determine the significance of merging the two moieties.

    Figure 1 Synthesis of pyrimidine-linked benzimidazole scaffold

    Table 1 shows structures of the pyrimidine derivatives and final novel derivatives obtained by merging benzimidazole with pyrimidine.

    Table 1 Structures of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives

    2.3 Laboratory procedures

    2.3.1 Synthesis of 2-(chloromethyl)-1H-benzimidazoleThis procedure is described in the Supplementary material.The yield was 85%.A yellowish-brown product recrystallized from dioxane;m.p.,152-154 °C[compared with the literature:147.8-148.2 °C][47].Care was taken while handling 2-(chloromethyl)-1Hbenzimidazole because it is a powerful skin and mucous membrane irritant[48].Figure 2 shows the reaction scheme for the synthesis of this compound.

    Figure 2 Synthesis of 2-(chloromethyl)-1H-benzimidazole

    2.3.2 Synthesis of pyrimidine derivativesThe modified Biginelli reaction proceeded as described and detailed in the Supplementary material[49]and generated 1,2,3,4-tetrahydropyrimidine-2-thiol from ethyl acetoacetate,aldehyde,and thiourea[37,50]at 75%-95% yield(Figure 3).

    Figure 3 Synthesis of 1,2,3,4-tetrahydropyrimidine-2-thiols via modified Biginelli reaction

    2.3.3 Merging 2-(chloromethyl)-1H-benzimidazole and 1,2,3,4-tetrahydropyrimidine-2-thiols to synthesize pyrimidine-linked benzimidazole derivativesWe condensed 2-(chloromethyl)-1H-benzimidazole(1.66 g,0.01 mol and 1,2,3,4-tetrahydropyrimidine-2-thiol(0.01 mol)by heating with potassium hydroxide(KOH)and H2O :acetone(2 :1)at 50-60 °C for 45 min.The reaction mixture was chilled to room temperature,decanted into ice-cold water,filtered,and recrystallized from ethanol(Figure 4).The yield was 90%-95%.

    Figure 4 Synthesis of novel pyrimidine-linked benzimidazole derivatives

    2.4 Calculation of Lipinski rule of five

    We applied the Lipinski rule of five that defines the ability of new molecular entities to be useful drugs.In terms of drug development,the rule states that weak absorption or permeation is more likely when the criteria of>5 H-bond donors,10 H-bond acceptors,molecular weight>500,and a measured LogP(MLogP)>5 are met[51-54].The properties of all derivatives were calculated using the SwissADME online tool(http://www.swissadme.ch/index.php).

    2.5 Biological activity

    Various concentrations of derivatives were prepared in DMSO to assess their antibacterial and antifungal activities against standard strains(Table 2)using broth dilution.Bacteria were maintained,and drugs were diluted in nutrient Mueller Hinton broth.The broth was inoculated with 108colony-forming units(CFU)per milliliter of test strains(Institute of MicrobialTechnology,Chandigarh,India)determined by turbidity.Stock solutions of synthesized derivates(2 mg/mL)were serially diluted for primary and secondary screening.The primary screen included 1 000,500,and 250 μg/mL of synthesized derivatives,then those with activity were further screened at 200,100,50,25,12.5,and 6.250 μg/mL.A control without antibiotic was subcultured(before inoculation)by spreading one loopful evenly over a quarter of a plate of medium suitable for growing test organisms and incubated at 37 °C overnight.The lowest concentrations of derivatives that inhibited bacterial or fungal growth were taken as minimal inhibitory concentrations(MICs).These were compared with the amount of control growth before incubation(original inoculum)to determine MIC accuracy[55-57].The standards for antibacterial activity were gentamycin,ampicillin,chloramphenicol,ciprofloxacin,and norfloxacin served,and those for antifungal activity were nystatin and griseofulvin.

    Table 2 Bacterial and fungal strains for activity assay

    3 Results

    3.1 Molecular docking

    Table 3 shows details of the SARS-CoV-2 main protease and spike glycoprotein according to PDB Xray structure validation reports.

    Table 3 Crystal structures of SARS-CoV-2 main protease(Mpro)and spike glycoprotein used for molecular docking

    Table 4 shows details of the derivatives,their binding affinity(kcal/mol),number of hydrogen bonds formed with targets and active amino acid residues involved in interactions.Data for compounds 1a-1h(1,2,3,4-tetrahydropyrimidine-2-thiols),are provided in Supplementary material.

    Table 4 Details of the synthesized derivatives

    Table 4 Continued

    Table 4 Continued

    Table 5 shows the two-and three-dimensional(2D and 3D)binding positions of the derivatives.These enabled us to predict which atoms and/or groups in a ligand are involved in interactions with amino acid residues in target derivatives.Details of 2D and 3D-docking of compounds 1a-1h are provided in the Supplementary material.

    Table 5 2D and 3D docking positions of drugs targeting SARS-CoV-2 main protease and RBD of spike glycoprotein

    Table 5 Continued

    Table 6 shows changes in the number of hydrogen bonds formed and binding affinity before and after merging with benzimidazole.

    Table 6 Affinity and hydrogen bonds formed after pyrimidine-linked benzimidazole hybrids bound to SARSCoV-2 main protease

    3.2 Chemistry

    Spectral characterization revealed the formation of pyrimidine-linked benzimidazole derivatives.The chemistry,melting points,physical properties,and IR spectra are provided in the Supplementary material.

    3.2.1 2-(chloromethyl)-1H-benzimidazoleMolecular formula,C8H7ClN2;molecular weight,166.61;appearance,yellowish brown;soluble in ethanol,acetone,benzene;elemental analysis,C,57.67;H,4.23;Cl,21.28;N,16.81;LogP,2.11;yield,90%;m.p.,152-154 °C;IR:aromatic,933 and 842 cm-1;halogen,642 cm-1;NH bending,1 600 cm-1;NH stretching,3 300-3 400 cm-1;CH bending,700 and 842 cm-1;CH stretching,3 084 cm-1;C=C,1 650 cm-1.

    3.2.2 Ethyl 1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate(1a)Molecular formula,C8H14N2O2,S;molecular weight,198.24;appearance,light pink powder;soluble in ethanol,acetone,benzene;m/e ratio,198.05(100.0%),199.05(9.6%),200.04(4.5%);elemental analysis,C,48.47;H,5.08;N,14.13;O,16.14;S,16.17;LogP,1.66;yield,80%;m.p.,213-215 °C;IR:NH bending,1 600 cm-1;NH stretching,3 315 cm-1;CH bending,960 cm-1;CH stretching,3 030 cm-1;ester group,1 710 cm-1;SH stretching,2 524 cm-1;C-S stretching,680 cm-1;aromatic,690 cm-1.

    3.2.3 Ethyl-1,2,3,4-tetrahydro-2-mercapto-6-methyl-4-phenylpyrimidine-5-carboxylate(1b)Molecular formula,C14H18N2O2S;molecular weight,274.34;appearance,milky white crystals;soluble in ethanol,acetone,benzene;m/e ratio,274.08(100.0%),275.08(16.2%),276.07(4.5%),276.08(1.7%);elemental analysis,C,61.29;H,5.14;N,10.21;O,11.66;S,11.69;LogP,3.76;yield 85%;m.p.,203-205 °C;IR:NH bending 1 654 cm-1;NH stretching,3 332 cm-1;CH bending,869 cm-1;CH stretching,3 180 cm-1;ester group,1 700 cm-1;aromatic,700 cm-1;SH stretching,2 582 cm-1;C-S stretching 692 cm-1.

    3.2.4 Ethyl-1,2,3,4-tetrahydro-4-(2-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate(1c)Molecular formula,C14H18N2O3S;molecular weight,290.34;appearance,prismatic white crystals;solublein ethanol,acetone,benzene;m/e ratio,290.07(100.0%),291.08(15.4%),292.07(4.6%),292.08(1.8%),291.07(1.5%;elemental analysis,C,57.92;H,4.86;N,9.65;O,16.53;S,11.04;LogP,3.37;yield,77%;m.p.,201-203 °C;IR:NH bending,1 581 cm-1;NH stretching,3 300 cm-1;CH bending,756 cm-1;CH stretching,3 003 cm-1;ester group,1 751 cm-1;hydroxy group,3 600 cm-1;aromatic o-disubstituted,730 cm-1;SH stretching,2 600 cm-1;C-S stretching,650 cm-1.

    3.2.5 Ethyl-1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate(1d)Molecular formula,C14H18N2O3S;molecular weight,290.34;appearance,light brown powder;soluble in ethanol,acetone,benzene;m/e ratio,290.07(100.0%),291.08(15.4%),292.07(4.6%),292.08(1.8%),291.07(1.5%);elemental analysis,C,57.92;H,4.86;N,9.65;O,16.53;S,11.04;LogP,3.37;yield,79%;m.p.,179-181 °C;IR:-NH bending,1 610 cm-1;NH stretching,3 319 cm-1;CH bending,866 cm-1;CHstretching 3 150 cm-1;ester group 1 700 cm-1;hydroxy group,3 600 cm-1aromatic m-disubstituted,680 and 788 cm-1;SH stretching,2 500 cm-1;C-S stretching,630 cm-1.

    3.2.6 Ethyl-1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate(1e)Molecular formula,C14H14N2O3S;molecular weight,290.34;appearance,off-white powder;soluble in ethanol,acetone,benzene;m/e ratio,290.07(100.0%),291.08(15.4%),292.07(4.6%),292.08(1.8%),291.07(1.5%);elemental analysis,C,57.92;H,4.86;N,9.65;O,16.53;S,11.04;LogP,3.37;yield,85%;m.p.,225-227 °C;IR:NH bending,1 581 cm-1;NH stretching 3 400 cm-1;SH bending,825 cm-1;SH stretching 3 016 and 3 196 cm-1;ester group 1 689 cm-1;hydroxy group 3 502 cm-1aromatic p-disubstituted,825 cm-1;SH stretching,2 561 cm-1;C-S stretching,642 cm-1.

    3.2.7 Ethyl-4-(2-chlorophenyl)-1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate(1f)Molecular formula,C14H17ClN2O2S;molecular weight,308.78;appearance,yellowish white sticky product;soluble in ethanol,acetone,benzene;m/e ratio,308.04(100.0%),310.04(32.6%),309.04(16.9%),311.04(5.9%),310.03(4.5%),312.03(1.5%),310.05(1.1%);elemental analysis,C,54.46;H,4.24;Cl,11.48;N,9.07;O,10.36;S,10.38;LogP,4.31;yield,87%;m.p.192-194 °C;IR:NH bending,1 580 cm-1;NH stretching,3 350 cm-1;CH bending,767 cm-1;CH stretching,3 100 cm-1;ester group,1 724 cm-1;halogen group,646 cm-1;aromatic o-disubstituted,767 cm-1;SH stretching,2 349 cm-1;C-S stretching,646 cm-1.

    3.2.8 Ethyl-1,2,3,4-tetrahydro-2-mercapto-4-(4-methoxyphenyl)-6-methylpyrimidine-5-carboxylate(1g)Molecular formula,C15H20N2O3S;molecular weight,304.36;appearance,white crystals;soluble in ethanol,acetone,benzene;m/e ratio,304.09(100.0%),305.09(18.1%),306.08(4.5%),306.09(2.1%);elemental analysis,C,59.19;H,5.30;N,9.20;O,15.77;S,10.54;LogP,3.63;yield,92%;m.p.,-199-201 °C;IR:NH bending,1 581 cm-1;NH stretching,3 319 cm-1;CH bending,767 cm-1;CH stretching,3 150 cm-1;ester group,1 710 cm-1;ether group,1 186 cm-1;aromatic p-disubstituted,790 cm-1;SH stretching,2 500 cm-1;C-S stretching,653 cm-1.

    3.2.9 Ethyl-4-cinnamyl-1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate(1h)Molecular formula,C17H22N2O2S;molecular weight,314.4;appearance,white crystals;soluble in ethanol,acetone,benzene;m/e ratio,314.11(100.0%),315.11(20.0%),316.10(4.5%),316.12(1.6%);Elemental Analysis,C,64.94;H,5.77;N,8.91;O,10.18;S,10.20;LogP,4.55;yield,82%;m.p.,200-202 °C;IR,NH bending,1 595 cm-1;NH stretching,3 400 cm-1;CH bending,852 cm-1;CH stretching,3 150 cm-1;ester group,1 703 cm-1;C=C,1 670 cm-1;aromatic,monosubstituted,700 and 770 cm-1;SH stretching,2 600 cm-1;SH stretching,661 cm-1.

    3.2.10 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate(2a)Molecular formula,C16H20N4O2S;molecular weight,328.39;appearance,yellowish brown;soluble in ethanol,acetone,benzene;m/e ratio,328.10(100.0%),329.10(19.7%),330.10(5.3%),330.11(1.5%);elemental analysis,C,58.52;H,4.91;N,17.06;O,9.74;S,9.76;LogP,3.07;yield,91%;m.p.,172-174 °C;IR:NH bending,1 546 cm-1;NH stretching,3 313 cm-1;CH bending,750 cm-1;CH stretching,3 034 cm-1;ester group,1 700 cm-1;C=C,1 600 cm-1;aromatic,750 cm-1;-C-S-C,750 cm-1;C-S stretching,680 cm-1.

    3.2.11 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-6-methyl-4-phenylpyrimidine-5-carboxylate(2b)Molecular formula,C22H24N4O2S;molecular weight,404.48;appearance,yellowish brown;soluble in ethanol,acetone,benzene;m/e ratio,404.13(100.0%),405.13(26.1%),406.13(5.5%),406.14(2.8%),407.13(1.1%);elemental analysis,C,65.33;H,4.98;N,13.85;O,7.91;S,7.93;LogP,5.17;yield,93%;m.p.,142-144 °C;IR,NH bending,1 600 cm-1;NH stretching,3 313 cm-1;CH bending,842 cm-1;CH stretching,3 061 cm-1;ester group,1 700 cm-1;C=C,1 600 cm-1;aromatic,700 and 742 cm-1;C=N group,1 644 cm-1;-C-S-C,742 cm-1;C-S stretching,700 cm-1.

    3.2.12 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(2-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate(2c)Molecular formula,C22H24N4O3S;molecular weight,420.48;appearance,yellowish brown;soluble in ethanol,acetone,benzene;m/e ratio,420.13(100.0%),421.13(24.1%),422.12(4.5%),422.13(3.9%),421.12(2.3%),423.12(1.1%);elemental analysis,C,62.84;H,4.79;N,13.32;O,11.41;S,7.63;LogP,4.78;yield,95%;m.p.,152-154 °C;IR:NH bending,1 593 cm-1;NH stretching,3 313 cm-1;CH bending,700 cm-1;CH stretching,3 055 cm-1;ester group,1 764 cm-1;C=C,1 600 cm-1;aromatic o-disubstituted,700 and 746 cm-1;C=N group,1 670 cm-1;C-S-C,746 cm-1;C-S stretching,600 cm-1.

    3.2.13 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate(2d)Molecular formula,C22H24N4O3S;molecular weight,420.48;appearance,yellowish brown;soluble in ethanol,acetone,benzene;m/e ratio,420.13(100.0%),421.13(24.1%),422.12(4.5%),422.13(3.9%),421.12(2.3%),423.12(1.1%);elemental analysis,C,62.84;H,4.79;N,13.32;O,11.41;S,7.63;LogP,4.78;yield,95%;m.p.,223-225 °C;IR:NH bending,1 595 cm-1;NH stretching,3 300 cm-1;CH bending,700 cm-1;CH stretching,3 050 cm-1;ester group,1 700 cm-1;C=C,1 600 cm-1;aromatic m-disubstituted,700 and 742 cm-1;C=N group,1 595 cm-1;-C-S-C,742 cm-1;C-S stretching,700 cm-1.

    3.2.14 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate(2e)Molecular formula,C22H24N4O3S;molecular weight,420.48;appearance,yellowish brown;soluble in ethanol,acetone,benzene;m/e ratio,420.13(100.0%),421.13(24.1%),422.12(4.5%),422.13(3.9%),421.12(2.3%),423.12(1.1%);elemental analysis,C,62.84;H,4.79;N,13.32;O,11.41;S,7.63;LogP,4.78;yield,96%;m.p.,138-140 °C;IR:NH bending,1 598 cm-1;NH stretching,3 400 cm-1;CH bending,850 cm-1;CH stretching,3 062 cm-1;ester group,1 700 cm-1;C=C,1 598 cm-1;aromatic p-disubstituted,742 cm-1;C-S-C,742 cm-1;C-S stretching,690 cm-1.

    3.2.15 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-4-(2-chlorophenyl)-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate(2f)Molecular formula,C22H23ClN4O2S;molecular weight,438.93;appearance,yellowish brown;soluble in ethanol,acetone,benzene;m/e ratio,438.09(100.0%),440.09(37.0%),439.10(24.1%),441.09(9.5%),440.10(3.2%),439.09(2.3%),442.08(1.4%);elemental analysis,C,60.20;H,4.36;Cl,8.08;N,12.76;O,7.29;S,7.31;LogP,5.73;yield,90%;m.p.,106-108 °C;IR:NH bending,1 571 cm-1;NH stretching,3 298 cm-1;CH bending,700 cm-1;CH stretching,2 950 cm-1;ester group,1 700 cm-1;C=C,1 470 cm-1;C=N group,1 691 cm-1;halogen,700 cm-1;aromatic o-disubstituted,752 cm-1;-C-S-C,752 cm-1;C-S stretching,650 cm-1.

    3.2.16 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(2-methoxyphenyl)-6-methylpyrimidine-5-carboxylate(2g)Molecular formula,C23H26N4O3S;molecular weight,434.51;appearance,yellowish brown;soluble in ethanol,acetone,benzene;m/e ratio,434.14(100.0%),435.14(27.2%),436.14(5.1%),436.15(3.7%),437.14(1.2%);elemental analysis,C,63.58;H,5.10;N,12.89;O,11.05;S,7.38;LogP,5.04;yield,92%;m.p.,148-150 °C;IR:NH bending,1 590 cm-1;NH stretching,3 300 cm-1;CH bending,833 cm-1;CH stretching,3 150 cm-1;ester group,1 699 cm-1;ether,1 184 cm-1;C=C,1 450 cm-1;C=N group,1 680 cm-1;aromatic p-disubstituted,800 cm-1;C-S-C,744 cm-1;C-S stretching,650 cm-1.

    3.2.17 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-4-cinnamyl-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate(2h)Molecular formula,C25H28N4O2S;molecular weight,444.55;appearance,yellowish brown;solubility,ethanol,acetone,benzene;m/e ratio,444.16(100.0%),445.17(27.4%),446.16(5.2%),446.17(4.0%),445.16(2.3%),447.16(1.2%);elemental analysis,C,67.54;H,5.44;N,12.60;O,7.20;S,7.21;LogP,5.04;yield,90%;m.p.,180-182 °C;IR:NH bending,1 564 cm-1;NH stretching,3 250 cm-1;CH bending,850 cm-1;CH stretching,3 059 cm-1;ester group,1 700 cm-1;C=C,1 480 cm-1;C=N group,1 680 cm-1;aromatic mono-substituted,694 cm-1;-CS-C,746 cm-1;C-S stretching,694 cm-1.

    3.3 Antimicrobial and antifungal activity

    The antimicrobial susceptibility of all synthesized pyrimidine-linked benzimidazole derivatives was tested.Table 7 shows the MIC and minimum fungicidal concentrations(MFCs).The MIC of derivative 2a againstE.coliwas 62.5 μg/mL,which was much more potent than ampicillin,whereas derivatives 2c,2e,and 2f were equipotent at a MIC of 100 μg/mL.Pseudomonas aeruginosawas sensitive to all synthesized derivatives at 62.5,100,and 250 μg/mL,but not to ampicillin.Staphylococcus aureuswas sensitive to derivatives 2a,2b,2d,2e,and 2g at 200,100,100,100,and 200 μg/mL,respectively,indicating that they were more potent than ampicillin,which was active at 250 μg/mL.The MICs of derivatives 2b and 2f were both 100 μg/mL,and these compounds were equipotent againstS.pyogenes.Derivatives 2b,2c,2d,2e,and 2f exerted more effective fungicidal activity againstC.albicanscompared with griseofulvin with MICs of 250 and 500 μg/mL,respectively.

    We used nystatin and griseofulvin as the standard antifungals againstA.niger,C.albicans,andA.clavatus.Table 7 shows the MFCs.Derivatives 2b,2c,2d,2e,and 2f exerted fungicidal activity against,C.albicanswas sensitive at a MIC of 250 μg/mL compared with griseofulvin at 500 μg/mL.

    Table 7 Minimum inhibitory and fungicidal concentrations of standard drugs and synthesized derivatives(μg/mL)

    3.4 Lipinski rule of five

    None of the derivatives violated the rule of 5,indicating good absorption or permeation of the derivatives(Table 8).

    Table 8 Lipinski rule of five for all synthesized derivatives

    4 Discussion

    We applied molecular docking to compare the ability of pyrimidine-linked benzimidazole hybrids to inhibit SARS-CoV-2 main protease and the RBD of spike glycoprotein with approved drugs and native ligands.The binding affinity of several derivatives was similar to that of approved drugs.The formation of a hydrogen bonds with target molecules results in inhibition,but binding affinity can be increased by van der Waals forces,Pi-Pi,and hydrophobic interactions.Thus,optimal inhibitors should comprise ligands that form hydrogen bonds with targets.For example,the binding affinity of remdesivir for the main protease is-7 kcal/mol,which is much lower than that of approved drugs,but it forms about eight hydrogen bonds with target,which confers better inhibitory activity than these drugs.This could explain why it has been accepted for clinical trials for the management of COVID-19.Our novel derivatives also formed hydrogen bonds with their targets,indicating inhibitory potency towards the SARS-CoV-2 main protease.

    The binding affinity of our novel derivatives for the RBD of the SARS-CoV-2 spike glycoprotein was as good that that of the approved drugs.The binding affinity of ivermectin for the RBD of SARS-CoV-2 spike glycoprotein is-9.1 kcal/mol and it forms four hydrogen bonds.It interacts with Cys-C at 379,Glu-A at 988,Val-C at 382,Pro-A at 987,Val-A at 991,Val-B at 991,and Lys-C at 378.The binding affinity of remdesivir is-6.3 kcal/mol and it forms five hydrogen bonds with the RBD.It interacts with Asn-B at 542,Thr-B at 547,Asp-C at 745,Leu-C at 981,Thr-B at 549,Lys-B at 386,and Leu-C at 981.Favipiravir forms four hydrogen bonds with the RBD and its binding affinity is-5.2 kcal/mol.It interacts with Asp-A at 994,Phe-C at 970,Arg-C at 995,Thr-C at 998,and Gly-C at 999.Ivermectin,remdesivir,and favipiravir are currently applied to treat SARS-CoV-2 infection.Several of our derivatives have good binding affinity and formed up to four hydrogen bonds with the RBD of the SARS-CoV-2 spike glycoprotein.

    Antimicrobial screening revealed that compounds with an aromatic ring at the R position were more potent than ampicillin,which is the standard antimicrobial againstP.aeruginosa,S.aureus,andS.pyogenes.This might be attributed to the polar effect of the aromatic rings.Derivatives without substitution at the R position were more potent than ampicillin againstE.coliandS.aureus,which might have been due to being smaller and having a low molecular weight.Compounds with phenyl,hydroxy phenyl,and chlorophenyl substitutions at the R position were more active than griseofulvin againstC.albicans.

    The drug-likeliness of ligands was assessed using Lipinski's rule of five in order to determine the pharmacokinetic characteristics of the synthesized ligands.All ligands were recognized as drug-like compounds and without any structural caution the physicochemical filter was passed through.The virtual screening method has the advantage of being able to produce ligands with high predicted binding affinities for completely new protein sequences.Here from the binding affinity,we can choose few potential ligands for the further optimization and development of novel anti-SARS-CoV-2 drugs.Compound 2c,2d,2e,2f,2g,and 2h exhibited good binding affinity with main protease and RBD of spike glycoprotein,also formed enough number of hydrogen bonds.We can choose these ligands for further optimization and validation,in order to search for more novel compounds for the treatment of COVID-19.

    We determined changes in the binding affinity of pyrimidines after combining them with benzimidazole to predict the contributions of functional groups.The numbers of hydrogen bonds also changed,indicating the significance of merging benzimidazole with pyrimidine.

    The docking scores of almost all derivatives indicated that binding affinity increased when merged with benzimidazole.Compound 1a formed four hydrogen bonds and 2a formed only one with the SARS-CoV-2 main protease.Compounds 2c,2d,2e,2f,and 2 g had better binding affinity and formed more hydrogen bonds than compound 2b,indicating that synthesized derivatives with different substituted benzaldehydes,preferably at the ortho and meta positions,would generate more potent derivatives.The binding affinity of compound 2h increased and it formed two hydrogen bonds,indicating that increasing the chain length of the R group increases potency.We speculated that substitution with cinnamaldehyde will increase binding affinity as well as the number of hydrogen bonds.The information rendered by molecular docking study improved understanding of the structural requirements for developing more novel blockers of SARS-CoV-2 main protease and inhibitors of the RBD of spike glycoprotein.Figure 5 shows the predicted pharmacophore features of each compound.

    Figure 5 Predicted pharmacophore features of novel derivatives for further optimization

    5 Conclusion

    We could not assess the ability of our derivatives to inhibit SARS-CoV-2in vitrodue to safety reasons.However,we investigated their antimicrobial and antifungal properties as preliminary biological evidence.We found that pyrimidine-linked benzimidazole derivatives at specific concentrations were more effective than the standard ampicillin against gram-positive and gram-negative bacteria.Some derivatives were more active at higher concentrations than standard drugs.Gram-negative abcteriaE.coliandP.aeruginosawere more sensitive to the novel derivatives than gram-positive bacteriaS.aureusandS.pyogenes.C.albicanswas sensitive to the derivatives at a MFC of 250 μg/mL.

    The molecular docking method was used to examine whether any possible ligands had potential interactions with the main protease and RBD of spike glycoprotein.Despite certain disadvantages,such as the use ofin vitroconditions rather thanin vivoconditions,molecular docking enables researchers to make more accurate decisions in a smaller duration.We developed eight of derivatives that had binding affinity and potential anti SARS-CoV-2 activities that exceeded those of currently approved drugs for treating COVID-19 infection.However,understanding the pharmacophore features of the SARS-CoV-2 main protease and the RBD of spike glycoprotein provides much scope to generate more potent derivatives.Optimizing the properties of these derivatives in modelsin vivoandin vitro,will lead to more effective options to fight SARS-CoV-2 infection.Because of the critical global COVID-19 situation,we believe that extensive investigation is imperative to acquire a deeper understanding of SARS-CoV-2 and generate effective agents to treat and prevent infection worldwide.At present,a single lead could be a game changer.

    Competing interests

    The authors declare no conflict of interest.

    欧美黄色淫秽网站| 日韩三级视频一区二区三区| 国产91精品成人一区二区三区 | 建设人人有责人人尽责人人享有的| 麻豆乱淫一区二区| 丰满饥渴人妻一区二区三| 三上悠亚av全集在线观看| 亚洲全国av大片| 十八禁高潮呻吟视频| 成年av动漫网址| 国产又色又爽无遮挡免| 亚洲av日韩在线播放| 国产精品秋霞免费鲁丝片| 亚洲综合色网址| 在线观看免费高清a一片| 亚洲欧美激情在线| 亚洲精品久久成人aⅴ小说| 国产av精品麻豆| 国产国语露脸激情在线看| 人人澡人人妻人| 精品少妇一区二区三区视频日本电影| 美女午夜性视频免费| 国产av精品麻豆| 国产麻豆69| 啦啦啦中文免费视频观看日本| 亚洲欧美激情在线| 久久天堂一区二区三区四区| 天天操日日干夜夜撸| 国产成人免费观看mmmm| 亚洲国产精品一区三区| 久久影院123| 亚洲欧美精品自产自拍| 中国美女看黄片| 亚洲美女黄色视频免费看| 亚洲国产毛片av蜜桃av| 国产亚洲精品一区二区www | 国产高清视频在线播放一区 | 欧美精品一区二区免费开放| 日本wwww免费看| 亚洲综合色网址| 青青草视频在线视频观看| 日日夜夜操网爽| 丰满少妇做爰视频| 女性被躁到高潮视频| 一级黄色大片毛片| 十八禁高潮呻吟视频| 1024香蕉在线观看| 日本a在线网址| 国产熟女午夜一区二区三区| 国产精品一区二区在线不卡| 国产精品久久久久久精品电影小说| 国产精品麻豆人妻色哟哟久久| 国产一区二区三区在线臀色熟女 | 亚洲伊人色综图| 建设人人有责人人尽责人人享有的| 久久国产精品人妻蜜桃| 精品第一国产精品| 啦啦啦中文免费视频观看日本| 99久久99久久久精品蜜桃| 97精品久久久久久久久久精品| 蜜桃国产av成人99| 搡老岳熟女国产| 免费在线观看完整版高清| 欧美变态另类bdsm刘玥| 国产精品二区激情视频| 国内毛片毛片毛片毛片毛片| 最新的欧美精品一区二区| 精品国产一区二区久久| 亚洲伊人久久精品综合| 久久久久精品国产欧美久久久 | 一级黄色大片毛片| 久久人人97超碰香蕉20202| h视频一区二区三区| 性高湖久久久久久久久免费观看| a级毛片在线看网站| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品一区三区| 老司机影院成人| 巨乳人妻的诱惑在线观看| 51午夜福利影视在线观看| 日韩大片免费观看网站| 一区二区三区乱码不卡18| 丁香六月天网| 天堂中文最新版在线下载| 老司机午夜福利在线观看视频 | 一区二区三区激情视频| 高清视频免费观看一区二区| 欧美精品一区二区免费开放| 精品国内亚洲2022精品成人 | 日本一区二区免费在线视频| 黄色怎么调成土黄色| 蜜桃国产av成人99| 国产一区二区激情短视频 | 男女无遮挡免费网站观看| 电影成人av| www.熟女人妻精品国产| 亚洲欧美激情在线| 国产一区二区三区综合在线观看| 精品国产乱码久久久久久小说| 91精品伊人久久大香线蕉| 亚洲少妇的诱惑av| 香蕉丝袜av| 各种免费的搞黄视频| 欧美 亚洲 国产 日韩一| 男女无遮挡免费网站观看| 午夜福利在线观看吧| 亚洲av电影在线观看一区二区三区| 一区二区三区激情视频| 亚洲国产日韩一区二区| 18禁黄网站禁片午夜丰满| 国产成人精品久久二区二区免费| 人人妻,人人澡人人爽秒播| 少妇裸体淫交视频免费看高清 | 成人av一区二区三区在线看 | 下体分泌物呈黄色| 日韩欧美一区二区三区在线观看 | 91精品三级在线观看| 一进一出抽搐动态| 咕卡用的链子| 免费少妇av软件| av超薄肉色丝袜交足视频| 两个人看的免费小视频| 久久久久久久大尺度免费视频| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 男人爽女人下面视频在线观看| 国产精品久久久人人做人人爽| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 伊人久久大香线蕉亚洲五| 国内毛片毛片毛片毛片毛片| 国产男女内射视频| 亚洲成人免费电影在线观看| 国产在线免费精品| 在线av久久热| 欧美精品亚洲一区二区| 久久中文看片网| 日韩有码中文字幕| 国产亚洲精品一区二区www | 免费黄频网站在线观看国产| 老鸭窝网址在线观看| 国产精品一区二区免费欧美 | 免费久久久久久久精品成人欧美视频| 久久久久国产精品人妻一区二区| 亚洲久久久国产精品| 久久久精品国产亚洲av高清涩受| 夜夜骑夜夜射夜夜干| avwww免费| 国产黄频视频在线观看| 真人做人爱边吃奶动态| 久久久国产欧美日韩av| 交换朋友夫妻互换小说| 9色porny在线观看| 丝瓜视频免费看黄片| 久久人妻熟女aⅴ| 国产人伦9x9x在线观看| 纯流量卡能插随身wifi吗| 国产伦人伦偷精品视频| www.熟女人妻精品国产| 欧美日韩亚洲高清精品| 亚洲性夜色夜夜综合| 国产精品免费大片| 韩国高清视频一区二区三区| 久久久国产精品麻豆| 国产男人的电影天堂91| 一边摸一边做爽爽视频免费| 岛国毛片在线播放| 大码成人一级视频| 性色av一级| 国产欧美日韩精品亚洲av| 两人在一起打扑克的视频| 老司机在亚洲福利影院| www.999成人在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲一区中文字幕在线| 一二三四社区在线视频社区8| 最新在线观看一区二区三区| 精品福利观看| 精品人妻熟女毛片av久久网站| 老司机午夜十八禁免费视频| 国产精品99久久99久久久不卡| 91精品三级在线观看| 十分钟在线观看高清视频www| av免费在线观看网站| 日韩,欧美,国产一区二区三区| 少妇人妻久久综合中文| 黄色视频在线播放观看不卡| 成年人免费黄色播放视频| 十分钟在线观看高清视频www| 又紧又爽又黄一区二区| 国产精品九九99| 中文精品一卡2卡3卡4更新| 黄网站色视频无遮挡免费观看| 女人久久www免费人成看片| 国产男人的电影天堂91| 丝袜在线中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 久久ye,这里只有精品| 天天躁夜夜躁狠狠躁躁| 国产成人精品无人区| 青青草视频在线视频观看| 波多野结衣av一区二区av| 免费高清在线观看视频在线观看| 9191精品国产免费久久| 国产一卡二卡三卡精品| 日本撒尿小便嘘嘘汇集6| 亚洲精品第二区| 精品久久久久久久毛片微露脸 | av在线老鸭窝| 桃红色精品国产亚洲av| 黑人操中国人逼视频| kizo精华| 桃花免费在线播放| 亚洲三区欧美一区| 俄罗斯特黄特色一大片| 91大片在线观看| 十八禁高潮呻吟视频| 免费高清在线观看视频在线观看| 精品久久久精品久久久| 国产欧美日韩一区二区三 | 咕卡用的链子| 日韩欧美一区视频在线观看| 久久久国产成人免费| 亚洲欧美清纯卡通| 久久精品国产亚洲av香蕉五月 | 国产精品熟女久久久久浪| 国产又色又爽无遮挡免| 这个男人来自地球电影免费观看| 麻豆国产av国片精品| 岛国毛片在线播放| 午夜福利在线免费观看网站| 久久久欧美国产精品| 又大又爽又粗| 青春草亚洲视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 老司机午夜福利在线观看视频 | 十八禁网站网址无遮挡| 国产精品 国内视频| 欧美一级毛片孕妇| 欧美乱码精品一区二区三区| 国产在线一区二区三区精| av有码第一页| 久久久国产成人免费| 人人妻人人添人人爽欧美一区卜| 久久人人爽人人片av| 国产精品久久久人人做人人爽| 久久久久久久久久久久大奶| svipshipincom国产片| 老司机亚洲免费影院| 精品亚洲成国产av| 国产一区二区三区综合在线观看| 日本wwww免费看| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 欧美久久黑人一区二区| av在线老鸭窝| 国产av又大| 欧美激情久久久久久爽电影 | 国产欧美日韩综合在线一区二区| 一级a爱视频在线免费观看| 亚洲人成77777在线视频| 成人18禁高潮啪啪吃奶动态图| 国产野战对白在线观看| 男人操女人黄网站| 黄色视频在线播放观看不卡| 99精国产麻豆久久婷婷| 亚洲精品久久午夜乱码| 国产免费av片在线观看野外av| 日本撒尿小便嘘嘘汇集6| 999精品在线视频| 精品福利永久在线观看| 亚洲av片天天在线观看| 国产精品二区激情视频| 多毛熟女@视频| av在线app专区| 午夜精品久久久久久毛片777| 97人妻天天添夜夜摸| 国产精品自产拍在线观看55亚洲 | 欧美中文综合在线视频| 女人高潮潮喷娇喘18禁视频| 成人黄色视频免费在线看| 美女国产高潮福利片在线看| 91成年电影在线观看| 精品一区二区三区av网在线观看 | 岛国毛片在线播放| 91大片在线观看| 久久狼人影院| 两人在一起打扑克的视频| 少妇粗大呻吟视频| 桃红色精品国产亚洲av| 国产精品一区二区精品视频观看| 日韩欧美免费精品| 热re99久久国产66热| 久久av网站| 国产精品免费大片| 亚洲国产毛片av蜜桃av| 亚洲伊人久久精品综合| 亚洲国产成人一精品久久久| 在线观看免费日韩欧美大片| 九色亚洲精品在线播放| 最近最新中文字幕大全免费视频| 亚洲欧美一区二区三区久久| 十八禁网站网址无遮挡| 亚洲av电影在线观看一区二区三区| 日韩精品免费视频一区二区三区| 久久久久视频综合| 精品人妻1区二区| 中文字幕人妻熟女乱码| 国产精品国产三级国产专区5o| 纵有疾风起免费观看全集完整版| 一本久久精品| 五月开心婷婷网| 久久综合国产亚洲精品| avwww免费| 成人国语在线视频| 纯流量卡能插随身wifi吗| 桃红色精品国产亚洲av| 侵犯人妻中文字幕一二三四区| 欧美xxⅹ黑人| 国产成人精品久久二区二区免费| 在线天堂中文资源库| 亚洲国产精品一区三区| 久久毛片免费看一区二区三区| 大码成人一级视频| 久久久国产欧美日韩av| 日本vs欧美在线观看视频| 少妇粗大呻吟视频| 成人黄色视频免费在线看| 日韩中文字幕欧美一区二区| 这个男人来自地球电影免费观看| 日韩 亚洲 欧美在线| 最近最新中文字幕大全免费视频| 亚洲自偷自拍图片 自拍| 大陆偷拍与自拍| 丁香六月欧美| 十八禁网站免费在线| 国产精品一区二区免费欧美 | 91精品伊人久久大香线蕉| 久久久久精品人妻al黑| 久久综合国产亚洲精品| 亚洲av美国av| 亚洲av电影在线观看一区二区三区| 国产免费av片在线观看野外av| 国产激情久久老熟女| 波多野结衣av一区二区av| 99热网站在线观看| 97在线人人人人妻| 亚洲伊人久久精品综合| 亚洲伊人色综图| 精品国产一区二区久久| 韩国精品一区二区三区| 日本wwww免费看| 自线自在国产av| 日韩有码中文字幕| 午夜精品国产一区二区电影| 久久久国产成人免费| 欧美亚洲日本最大视频资源| 欧美日韩视频精品一区| 老司机靠b影院| 久久九九热精品免费| 午夜两性在线视频| 一区二区三区精品91| 亚洲中文字幕日韩| 这个男人来自地球电影免费观看| 欧美成人午夜精品| 视频在线观看一区二区三区| 国产精品久久久久久精品电影小说| 国产成人精品无人区| 午夜91福利影院| 成人免费观看视频高清| 久久 成人 亚洲| 国产精品.久久久| 91精品伊人久久大香线蕉| 久久精品人人爽人人爽视色| 热re99久久国产66热| 久久女婷五月综合色啪小说| 午夜91福利影院| 美女脱内裤让男人舔精品视频| 黑人操中国人逼视频| 精品久久久久久久毛片微露脸 | 老司机影院成人| 男女之事视频高清在线观看| 夜夜骑夜夜射夜夜干| 久久人妻熟女aⅴ| 国产精品熟女久久久久浪| 在线看a的网站| 亚洲一区中文字幕在线| av超薄肉色丝袜交足视频| 五月天丁香电影| 色94色欧美一区二区| e午夜精品久久久久久久| 亚洲五月色婷婷综合| 欧美黄色片欧美黄色片| 婷婷丁香在线五月| 久久人人97超碰香蕉20202| 亚洲精品久久久久久婷婷小说| 国产免费视频播放在线视频| 久久天堂一区二区三区四区| 性少妇av在线| 亚洲成人免费电影在线观看| 丝袜美腿诱惑在线| 黄片播放在线免费| 国产淫语在线视频| 亚洲伊人久久精品综合| 999久久久精品免费观看国产| 人成视频在线观看免费观看| 国产99久久九九免费精品| 国产成人欧美| 最近中文字幕2019免费版| 国产精品一区二区免费欧美 | 国产精品 国内视频| 9191精品国产免费久久| 中文字幕人妻丝袜一区二区| 高清av免费在线| 国产在线一区二区三区精| 桃花免费在线播放| 美女中出高潮动态图| 午夜成年电影在线免费观看| 国产免费av片在线观看野外av| 成人影院久久| 日本精品一区二区三区蜜桃| 在线观看免费高清a一片| 欧美激情极品国产一区二区三区| 99九九在线精品视频| 香蕉丝袜av| 岛国在线观看网站| 亚洲精华国产精华精| 国产亚洲一区二区精品| 精品熟女少妇八av免费久了| 乱人伦中国视频| 女人精品久久久久毛片| 日韩电影二区| 久久国产精品人妻蜜桃| av有码第一页| 我要看黄色一级片免费的| 国产成人精品久久二区二区91| 一级a爱视频在线免费观看| 国产色视频综合| 国产欧美日韩一区二区三区在线| 日本vs欧美在线观看视频| 天天影视国产精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品av麻豆狂野| 亚洲,欧美精品.| 啦啦啦在线免费观看视频4| 90打野战视频偷拍视频| 欧美激情久久久久久爽电影 | 国产精品一区二区免费欧美 | 欧美激情久久久久久爽电影 | 天堂8中文在线网| 黄色视频不卡| 精品久久久精品久久久| 久久免费观看电影| 国产精品久久久久久精品古装| 午夜老司机福利片| 久久国产精品男人的天堂亚洲| 法律面前人人平等表现在哪些方面 | 99热网站在线观看| 日韩欧美一区视频在线观看| 久久99热这里只频精品6学生| 色94色欧美一区二区| 99国产精品一区二区三区| 1024视频免费在线观看| 亚洲国产欧美日韩在线播放| 国产97色在线日韩免费| av视频免费观看在线观看| 黑人欧美特级aaaaaa片| 大陆偷拍与自拍| 欧美日韩av久久| 中文欧美无线码| 久久精品国产a三级三级三级| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av香蕉五月 | 一级,二级,三级黄色视频| 超碰成人久久| 亚洲欧美精品自产自拍| 97精品久久久久久久久久精品| 成人手机av| 少妇 在线观看| 狠狠狠狠99中文字幕| 秋霞在线观看毛片| 老鸭窝网址在线观看| 啦啦啦啦在线视频资源| 亚洲免费av在线视频| h视频一区二区三区| 日本av手机在线免费观看| 一个人免费在线观看的高清视频 | 亚洲av日韩精品久久久久久密| 亚洲自偷自拍图片 自拍| 这个男人来自地球电影免费观看| 欧美+亚洲+日韩+国产| av网站在线播放免费| 亚洲av美国av| 午夜福利影视在线免费观看| 18在线观看网站| 自线自在国产av| 欧美日韩亚洲国产一区二区在线观看 | 成人18禁高潮啪啪吃奶动态图| 五月开心婷婷网| 岛国在线观看网站| 久9热在线精品视频| 在线观看人妻少妇| 精品第一国产精品| 99国产综合亚洲精品| 久久久久国产精品人妻一区二区| bbb黄色大片| 巨乳人妻的诱惑在线观看| 久久久久久久久免费视频了| 大陆偷拍与自拍| 又紧又爽又黄一区二区| 国产一区二区在线观看av| 久热这里只有精品99| 一级毛片精品| 男女免费视频国产| 亚洲精品中文字幕在线视频| 精品久久蜜臀av无| 国产欧美日韩精品亚洲av| 欧美 亚洲 国产 日韩一| 欧美日韩成人在线一区二区| 男女午夜视频在线观看| 久久午夜综合久久蜜桃| 99国产综合亚洲精品| 亚洲精品成人av观看孕妇| 三级毛片av免费| 欧美黑人精品巨大| 99国产精品99久久久久| 美女大奶头黄色视频| 三上悠亚av全集在线观看| 久久久久国产一级毛片高清牌| 久久久精品免费免费高清| 久久国产亚洲av麻豆专区| 精品福利永久在线观看| 91字幕亚洲| 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产综合久久久| av超薄肉色丝袜交足视频| 成人国产一区最新在线观看| 丰满人妻熟妇乱又伦精品不卡| 成人亚洲精品一区在线观看| 亚洲欧美精品综合一区二区三区| 精品国产一区二区久久| 蜜桃在线观看..| 搡老熟女国产l中国老女人| 午夜福利在线观看吧| 国产精品影院久久| 搡老乐熟女国产| 欧美日韩亚洲综合一区二区三区_| 亚洲三区欧美一区| 久久久久视频综合| 十八禁网站网址无遮挡| 亚洲国产精品成人久久小说| 国产国语露脸激情在线看| av视频免费观看在线观看| 9191精品国产免费久久| 一区二区三区精品91| 欧美av亚洲av综合av国产av| 看免费av毛片| 久久中文字幕一级| 日韩 亚洲 欧美在线| 国产麻豆69| 18禁国产床啪视频网站| 免费在线观看视频国产中文字幕亚洲 | 女性被躁到高潮视频| 国产av又大| 国产日韩欧美在线精品| 啦啦啦中文免费视频观看日本| 精品福利永久在线观看| av线在线观看网站| 青春草亚洲视频在线观看| 久久人妻熟女aⅴ| 女人被躁到高潮嗷嗷叫费观| 国产精品欧美亚洲77777| 成人亚洲精品一区在线观看| 欧美成人午夜精品| 成年女人毛片免费观看观看9 | 悠悠久久av| 国产男女内射视频| 国产一区二区三区在线臀色熟女 | 精品久久久久久电影网| 免费在线观看完整版高清| 国产精品熟女久久久久浪| 操出白浆在线播放| kizo精华| 久久精品亚洲熟妇少妇任你| 成人手机av| 男人添女人高潮全过程视频| 亚洲中文日韩欧美视频| 亚洲人成电影观看| 日本欧美视频一区| 真人做人爱边吃奶动态| 亚洲人成电影观看| 欧美在线黄色| 99久久综合免费| 久久九九热精品免费| 久久狼人影院| 99九九在线精品视频| 亚洲色图 男人天堂 中文字幕| 一区福利在线观看| 亚洲av成人一区二区三| 国产一区二区三区av在线| 在线观看免费视频网站a站| 日日爽夜夜爽网站| 18在线观看网站| 巨乳人妻的诱惑在线观看| 热re99久久国产66热| 国产精品成人在线| 国产精品香港三级国产av潘金莲| 99久久99久久久精品蜜桃| 亚洲色图 男人天堂 中文字幕| 在线观看免费视频网站a站| 丰满少妇做爰视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久热这里只有精品99| 亚洲精品国产av成人精品| 99热国产这里只有精品6|