• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on classification diagnosis model of psoriasis based on deep residual network

    2021-07-23 10:10:16LIPengYIDINGChngsongLIShengMINHui
    Digital Chinese Medicine 2021年3期

    LI Peng,YI N,DING Chngsong*,LI Sheng,MIN Hui

    a.School of Informatics,Hunan University of Chinese Medicine,Changsha,Hunan 410208,China

    b.The Third Xiangya Hospital of Central South University,Changsha,Hunan 410013,China

    c.Key Laboratory of Medical Information Research,Central South University,College of Hunan Province,Changsha,Hunan 410013,China

    d.Software Institute,Hunan College of Information,Changsha,Hunan 410200,China

    ABSTRACT Objective A classification and diagnosis model for psoriasis based on deep residual network is proposed in this paper.Which using deep learning technology to classify and diagnose psoriasis can help reduce the burden of doctors,simplify the diagnosis and treatment process,and improve the quality of diagnosis.Methods Firstly,data enhancement,image resizings,and TFRecord coding are used to preprocess the input of the model,and then a 34-layer deep residual network(ResNet-34)is constructed to extract the characteristics of psoriasis.Finally,we used the Adam algorithm as the optimizer to train ResNet-34,used cross-entropy as the loss function of ResNet-34 in this study to measure the accuracy of the model,and obtained an optimized ResNet-34 model for psoriasis diagnosis.Results The experimental results based on k-fold cross validation show that the proposed model is superior to other diagnostic methods in terms of recall rate,F1-score and ROC curve.Conclusion The ResNet-34 model can achieve accurate diagnosis of psoriasis,and provide technical support for data analysis and intelligent diagnosis and treatment of psoriasis.

    Keywords Psoriasis Deep residual network Data enhancement Cross-entropy Adam algorithm Recall

    1 Introduction

    Psoriasis is a chronic recurrent disease characterized by excessive proliferation of epidermal cells and immune inflammation[1].The disease is characterized by a long course,stubborn,common and ugly appearance,and invasion of a variety of organs in the later stages,and is listed as one of the world’s top ten persistent diseases by the World Health Organization[2].

    Although several current studies have analyzed and summarized the medication rules of famous traditional Chinese medicine doctors for the treatment of psoriasis[3],the diagnosis of psoriasis is rarely discussed.In fact,according to statistics,there are approximately seven million psoriasis patients in China[4].However,only a small number have been diagnosed,mainly owing to a lack of diagnostic ability of grassroots doctors or hospitals.At the“Popular Science Activities of World Psoriasis Day”held in 2018,experts considered that artificial intelligence(AI)technology combined with big data can provide patients with more intuitive auxiliary diagnosis of psoriasis[5-8].

    Psoriasis cannot be completely cured.Basically every patient will relapse and need long-term followup treatment.The diagnosis and treatment of psoriasis,including its four major types,psoriasis vulgaris,joint psoriasis,purulent psoriasis,and erythroderma psoriasis,is very difficult.While diagnosing the disease,we should consider not only the appearance factors,but also the cardiovascular,psychological,gastrointestinal,autoimmune,and other aspects comprehensively.Accurately and quickly diagnosing suspected psoriasis patients and the psoriasis variant they are afflicted with poses a major problem[9].The diagnosis involves a typical image classification problem,and convolutional neural networks(CNNs)used in deep learning are the primary method to deal with such medical image problems.Deep residual networks(ResNet)are known as one of the most representative CNN models[10].In the 2015 ImageNet computer vision recognition challenge,ResNet emerged as the champion in all three major challenges:image classification,image location,and image detection.The system error rate of the visual computing group is as low as 3.57%,which can greatly improve computer vision problems.Currently,the group is being widely used in large-scale image data in various applications.This paper proposes a classification diagnosis model of psoriasis based on deep residual network.A ResNet-34 model was trained to classify and diagnose psoriasis,which effectively improved the recognition rate.

    2 Classification and diagnosis of psoriasis in ResNet

    2.1 ResNet principle

    Theoretically,it is generally believed that with greater CNN depth(more parameters),its nonlinear expression ability grows stronger,more complex feature pattern extraction can be performed,and better results can be obtained.However,a large number of studies[10,11]have shown that with an increasing number of layers and a deeper network,the result can worsen because the deeper the network,the lower the accuracy of classification,that is,the performance starts degrading.To solve this problem,HE et al.[10]proposed the famous deep residual network in 2016.ResNet is composed of stacked residual units(as shown in Figure 1).It is easy to optimize and can improve the accuracy by increasing the depth.The internal residual block uses jump connections(short circuit mechanism)to alleviate the gradient disappearance or gradient diffusion caused by increasing depth in deep neural networks.

    Figure 1 Residual network

    In the deep residual network shown in Figure 1,relu[12]represents the activation function of the network.The residual unitF(x)can be expressed as:

    Here,xrepresents the input value;H(x)represents the feature learned when the input isx.In the two-layer network shown in Figure 1,the optimal output is inputx,therefore,for the network without identity mapping,it needs to be optimized toH(x)=x;however,for the network with identity mapping,that is,a residual block,if the optimal output isx,then only the residual unitF(x)needs to be optimized to 0.The optimization of the latter is simpler and more effective than the former.The principle is as follows.

    Letxprepresent the input value of layerpandF(xp,wp)the residual at layerp;then:

    After the iteration of the multi-layer residual network,we get:

    Equation(3)can be rewritten as follows,that is,we can obtain the learning characteristics from shallowpto deepQ:

    According to the principle of back propagation[14],it is assumed that the error is ε and the partial derivative with respect toxpcan be obtained as follows:

    Equation(5)represents the back propagation of the error function.The first factorof the formula represents the gradient of the loss function,and the“1”in the brackets indicates that the short circuit mechanism can lossless propagate the gradient,while the other residual gradient needs to pass through the weights layer,and the gradient is not directly transferred.Generally,the residual gradient is not all ? 1,and even if it is small,the existence of 1 will not lead to its disappearance.Thus,the attenuation of the gradient is further suppressed,and the stability and ease of training are improved by the calculation of addition.Therefore,the number of layers of the training network is greatly increased,and the performance of the network improves significantly.

    2.2 Classification and diagnosis process of psoriasis based on ResNet-34

    A flow chart of psoriasis classification diagnosis based on ResNet-34 is shown in Figure 2.Doctors or the suspected patients themselves take photos of the diseased parts and upload them to an application system or APP.The system or APP calls ResNet-34,which has been trained in advance and deployed to classify and diagnose the uploaded images,and output the conclusion(presence or absence of psoriasis)and the type of psoriasis in case of confirmed diagnosis.

    Figure 2 Classification and diagnosis process of psoriasis using ResNet-34

    3 Technical details

    3.1 Psoriasis image preprocessing

    Due to the complexity of psoriasis,the location of the disease is also diverse.The pictures captured by the doctors or patients of the diseased parts are easily affected by factors such as illumination,camera equipment,and device pixels.As a result,there is massive noise and inconsistency of image formats in the obtained image data of psoriasis patients,which is not convenient for further processing.In this study,we preprocessed the sample images from three aspects:data enhancement,image size adjustment,and image format coding,to meet the input requirements of ResNet-34 and prepare for its training.

    3.1.1 Data enhancement of psoriasis imagesThe acquisition of psoriasis data also involves significant cost.Therefore,if the limited existing data can somehow be enhanced,also called data amplification,it can provide a value equivalent to more data but without a substantial increase in size[13].It is also an effective way to enlarge the data size.For the ResNet-34 training process,we hope that with a larger scale and higher quality of data,the generalization ability of the trained ResNet-34 can be improved.However,it is mostly difficult to cover all the possible scenarios while collecting data.For example,for illumination conditions,when collecting psoriasis image data,it is difficult for us to control the proportion of light.Therefore,when training the model,we need to add the data pertaining to illumination change and generate various training data dynamically to achieve better outcomes,reduce expenditure,and improve the model robustness.Therefore,it is necessary to enhance the data effectively in the particular case of psoriasis diagnosis.For image data,the commonly used data enhancement methods include rotation,translation,scaling,and edge filling.The core code used for data enhancement of psoriasis images is given below.

    Core code for data enhancement:#First import the keras library 1.from keras.preprocessing.image import ImageDataGenerator,2.img_to_array,load_img 3.pic_path=r‘./yinxiebing.jpg’ #create image path 4.augmentation_path=r‘./data_augmentation' #save path#Define the ImageDataGenerator and explain what actions are used to generate new images:5.data_gen=ImageDataGenerator(rotation_range=30,#rotate width_shift_range=0.1,#translation height_shift_range=0.1,//zoom zoom_range=0.2,#edge fill fill_mode=‘nearest’)6.img=load_img(pic_path)#the address to load the picture 7.x=img_to_array(img)#convert to array format to ImageDataGenerator 8.x=x.reshape((1,)+ x.shape)9.n=1 10.for batch in data_gen.flow(x,batch_size=1,save_to_dir=augmentation_path,save_prefix=‘train’,save_format=‘jpeg’):11. n +=1 12. if n>10:#According to the operation defined by ImageDataGenerator,randomly select several types to generate 10 images.13 break

    3.1.2 Size adjustment of psoriasis imagesThis process involves uniformly adjusting the size of the pictures,which facilitates the use of ResNet-34 model for deep learning.In this study,considering the new psoriasis pictures generated after data augmentation as an example,the core code to adjust the size of psoriasis pictures is given below.

    Image resizing core code:1.from PIL import Image #use PIL library to change image size 2.import os #using os library to read file path 3.img_path=r'./data_augmentation' #read psoriasis pictures

    4.resize_path=r'./resize_image' #put the image after resizing into the resize_image folder 5.for i in os.listdir(img_path):6. im=Image.open(os.path.join(img_path,i))7. out=im.resize((224,224))#the size after resizing is 224 × 224 8. if not os.path.exists(resize_path):9. os.makedirs(resize_path)10. out.save(os.path.join(resize_path,i))

    3.1.3 TFRecord codeAs the ResNet-34 model can only accept numerical data as input,we also need to encode the images,that is,convert them to the TFRecord format.TFRecord is the standard format officially recommended by TensorFlow and helps store image data and tags into binary files,making it convenient to quickly copy,move,read,and store them in TensorFlow[14].When training ResNet-34,by setting up a queue system,the psoriasis data in TFRecord format can be loaded into the queue in advance.The queue will automatically realize the random or orderly data in and out of the stack,and the independence between the queuing system and model training can accelerate the ResNet-34 reading and training.The following is the core code for converting psoriasis images into the TFRecord format.

    Core code for converting image data into TFRecord format:1.import os 2.from PIL import Image 3.import tensorflow as tf 4.cwd=r“./brand_picture/”#image path,two groups of tags are in this directory 5.file_path=r“./”#TFRecord file save path 6.bestnum=1 000 #number of pictures stored in each TFRecord 7.num=0 #which picture 8.recordfilenum=0 #number of TFRecord files 9.classes=[]#put labels into classes 10.for i in os.listdir(cwd):11. classes.append(i)12. ftrecordfilename=(“traindata_63.TFRecords-%.3d”% reco-rdfilenum)#TFRecords format file name 13. writer=tf.python_io.TFRecordWriter(os.path.join(file_path,ftrecordfilename))

    14.for index,name in enumerate(classes):15. class_path=os.path.join(cwd,name)16. for img_name in os.listdir(class_path):17. num=num + 1 18. if num>bestnum:#over 1 000,write the next TFRecord 19. num=1 20. recordfilenum +=1 21. ftrecordfilename=(“traindata_63.TFRecords-%.3d”% recordfilenum)22. writer=tf.python_io.TFRecordWriter(os.path.join(file_path,ftrecordfilename))23. img_path=os.path.join(class_path,img_name)#address of each picture 24. img=Image.open(img_path,‘r’)25. img_raw=img.tobytes()#convert pictures to binary format 26. example=tf.train.Example(27. features=tf.train.Features(feature={‘label’:tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),‘img_raw’:tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),}))28. writer.write(example.SerializeToString())#serialize to string 29.write.close()

    3.2 Construction of ResNet-34

    In this study,we constructed a ResNet-34 to extract the features of psoriasis,as shown in Figure 3.ResNet-34 limits the input image pixel size to 224 ×224.In ResNet-34,a convolution kernel with a size of 7 × 7 is used to extract the features of the original input image in two steps,and a feature map of size 112 × 112 is obtained.Next,the features are compressed by using the max pooling technology.The feature extraction is then repeated through four groups of residual blocks with sizes of 3,4,6,3.Among them,the size of convolution kernel in all residual groups is 3 × 3.The first convolution kernel in each residual block uses two steps for feature extraction,and the other convolution kernels use one step for feature extraction.In addition,the number of convolution kernel channels used in the same group of residual blocks are the same,which are 64,128,256,and 512,respectively.The size of the feature map for each group was 56 × 56,28 × 28,14 × 14,and 7 × 7.Finally,after average pooling and full connectivity layer,Softmax function is used to classify and diagnose whether the input image confirms psoriasis.

    Figure 3 ResNet-34 structure for psoriasis classification diagnosis

    3.3 Model training

    ResNet-34 solves the problems of information loss in traditional convolution by changing the learning objective,that is,from learning the complete output to only the residual.It protects the integrity of information by passing the input directly to the output.In the ResNet-34 model proposed in this paper,we use cross-entropy as the loss function to evaluate the accuracy of the model,use the adaptive moment estimation(Adam)algorithm as the optimization strategy in the training process,and use the Softmax function to realize the multiclassification diagnosis of psoriasis[15].We will elaborate in detail below.

    3.3.1 Loss functionThe loss function is used to estimate the inconsistency between the predicted and real value of ResNet-34.It is a non-negative real value function.The smaller the loss function,the better the robustness of ResNet-34.In this study,we used cross-entropy as the loss function.Crossentropy can measure the difference between two different probability distributions in the same random variable,which is expressed as the difference between the real probability distribution and the predicted probability distribution of psoriasis.The smaller the cross-entropy,better the prediction effect of ResNet-34.The calculation formula is as follows:

    3.3.2 OptimizerIn this study,we used the Adam[16]algorithm to train ResNet-34.The Adam algorithm is an optimization algorithm that combines the Momentum[17]and RMSProp[18]algorithms in deep learning models.In the initial stage of training,we first initialized the cumulant and square cumulant of gradient:

    Then,in the t-round training,we calculated the parameter update of momentum algorithm and RMSProp algorithm:

    Here,vdwandvdbare the gradient momentum accumulated by the loss function in the previoust?1 rounds of iteration,and β is an index of gradient accumulation,which is generally set as 0.9.The Momentum and RMSProp algorithms are mainly based on the gradient moving index weighted average for training;however,this training method leads to very large swing amplitude of gradient optimization at the beginning of iteration,which is not conducive to the convergence of the algorithm.Therefore,it is necessary to correct the deviation of the above values:

    Through Equation(9),we can get the correction value of the parameter gradient cumulant in the first iteration.Next,the weight and bias of the model can be updated according to the combination of Momentum and RMSProp algorithms:

    In the Adam algorithm,parameter β1corresponds to β value in the Momentum algorithm,which is generally taken as 0.9;parameter β2corresponds to βvalue in the RMSProp algorithm,which is generally taken as 0.999,while ε is a smooth term,which is generally taken as 10?8,while the learning rateα needs to be slightly adjusted during training.To sum up,the pseudo code of the Adam algorithm can be expressed as follows:

    1.Initializevdw=0,vdb=0,sdw=0,sdb=0;

    2.In the t-th iteration,calculatedwanddbwith the mini batch gradient descent method;

    3.Calculate the weighted average of the Momentum index;

    4.Update with RMSProp;

    5.Calculate the deviation correction of Momentum and RMSProp;

    6.Update the weights.

    3.4 Classification diagnosis

    that it belongs to the categoryiis as follows:

    After the ResNet-34 training,we used the Softmax function,mainly used in multi-classification processes,to realize the classification diagnosis of psoriasis.It maps the output of multiple neurons to the(0,1)interval as probability to understand,to realize multi-classification.The output of ResNet-34 model has five values,representing the four common psoriasis types(vulgaris,arthritic,purulent,and erythroderma)and normal condition(no disease).Therefore,for each sample,according to the definition of the Softmax function,the probability

    According to the above equation,we can guarantee that.For any input sample,after being processed by ResNet-34,the category corresponding to the maximum probability value is the diagnosis result of the sample.

    4 Experiment

    4.1 Data sources

    From January 2017 to December 2019,we collected data of psoriasis patients from the affiliated hospitals of Hunan University of Chinese Medicine,and used them as the dataset for constructing the classification diagnosis model.The dataset contained the data of patients with four common types of psoriasis.All data types were images,sized 224 × 224.A total of 30 000 data samples were screened.

    4.2 Experimental setup

    We performed the experiment on an 8-core 16 thread computer(Intel Core i9-9960x @ 3.10GHz CPU,16G memory),with Ubuntu 16.04 LTS 64-bit operating system.In the ResNet-34 model,relu function was selected as the activation function,and the psoriasis classification and diagnosis model based on deep residual network was implemented using Tensor-Flow and Anaconda platforms.In addition,to avoid model over fitting,we used k-fold cross validation(k=10 in the paper)on 30 000 psoriasis data samples to evaluate the predictive performance of ResNet-34,and selected the best performance of the super parameters to obtain the final model.

    4.3 Evaluation index and comparison object

    In this study,the multi-classification problem was transformed into a binary classification problem for experimental evaluation.The transformation method used one vs.the rest method:one class is marked as a positive example and the remaining classes are marked as counter-examples.As the output of ResNet-34 in this study involved five possible types of results(four for psoriasis,one for normal),only five classifiers were constructed to realize the problem conversion.Then,the precision,recall,F1-score,and ROC curve were used to evaluate the performance of psoriasis classification diagnosis based on ResNet-34.Assuming that psoriasis patients represent positive cases and normal people represent counterexamples,the following confusion matrix can be used to measure the performance of ResNet-34.

    Here,TPindicates that the positive example is predicted to be a positive example,that is,the real case;FNmeans that the positive example is predicted to be a negative example,that is,a false counter example;FPis a prediction of a counter example as a positive example,that is,a false positive example;andTNis a prediction of a counter example as a counter example,that is,a true counter example.According to Table 1,precision,recall,andF1-score can be defined as:

    Table 1 Performance indicators of psoriasis classification based on confusion matrix

    For the task of psoriasis diagnosis,it is necessary to focus on the recall instead of precision because most cases involve a positive case(no disease)and small number of counter cases(disease).The sample proportion of the two groups is very different.For example,in 100 records,10 cases of psoriasis were found,out of which six were false positives and four were accurately identified.Although the precision was reduced to 94%,the recall increased from 0 to 100%.Although the disease was misreported occasionally,there was no omission of people with psoriasis.

    The receiver operating characteristic(ROC)curve is used to describe the tradeoff between true positive and false positive rates.The true positive and false positive rates are defined as follows:

    In addition,we compared the performance of ResNet-34 and VGG19 in psoriasis diagnosis to evaluate the superiority of this model.The implementation of VGG19 is described in reference.

    4.4 Result analysis

    Figure 4 shows the comparative recall rates of ResNet-34 and VGG19 for classification diagnosis on the psoriasis dataset.As evident from Figure 4,the recall rates of both the methods increase by varying degrees with an increase in the psoriasis dataset size.However,on the whole,the recall rate of this method is always higher than that of VGG19.On average,the recall rate of this method is approximately 9.5%higher than that of VGG19.The reasons are as follows:(1)compared with VGG19,ResNet-34 has greater depth and can extract better and richer features of psoriasis;(2)ResNet-34 can effectively solve the performance degradation problem caused by the increasing network depth by introducing the concept of residual blocks and adding identity mapping connection into the network structure.

    Figure 4 Comparison of recall(ResNet-34 vs.VGG19)

    Figure 5 shows the comparativeF1-scores of the two methods for the classification diagnosis of psoriasis.It is visible that theF1-scores of the two methods show a rising trend with an increase in the scale of psoriasis dataset.However,the performance of the proposed method is always better than that of VGG19.The reasons are as follows:(1)we used a variety of techniques,such as data enhancement and TFRecord encoding to clean the original psoriasis images,which minimized the impact of noise data on the diagnosis model;(2)we used the Adam algorithm to train the model,which reduced the training time and further ensured the accuracy of diagnosis.

    Figure 5 Comparison of F 1-scores(ResNet-34 vs.VGG19)

    Finally,to comprehensively evaluate the specificity and sensitivity of ResNet-34 and VGG19 in the classification and diagnosis of psoriasis,their ROC curves were drawn and compared,as shown in Figure 6.For each test sample,ResNet-34 and VGG19 received a“score”value for each classification,which indicated the likelihood of the sample to belong to a positive(or negative)case.To draw the ROC curve,we required a series of values pertaining to true positive and false positive rates.In this study,we achieved this objective by performing the following steps:

    Figure 6 ROC-AUC comparison(ResNet-34 vs.VGG19)

    (1)Sort the“score”value from high to low and use it as the threshold;

    (2)For each threshold,the test samples,whose“score”value is greater than or equal to this threshold,are considered as positive cases,while others are negative examples.This step helped form a set of forecast data;

    (3)The ROC curve can be obtained by connecting the observed data values.

    In Figure 6,the area under the ROC curve is called AUC.The classifier with a larger AUC value(area)has better performance.In Figure 5,the AUC values below the red and black lines represent the classification performances of VGG19 and ResNet-34,respectively.The AUC value of the latter is clearly higher than that of the former,which shows that ResNet-34 performs better than VGG19,and can be applied to psoriasis classification diagnosis task in real environment.

    5 Conclusion

    Psoriasis is a type of skin disease and is very difficult to cure.Owing to the various causes of the disease,accurately classifying and diagnosing psoriasis is difficult.In this paper,a psoriasis classification diagnosis model based on deep residual network is proposed.A 34-layer residual network was designed to achieve an accurate diagnosis of psoriasis.The final experimental results also verify the effectiveness of the proposed model.In the next step,we will continue to analyze the symptoms,syndrome types,and medication rules of psoriasis,build the knowledge map of the integrated diagnosis,treatment,and medication of psoriasis,and further propose a psoriasis medication recommendation model based on graph convolution neural network,to provide better a decision support system for doctors' diagnosis and treatment.

    Acknowledgements

    We thank for the funding support from the Key Research and Development Plan of China(No.2017YFC1703306),Youth Project of Natural Science Foundation of Hunan Province(No.2019JJ50453),Project of Hunan Health Commission(No.202112072217),Open Fund Project of Hunan University of Traditional Chinese Medicine(No.2018JK02),and General Project of Education Department of Hunan Province(No.19C1318).

    Competing interests

    The authors declare no conflict of interest.

    观看免费一级毛片| 美女大奶头视频| 欧美精品国产亚洲| 欧美xxxx黑人xx丫x性爽| 国产亚洲av嫩草精品影院| 国产精品美女特级片免费视频播放器| 久久九九热精品免费| 国产淫片久久久久久久久| 国产亚洲精品久久久com| www.www免费av| 男女视频在线观看网站免费| 又爽又黄无遮挡网站| 亚洲中文日韩欧美视频| 91午夜精品亚洲一区二区三区 | 久久精品国产99精品国产亚洲性色| 成人一区二区视频在线观看| 男女啪啪激烈高潮av片| 亚洲性夜色夜夜综合| 国产精品一区www在线观看 | 岛国在线免费视频观看| 精品久久久久久成人av| 婷婷精品国产亚洲av| 五月伊人婷婷丁香| 色播亚洲综合网| 干丝袜人妻中文字幕| 免费观看精品视频网站| 午夜福利高清视频| av在线天堂中文字幕| 在线免费观看不下载黄p国产 | 国产伦人伦偷精品视频| 99久国产av精品| 91在线观看av| 成人三级黄色视频| 丝袜美腿在线中文| 黄色丝袜av网址大全| 国产白丝娇喘喷水9色精品| 一a级毛片在线观看| 观看美女的网站| 亚洲成a人片在线一区二区| 在线国产一区二区在线| 免费看a级黄色片| 国产精品三级大全| 在线观看美女被高潮喷水网站| 嫩草影院新地址| 最近中文字幕高清免费大全6 | 老司机午夜福利在线观看视频| 日日夜夜操网爽| 啦啦啦观看免费观看视频高清| 日韩欧美在线乱码| 免费无遮挡裸体视频| 日韩中文字幕欧美一区二区| 大型黄色视频在线免费观看| 搡女人真爽免费视频火全软件 | 亚洲美女黄片视频| 97人妻精品一区二区三区麻豆| 91麻豆精品激情在线观看国产| 亚洲精华国产精华精| 亚洲国产精品久久男人天堂| 亚洲经典国产精华液单| 99热只有精品国产| 人妻少妇偷人精品九色| 成人欧美大片| 国产男靠女视频免费网站| 狂野欧美激情性xxxx在线观看| bbb黄色大片| 中文字幕av在线有码专区| 大型黄色视频在线免费观看| 国产黄色小视频在线观看| 国产69精品久久久久777片| 尾随美女入室| 人人妻人人澡欧美一区二区| 俄罗斯特黄特色一大片| 欧美成人免费av一区二区三区| 老司机深夜福利视频在线观看| 深夜a级毛片| 一夜夜www| 如何舔出高潮| 欧美区成人在线视频| 免费电影在线观看免费观看| 国产成人av教育| 看黄色毛片网站| 日韩欧美国产一区二区入口| 欧美日韩乱码在线| 99久国产av精品| 亚洲av五月六月丁香网| 欧美黑人欧美精品刺激| 午夜激情福利司机影院| 日韩,欧美,国产一区二区三区 | 九色国产91popny在线| 欧美三级亚洲精品| 国产成人福利小说| 97超级碰碰碰精品色视频在线观看| 91在线观看av| 久久精品夜夜夜夜夜久久蜜豆| 天天躁日日操中文字幕| 国产精品电影一区二区三区| 嫩草影视91久久| 成人特级av手机在线观看| 一级黄片播放器| 久久久久久久久久成人| 他把我摸到了高潮在线观看| 成人av在线播放网站| 国产精品人妻久久久久久| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看| 99精品在免费线老司机午夜| 亚洲 国产 在线| 国产精品女同一区二区软件 | 亚洲av美国av| bbb黄色大片| 欧美日韩国产亚洲二区| 色噜噜av男人的天堂激情| 99久久无色码亚洲精品果冻| 啦啦啦韩国在线观看视频| 欧美+亚洲+日韩+国产| 极品教师在线免费播放| 尤物成人国产欧美一区二区三区| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站| 亚洲av电影不卡..在线观看| 身体一侧抽搐| 岛国在线免费视频观看| 啦啦啦观看免费观看视频高清| 成人国产一区最新在线观看| 啪啪无遮挡十八禁网站| 黄色欧美视频在线观看| 此物有八面人人有两片| 免费搜索国产男女视频| 日韩一区二区视频免费看| 99国产极品粉嫩在线观看| 欧美日韩乱码在线| 久久久久久久久久久丰满 | 免费人成视频x8x8入口观看| 午夜久久久久精精品| av在线蜜桃| 91久久精品国产一区二区三区| 国产单亲对白刺激| 国产精品98久久久久久宅男小说| a级毛片免费高清观看在线播放| 97超级碰碰碰精品色视频在线观看| 国内精品一区二区在线观看| 国产欧美日韩精品亚洲av| 久久久久性生活片| 欧美区成人在线视频| 精品久久久久久久久av| 成人亚洲精品av一区二区| 一级黄色大片毛片| 久久久精品欧美日韩精品| 99热这里只有是精品在线观看| 99久久九九国产精品国产免费| 日本 av在线| 99久久精品国产国产毛片| 国产欧美日韩精品一区二区| 国产精品福利在线免费观看| 男女视频在线观看网站免费| 午夜免费男女啪啪视频观看 | 免费人成视频x8x8入口观看| 国产精品一区二区免费欧美| 深夜a级毛片| www.www免费av| 亚洲av中文字字幕乱码综合| 久久久久久伊人网av| 亚洲国产色片| 成人国产综合亚洲| 哪里可以看免费的av片| 免费看日本二区| 亚洲精品一卡2卡三卡4卡5卡| 国产国拍精品亚洲av在线观看| xxxwww97欧美| 欧美三级亚洲精品| 亚洲av熟女| 久久国产精品人妻蜜桃| 午夜免费成人在线视频| 久久午夜福利片| 国产伦精品一区二区三区四那| 精品久久久久久,| 俄罗斯特黄特色一大片| 乱系列少妇在线播放| 夜夜夜夜夜久久久久| 成人欧美大片| 精品久久久久久久久亚洲 | 又粗又爽又猛毛片免费看| 久久6这里有精品| 老女人水多毛片| 91午夜精品亚洲一区二区三区 | 我的老师免费观看完整版| 乱人视频在线观看| 成人美女网站在线观看视频| av天堂在线播放| 少妇猛男粗大的猛烈进出视频 | 别揉我奶头 嗯啊视频| 悠悠久久av| 最近中文字幕高清免费大全6 | 久久久久免费精品人妻一区二区| 国内揄拍国产精品人妻在线| 白带黄色成豆腐渣| 老熟妇仑乱视频hdxx| 我要搜黄色片| 99精品在免费线老司机午夜| 99热网站在线观看| 三级毛片av免费| 日韩精品中文字幕看吧| 国产一区二区三区在线臀色熟女| 淫妇啪啪啪对白视频| 国产精品无大码| 久久国内精品自在自线图片| 搡老熟女国产l中国老女人| 国产精品一及| 亚洲av不卡在线观看| 国产女主播在线喷水免费视频网站 | 国产欧美日韩精品亚洲av| 亚洲精品456在线播放app | 桃色一区二区三区在线观看| 免费在线观看影片大全网站| 国产黄色小视频在线观看| 国产成人a区在线观看| 午夜影院日韩av| 午夜福利视频1000在线观看| 国产免费男女视频| 亚洲熟妇中文字幕五十中出| 99久久成人亚洲精品观看| 日韩欧美国产一区二区入口| 日韩亚洲欧美综合| 亚洲专区国产一区二区| 欧美成人性av电影在线观看| netflix在线观看网站| 精品一区二区免费观看| 成年免费大片在线观看| 国内少妇人妻偷人精品xxx网站| av视频在线观看入口| 可以在线观看毛片的网站| 国内揄拍国产精品人妻在线| 欧美中文日本在线观看视频| 国产乱人视频| 午夜福利视频1000在线观看| 精品福利观看| 国产精品自产拍在线观看55亚洲| 亚洲三级黄色毛片| 香蕉av资源在线| 又爽又黄无遮挡网站| 悠悠久久av| 欧美成人a在线观看| 日韩在线高清观看一区二区三区 | 午夜福利成人在线免费观看| 最好的美女福利视频网| 成人性生交大片免费视频hd| 国产黄片美女视频| 国产伦人伦偷精品视频| 韩国av一区二区三区四区| 亚洲av.av天堂| x7x7x7水蜜桃| 国产精品综合久久久久久久免费| 久久九九热精品免费| 成人国产综合亚洲| 男女之事视频高清在线观看| 色综合婷婷激情| 久久精品国产清高在天天线| 亚洲男人的天堂狠狠| 人人妻,人人澡人人爽秒播| 高清毛片免费观看视频网站| 一个人看的www免费观看视频| 综合色av麻豆| 淫妇啪啪啪对白视频| 久久精品夜夜夜夜夜久久蜜豆| 国内精品久久久久久久电影| 老熟妇仑乱视频hdxx| 97热精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 日韩强制内射视频| 成人欧美大片| 国产av不卡久久| 别揉我奶头 嗯啊视频| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 亚洲第一区二区三区不卡| 91久久精品国产一区二区成人| 午夜视频国产福利| 床上黄色一级片| 国产综合懂色| 国产伦精品一区二区三区视频9| aaaaa片日本免费| 永久网站在线| 免费观看的影片在线观看| 免费看光身美女| 亚洲无线在线观看| 男女那种视频在线观看| 免费电影在线观看免费观看| 欧美国产日韩亚洲一区| 久久精品久久久久久噜噜老黄 | 在线观看一区二区三区| 91麻豆av在线| 日韩欧美精品v在线| 日韩 亚洲 欧美在线| 欧美三级亚洲精品| 日本一二三区视频观看| 亚洲色图av天堂| 极品教师在线免费播放| 国产精品不卡视频一区二区| 国产成人福利小说| 精品国内亚洲2022精品成人| 我的女老师完整版在线观看| 欧美日韩亚洲国产一区二区在线观看| 3wmmmm亚洲av在线观看| 午夜福利成人在线免费观看| 午夜福利欧美成人| 日韩 亚洲 欧美在线| 国产毛片a区久久久久| 国产精品免费一区二区三区在线| 欧美色视频一区免费| 午夜视频国产福利| 18禁黄网站禁片免费观看直播| 91久久精品国产一区二区成人| 久久人妻av系列| 色吧在线观看| 国产成人aa在线观看| 欧美激情国产日韩精品一区| 男人舔女人下体高潮全视频| 亚洲最大成人手机在线| 成人精品一区二区免费| av在线观看视频网站免费| 亚洲精品影视一区二区三区av| 联通29元200g的流量卡| 国产精品福利在线免费观看| 成人无遮挡网站| 啦啦啦韩国在线观看视频| 国产一区二区三区av在线 | 亚洲精品粉嫩美女一区| 99热这里只有是精品50| 97超视频在线观看视频| 久久久精品大字幕| 国产国拍精品亚洲av在线观看| 久久人妻av系列| 99热网站在线观看| 九色国产91popny在线| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 最新中文字幕久久久久| 别揉我奶头 嗯啊视频| 少妇丰满av| 久久精品国产99精品国产亚洲性色| 日本五十路高清| 非洲黑人性xxxx精品又粗又长| 国内少妇人妻偷人精品xxx网站| 国产欧美日韩一区二区精品| 国产爱豆传媒在线观看| 国产精品美女特级片免费视频播放器| 久久精品人妻少妇| 精品无人区乱码1区二区| 日本免费一区二区三区高清不卡| 精品人妻熟女av久视频| 日韩欧美国产一区二区入口| 久久99热6这里只有精品| av天堂在线播放| 国产中年淑女户外野战色| 一进一出抽搐gif免费好疼| 日本欧美国产在线视频| 1000部很黄的大片| 日韩 亚洲 欧美在线| 国产爱豆传媒在线观看| 午夜爱爱视频在线播放| 神马国产精品三级电影在线观看| 国内精品久久久久久久电影| 无遮挡黄片免费观看| 色视频www国产| 中文字幕av成人在线电影| 午夜精品久久久久久毛片777| 国产女主播在线喷水免费视频网站 | 国产成人av教育| 亚洲专区中文字幕在线| 午夜激情福利司机影院| 村上凉子中文字幕在线| 91精品国产九色| 五月伊人婷婷丁香| 亚洲图色成人| 久久久久久久久久黄片| 欧美最黄视频在线播放免费| 亚洲熟妇熟女久久| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美人成| 在线观看舔阴道视频| 深爱激情五月婷婷| 国产精品乱码一区二三区的特点| av视频在线观看入口| 少妇高潮的动态图| 久久久久国内视频| 成年女人看的毛片在线观看| 能在线免费观看的黄片| 国产男靠女视频免费网站| 亚洲一区高清亚洲精品| 最新中文字幕久久久久| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 国产综合懂色| 久久精品影院6| a级一级毛片免费在线观看| 久久久久久大精品| 老司机深夜福利视频在线观看| 欧美成人性av电影在线观看| 国产高清不卡午夜福利| 国产亚洲精品久久久com| 我的老师免费观看完整版| 人妻少妇偷人精品九色| 2021天堂中文幕一二区在线观| 啦啦啦啦在线视频资源| 久久精品国产自在天天线| 亚洲国产精品久久男人天堂| 亚洲av免费在线观看| 黄色欧美视频在线观看| 国产一区二区亚洲精品在线观看| 在线播放无遮挡| 国产伦人伦偷精品视频| 黄色日韩在线| 亚洲四区av| ponron亚洲| 午夜激情福利司机影院| 搡老岳熟女国产| 欧美另类亚洲清纯唯美| 丰满人妻一区二区三区视频av| 国产在线精品亚洲第一网站| 精品久久久久久久久av| 国产伦在线观看视频一区| 69人妻影院| 国产精品1区2区在线观看.| 成人无遮挡网站| 欧美日韩黄片免| 久久久国产成人免费| 男人舔奶头视频| 亚洲成a人片在线一区二区| 一级a爱片免费观看的视频| 一卡2卡三卡四卡精品乱码亚洲| 国产高清激情床上av| 又爽又黄a免费视频| 久久久久久久久久黄片| 看黄色毛片网站| 午夜亚洲福利在线播放| 亚洲av二区三区四区| 免费观看的影片在线观看| 成人毛片a级毛片在线播放| 在线看三级毛片| 91av网一区二区| 国内久久婷婷六月综合欲色啪| 国产成年人精品一区二区| 国产伦精品一区二区三区四那| 国产精品自产拍在线观看55亚洲| 又黄又爽又免费观看的视频| 午夜福利视频1000在线观看| 亚洲av中文av极速乱 | 他把我摸到了高潮在线观看| 啦啦啦韩国在线观看视频| 我要看日韩黄色一级片| 精品福利观看| 国产淫片久久久久久久久| 日本五十路高清| 女的被弄到高潮叫床怎么办 | 真人一进一出gif抽搐免费| 国产一级毛片七仙女欲春2| 简卡轻食公司| 国产精品无大码| 内地一区二区视频在线| 国产成年人精品一区二区| 真人做人爱边吃奶动态| 日本爱情动作片www.在线观看 | 99久久精品热视频| 国产探花在线观看一区二区| 免费观看人在逋| 亚洲专区国产一区二区| 可以在线观看的亚洲视频| 亚洲成人精品中文字幕电影| 级片在线观看| 天堂动漫精品| 国产伦一二天堂av在线观看| 日韩欧美精品免费久久| ponron亚洲| 亚洲精品456在线播放app | 午夜日韩欧美国产| 99久久无色码亚洲精品果冻| 两个人的视频大全免费| 美女高潮的动态| 日韩欧美一区二区三区在线观看| 大又大粗又爽又黄少妇毛片口| 噜噜噜噜噜久久久久久91| 日本熟妇午夜| 国内精品宾馆在线| 色在线成人网| 国产 一区 欧美 日韩| 女生性感内裤真人,穿戴方法视频| 欧美人与善性xxx| 亚洲五月天丁香| 一区二区三区高清视频在线| 亚洲一区高清亚洲精品| 久久中文看片网| 午夜视频国产福利| 99久久无色码亚洲精品果冻| 国产高潮美女av| 成年免费大片在线观看| 午夜福利18| 一级av片app| 少妇人妻一区二区三区视频| 一进一出抽搐动态| 亚洲第一区二区三区不卡| 一区二区三区免费毛片| 少妇高潮的动态图| 91久久精品国产一区二区成人| 不卡视频在线观看欧美| 久久久久精品国产欧美久久久| 日韩中字成人| 99热这里只有是精品在线观看| 久久精品人妻少妇| 国产真实乱freesex| 三级国产精品欧美在线观看| 午夜福利在线观看吧| 免费无遮挡裸体视频| 一区二区三区四区激情视频 | 亚洲国产色片| 三级国产精品欧美在线观看| 精品一区二区三区视频在线| 精品一区二区三区人妻视频| 国产单亲对白刺激| 亚洲自偷自拍三级| 不卡视频在线观看欧美| 亚洲欧美日韩高清专用| 99国产极品粉嫩在线观看| 国内久久婷婷六月综合欲色啪| 国产一区二区亚洲精品在线观看| 老熟妇乱子伦视频在线观看| 麻豆成人午夜福利视频| 亚洲精品成人久久久久久| 人妻丰满熟妇av一区二区三区| 国产伦人伦偷精品视频| 国内精品美女久久久久久| 国产精品伦人一区二区| 亚洲av成人av| 又黄又爽又免费观看的视频| 简卡轻食公司| 热99在线观看视频| 国产激情偷乱视频一区二区| 欧美在线一区亚洲| 成人毛片a级毛片在线播放| 色av中文字幕| 国产成人福利小说| h日本视频在线播放| 亚洲人与动物交配视频| 亚洲美女视频黄频| 免费av观看视频| 成人无遮挡网站| 国产男靠女视频免费网站| 老女人水多毛片| 中文字幕熟女人妻在线| 小说图片视频综合网站| 亚洲成a人片在线一区二区| 久久这里只有精品中国| 国产大屁股一区二区在线视频| 色吧在线观看| av在线亚洲专区| 毛片女人毛片| 久久欧美精品欧美久久欧美| 蜜桃亚洲精品一区二区三区| 久久这里只有精品中国| 亚洲午夜理论影院| 嫁个100分男人电影在线观看| 无遮挡黄片免费观看| 成人综合一区亚洲| 麻豆国产97在线/欧美| 成人亚洲精品av一区二区| 久久人人爽人人爽人人片va| 亚洲av五月六月丁香网| 一级黄片播放器| 美女黄网站色视频| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区精品| 日本黄大片高清| 99精品久久久久人妻精品| 国产高清激情床上av| 亚洲午夜理论影院| 国产亚洲精品久久久com| 97人妻精品一区二区三区麻豆| 人妻丰满熟妇av一区二区三区| 欧美激情在线99| 97碰自拍视频| 真实男女啪啪啪动态图| 搡老妇女老女人老熟妇| 12—13女人毛片做爰片一| 欧美高清性xxxxhd video| 国产精品爽爽va在线观看网站| 在线天堂最新版资源| 久久久国产成人精品二区| 九色成人免费人妻av| 精品福利观看| 亚洲成a人片在线一区二区| 天堂动漫精品| 网址你懂的国产日韩在线| 97超级碰碰碰精品色视频在线观看| 美女高潮喷水抽搐中文字幕| 又黄又爽又免费观看的视频| 午夜激情福利司机影院| 亚州av有码| 99久久九九国产精品国产免费| 一级黄片播放器| 亚洲18禁久久av| 免费看光身美女| 99精品久久久久人妻精品| 亚洲综合色惰| 欧美人与善性xxx| 人妻少妇偷人精品九色| 日日撸夜夜添| 亚洲欧美日韩东京热| 国产美女午夜福利| 免费电影在线观看免费观看| 成人高潮视频无遮挡免费网站| 亚洲成人久久爱视频| 丰满人妻一区二区三区视频av| 亚洲国产精品合色在线| 免费在线观看成人毛片| 深夜精品福利| 老熟妇乱子伦视频在线观看|