• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of Auger Recombination, Electron Leakage and Hole Injection on Efficiency Droop for DUV LEDs

    2021-07-22 01:02:24WANGWeidongCHUChunshuangZHANGDanyangBIWengangZHANGYonghuiZHANGZihui
    發(fā)光學(xué)報(bào) 2021年7期

    WANG Wei-dong, CHU Chun-shuang*, ZHANG Dan-yang, BI Wen-gang, ZHANG Yong-hui*, ZHANG Zi-hui

    (1. Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China;. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China)

    Abstract: We reveal the impact of the Auger recombination, electron leakage and hole injection on the efficiency droop for deep-ultraviolet light-emitting diodes(DUV LEDs). According to our results, the minor change of the efficiency droop is caused by the Auger recombination when the Auger recombination coefficients range from 10-32 cm6·s-1 to 10-30 cm6·s-1. The Auger recombination induces notable role on the efficiency droop by defining the Auger recombination coefficient of 10-29 cm6·s-1. However, the large Auger recombination coefficient is not realistic for AlGaN materials. Besides, we find that the efficiency droop becomes significant with the increased electron leakage, even when the adopted Auger recombination coefficient is as small as 10-32 cm6·s-1. Thus, we can prove electron leakage is a major factor causing the severe efficiency droop for DUV LEDs. We then prove that increasing hole injection can suppress efficiency droop because more electrons can recombine with holes instead of escaping from multiple quantum wells(MQWs).

    Key words: DUV LED; Auger recombination; electron leakage; hole injection; efficiency droop

    AlGaN-based deep-ultraviolet light-emitting diode(DUV LED) has been recognized a proposing device for gas sensing, water or air purification and light communication[1-2]. However, at the current stage, DUV LEDs are suffering several challenges, such that the low external quantum efficiency(EQE). It has been reported that EQE is about 10% for DUV LEDs[2]. Moreover, the efficiency droop is also observed at high current density, though not as severe as that for Ⅲ-nitride based blue and green LEDs[3]. The origin of the efficiency droop for InGaN/GaN based blue and green LEDs has been investigated by different groups[4-6], and it is concluded that the Auger recombination and electron leakage both have large impact on efficiency droop[7-8]. The unbalanced mobility for electrons and holes causes the electron leakage[6]. Moreover, the low hole concentration for hole injection layers further increases the electron leakage level[9]. The process of Auger recombination is that an electron recombines with a hole and transfers the recombination energy to a third carrier in the quantum wells, which involves three-carrier participation. Therefore, Auger recombination will cause a very remarkable deduction for the internal quantum efficiency (IQE) at the increased carrier injection levels. For InGaN materials, the Auger recombination coefficients range from 10-31cm6·s-1to 10-30cm6·s-1[6,10]. However, the bandgap for AlGaN materials is usually larger than that for InGaN materials, and thus the function of the Auger recombination on the EQE is small for AlGaN-based DUV LEDs[11]. Meanwhile, among all factors, it is considered that the electron leakage dominants and influences the efficiency droop[12]. Therefore, significant efforts have been made to reduce the electron leakage for DUV LEDs,e.g., by decreasing the kinetic energy of electrons so that the multiple quantum wells(MQWs) can easily capture electrons for recombining with holes[13]. In addition, the poor hole injection cannot generate sufficient radiative recombination in the active region causing more electrons to escape to p-type region[14]. To promote the hole injection, a variety of p-type electron blocking layer(p-EBL) structures are proposed such as the superlattice p-EBL structure[15-16], the AlGaN p-EBL structure with graded Al mole composition or ultrathin AlGaN/InAlN heterojunction[17-18]. The additional contribution for the proposed p-EBLs is that the reduced efficiency droop can be obtained due to the eliminated electron leakage, and this can be achieved by increasing the effective conduction band barrier height. Chuetal.show the influence of the electron leakage and Auger recombination on the efficiency droop by manipulating the electron affinities of the p-EBL[19]. Moreover, they have grown a p+-GaN/In0.15Ga0.85N/n+-GaN tunnel junction into DUV LED. The results show that the efficiency droop decreases from 29.0% to 8.9% and the parasitic emission is no longer observed due to the decreased electron leakage[19]. According to their results, the electron leakage is a major factor of efficiency droop for DUV LEDs. However, an in-depth discussion is not given yet by Ref.[19]. Meanwhile, Nippertetal.indirectly suggest that the magnitude of Auger recombination rate in the quantum wells for AlGaN-based DUV LEDs may be as high as that for InGaN-based LEDs[11]. Hence, it is worth investigating how the Auger recombination and the electron leakage affect the efficiency droop and which can be the correct method to eliminate efficiency droop for DUV LEDs.

    In this report, we reveal the effect of the Auger recombination on the efficiency droop for DUV LEDs by the band-engineered p-EBL. A well-known common sense is that the carrier injection influences Auger recombination and the electron leakage[10]. Hence, the Auger recombination and the electron leakage will be indirectly controlled by manipulating the p-EBL affinity. The affinity is deemed as the energy of electron escaping from the conduction band energy level to the vacuum energy level. By using advanced simulation tools, we can modify the electron affinity without changing the energy band gap for the p-EBL. We have also adopted different Auger recombination coefficients when changing the electron affinity of the p-EBL. Our results show that for DUV LEDs, the Auger recombination coefficient in the scale of 10-29cm6·s-1causes a significant efficiency droop. However, such a big Auger recombination coefficient is less possible for Al-rich AlGaN materials[6,10,20]. Moreover, when the electron leakage level is tuned to be large, the efficiency droop is less affected by the Auger recombination even when the Auger recombination is large. Details will be given and discussed subsequently.

    To reveal the impact of Auger recombination and different electron leakage levels on the efficiency droop. The structural parameters of the Devices A and B are designed as follows: Device A has a 4 μm thick n-type Al0.59Ga0.41N electron injection layer with the electron concentration of 3.0×1018cm-3. Five periods of Al0.45Ga0.55N/Al0.55Ga0.45N MQWs with 3 nm thick quantum wells and 10 nm thick quantum barriers, respectively. Next, we employ a 10 nm thick p-type Al0.60Ga0.40N EBL with the hole concentration of 2.0×1017cm-3. After that, the hole injection layer is composed of a 50 nm thick p-type Al0.40Ga0.60N layer and a 50 nm thick p-type GaN cap layer. The hole concentration is set to 2.0×1017cm-3and 4.0×1017cm-3respectively. Device B possesses the same structure except the Al0.60Ga0.40N/Al0.50Ga0.50N/Al0.60Ga0.40N structured p-EBL. Finally, the mesa size is made by 350 μm×350 μm.

    We use APSYS to conduct numerical calculation. The software processes various numerical computations, including drift-diffusion equations, Poisson’ equations and Schr?dinger equations self-consistently[21]. In our calculation model, we choose the polarization level of 40% to calculate interface charge of AlxGa1-xN/AlyGa1-yN heterojunction. This value is reasonable for Ref. [22]. The Auger recombination coefficients range from 10-32cm6·s-1to 10-29cm6·s-1[6,23-24]. We set the Shockley-Read-Hall(SRH) recombination lifetime to be 10 ns[25]. The energy band offset ratio is set to 50∶50[26]. The light extraction efficiency(LEE) is assumed to be 8%[27]. Other important parameters can be found in elsewhere[28].

    Firstly, the influence of the electron leakage and Auger recombination on the efficiency droop for Device A is investigated. When the injection current density is as high as 170 A·cm-2, the function of the electron affinity of p-EBL on the electron leakage and the efficiency droop is shown in Figs.1(a) and (b) when different Auger recombination coefficients are assumed. Inset in Fig.1(a) depicts the calculated EQE in terms of the injection current density for DUV LEDs with different electron affinities of p-EBL. The electron leakage ratio can be obtained in the way that the integrated p-region horizontal electron current is divided by the integrated n-region horizontal electron current as shown in the inset for Fig.1(b). It is apparently observed that both the electron leakage current and the efficiency droop increase when we modulate the affinity from 3.22 eV to 3.30 eV. Meanwhile, the increasing trend for the efficiency droop is consistent with that for electron leakage. Moreover, the remarkable impact on the efficiency droop can be found when we define the Auger recombination coefficient to be 10-29cm6·s-1. It is noted that the high affinity of the p-EBL will induce decreased hole injection capability, thus causing the increased electron leakage level in Fig.1(b) and the decreased total Auger recombination rate in MQWs in Fig.1(c). Besides, Fig.1(c) also depicts that the total Auger recombination rate is calculated by the integrated value of horizonal Auger recombination rate in the five quantum wells(see the inset in Fig.1(c)). Here, it is obvious that the Auger recombination in Fig.1(c) cannot interpret the efficiency droop in Fig.1(a). Therefore, it can be inferred that the electron leakage has a larger impact on the efficiency droop for DUV LEDs. Our studies also indicate that the Auger recombination coefficient as large as 10-29cm6·s-1can cause a significant efficiency droop. This number is even larger than the Auger recombination coefficients of 10-31-10-30cm6·s-1extracted from InGaN material[10]. Nevertheless, the band gap for AlGaN material is larger than that for InGaN material, and therefore, such a large Auger coefficient in the scale of 10-29cm6·s-1is generally less possible for Al-rich AlGaN quantum wells[6,10-11]. Hence, the electron leakage is a dominant factor causing the efficiency droop in DUV LEDs.

    Fig.1 Numerically computed efficiency droop(a), electron leakage current level(b) and total Auger recombination rate(c) as a function of the different affinities of p-EBL and the various Auger recombination coefficients for Device A at 170 A·cm-2. Inset of Fig.1(a) depicts the calculated EQE as a function of injection current density for Device A with different electron affinities of p-EBL. Inset of Fig.1(b) depicts the horizontal electron current density for Device A in the p-region and the n-region, respectively. Inset of Fig.1(c) depicts the horizonal Auger recombination rate for Device A in the last quantum well closest to the p-EBL.

    Fig.2(a)-(c) present the profiles for holes, electrons and Auger recombination rate, respectively. We selectively choose the DUV LEDs with the electron affinities of 3.22 eV and 3.30 eV for the p-EBLs, and the Auger recombination coefficient set to be 10-32cm6·s-1. We then summarize that the Auger recombination is more determined by the hole concentration in the MQWs, such that the increased hole concentration in the MQWs can generate even larger Auger recombination. Nevertheless, Fig.2(b) shows that the increased hole concentration can make more electrons captured by the quantum wells. Thus, the reduced efficiency droop for DUV LED can be observed with the electron affinity of 3.22 eV due to the decreased leakage electrons. It is worth mentioning that the activation energy for Mg in AlGaN is higher than that in GaN, and thus hole concentration for DUV LEDs is lower than that for GaN based blue LEDs. Therefore, we propose that increasing the hole injection capability can prevent electrons from escaping from MQWs to p-type region, and by doing so, the efficiency droop can be decreased.

    However, from the actual point of view, the electron affinity for AlGaN-based p-EBL with specific Al mole composition is a fixed value. Therefore, besides the reference Device A that has the Al0.60Ga0.40N p-EBL, we also design Device B that possesses the Al0.60Ga0.40N/Al0.50Ga0.50N/Al0.60Ga0.40N structured p-EBL, which can promote the hole tunneling probability and favor thermionic emission process to increase the hole injection ability[29]. Our results are also further proven by our calculated hole concentration in the active region in Fig.3(a) such that Device B has the even larger hole concentration in the quantum wells than Device A. The enhanced hole concentration then provides more radiative recombination channel with electrons, which is beneficial to alleviate the electron leakage current as shown in Fig.3(b).

    Fig.2 Numerically computed hole concentration profiles in the MQWs(a), electron concentration profiles in the MQWs and the p-type hole injection layers(b) and Auger recombination rate profiles in the MQWs(c) with the electron affinities of 3.22 eV and 3.30 eV for the p-EBLs at 170 A·cm-2.

    Fig.3 (a)Hole concentration profiles in the MQWs. (b)Normalized electron current density for Devices A and B at 170 A·cm-2.

    We then compare the optical performance of two devices in Fig.4. It is apparently observed from Fig.4 that the performance of Device B is improved compared with Device A in the probed current density. The efficiency droops of 12.0% for Device A and 4.7% for Device B can been obtained at 170 A·cm-2. In addition, it is shown in Fig.4 that the optical power for Device B is increased by 32.79% when compared with Device A at 170 A·cm-2. The maximum value of EQE for Device B is numerically increased by 22.83%. The increased EQE and optical power are due to the alleviated electron leakage.

    Fig.4 EQE and optical power for Devices A and B as the function of injection current density

    In summary, in this report, we modulate the affinity of p-EBL and also use different Auger recombination coefficients to explore the influence of electron leakage and Auger recombination on the efficiency droop for AlGaN-based DUV LEDs. According to the results, the Auger recombination has an obvious impact on the efficiency droop only when the Auger recombination coefficient is larger than 10-29cm6·s-1, which number is unrealistic for Al-rich AlGaN layer. Therefore, for DUV LEDs, the Auger recombination rate has negligible impact on the efficiency droop. Instead, the efficiency droop is strongly influenced by the electron leakage. Fortunately, the electron leakage can be decreased as long as more electrons can get involved into radiative recombination. For that purpose, we strongly suggest increasing the hole injection efficiency for DUV LEDs. We believe that the report is useful for the community to study the physical mechanism regarding the efficiency droop, and the findings are helpful to increase the external quantum efficiency for DUV LEDs.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20210102.

    中国美女看黄片| 少妇裸体淫交视频免费看高清 | 精品视频人人做人人爽| 久久人人爽人人片av| 制服人妻中文乱码| 免费不卡黄色视频| 汤姆久久久久久久影院中文字幕| 亚洲精品粉嫩美女一区| 久久狼人影院| 亚洲精品国产区一区二| 国产精品久久久久成人av| 黄片播放在线免费| 久久久久视频综合| 香蕉国产在线看| 久久人妻熟女aⅴ| kizo精华| 嫩草影视91久久| 老司机亚洲免费影院| av在线播放精品| 国产片内射在线| 少妇的丰满在线观看| 亚洲人成电影免费在线| 最近最新中文字幕大全免费视频| 99国产精品免费福利视频| 波多野结衣av一区二区av| 成人国产一区最新在线观看| 黑人巨大精品欧美一区二区mp4| 天天躁日日躁夜夜躁夜夜| 天堂8中文在线网| 法律面前人人平等表现在哪些方面 | 亚洲欧美一区二区三区黑人| 大香蕉久久网| 国产不卡av网站在线观看| 国产日韩欧美在线精品| 12—13女人毛片做爰片一| 一二三四在线观看免费中文在| 黄色毛片三级朝国网站| 久久ye,这里只有精品| 成年女人毛片免费观看观看9 | 国产免费av片在线观看野外av| 欧美激情 高清一区二区三区| 亚洲av电影在线观看一区二区三区| 少妇人妻久久综合中文| 久久天躁狠狠躁夜夜2o2o| 久久人妻熟女aⅴ| 国产欧美亚洲国产| 他把我摸到了高潮在线观看 | 精品国产乱子伦一区二区三区 | 午夜精品国产一区二区电影| 亚洲一区中文字幕在线| 国产1区2区3区精品| 久久国产精品人妻蜜桃| 亚洲精品国产一区二区精华液| 国产成人av教育| 久久九九热精品免费| 日韩人妻精品一区2区三区| 国产男女超爽视频在线观看| 十八禁网站网址无遮挡| 国产不卡av网站在线观看| 久久天堂一区二区三区四区| 精品亚洲成a人片在线观看| 亚洲精品第二区| 免费在线观看视频国产中文字幕亚洲 | av国产精品久久久久影院| 欧美久久黑人一区二区| 国产1区2区3区精品| av免费在线观看网站| 久久久国产欧美日韩av| 久久久欧美国产精品| 一个人免费在线观看的高清视频 | 亚洲欧美日韩高清在线视频 | 国产精品久久久久成人av| 性色av一级| 亚洲成人免费av在线播放| 日韩欧美一区二区三区在线观看 | 制服诱惑二区| 久久香蕉激情| 操出白浆在线播放| 亚洲一区二区三区欧美精品| 欧美激情高清一区二区三区| 久久久水蜜桃国产精品网| 午夜福利乱码中文字幕| 欧美+亚洲+日韩+国产| 午夜两性在线视频| 老司机影院成人| 99久久99久久久精品蜜桃| 两个人看的免费小视频| 色播在线永久视频| a 毛片基地| 热re99久久国产66热| 国产1区2区3区精品| 精品国内亚洲2022精品成人 | 欧美 日韩 精品 国产| 丝袜脚勾引网站| 国产亚洲精品一区二区www | 国产在线免费精品| 国产精品二区激情视频| 性高湖久久久久久久久免费观看| 国产一区二区三区在线臀色熟女 | 亚洲激情五月婷婷啪啪| 国产黄频视频在线观看| 国产区一区二久久| 可以免费在线观看a视频的电影网站| 日本猛色少妇xxxxx猛交久久| 国产片内射在线| xxxhd国产人妻xxx| 人妻久久中文字幕网| tocl精华| 国产黄频视频在线观看| 日韩大码丰满熟妇| 天天操日日干夜夜撸| 国产伦人伦偷精品视频| 香蕉丝袜av| 肉色欧美久久久久久久蜜桃| 一个人免费在线观看的高清视频 | 大香蕉久久成人网| 这个男人来自地球电影免费观看| 99精品久久久久人妻精品| 成人手机av| 欧美亚洲 丝袜 人妻 在线| av超薄肉色丝袜交足视频| 成年人黄色毛片网站| 男女下面插进去视频免费观看| 国产成人精品在线电影| 亚洲精品美女久久久久99蜜臀| 国产主播在线观看一区二区| av在线老鸭窝| 久久人人97超碰香蕉20202| 成人国产一区最新在线观看| 免费少妇av软件| av视频免费观看在线观看| 99精品欧美一区二区三区四区| 在线看a的网站| 亚洲天堂av无毛| 大码成人一级视频| 欧美另类亚洲清纯唯美| 人妻久久中文字幕网| 亚洲情色 制服丝袜| 午夜91福利影院| 婷婷色av中文字幕| 秋霞在线观看毛片| a 毛片基地| 成年人午夜在线观看视频| 亚洲 欧美一区二区三区| 国产高清videossex| 一级片'在线观看视频| 午夜老司机福利片| 久久久国产成人免费| 91国产中文字幕| 久久精品成人免费网站| 久久精品人人爽人人爽视色| 99国产精品免费福利视频| 在线永久观看黄色视频| 国产淫语在线视频| 日本五十路高清| 人人妻,人人澡人人爽秒播| 999久久久精品免费观看国产| 一级黄色大片毛片| 五月天丁香电影| 国产精品久久久久成人av| 黑人操中国人逼视频| 久久 成人 亚洲| 亚洲精品久久午夜乱码| 50天的宝宝边吃奶边哭怎么回事| 欧美少妇被猛烈插入视频| av又黄又爽大尺度在线免费看| 操美女的视频在线观看| 国产麻豆69| 美女主播在线视频| 日韩大码丰满熟妇| 在线看a的网站| 男女免费视频国产| 欧美xxⅹ黑人| 精品免费久久久久久久清纯 | 国产99久久九九免费精品| 久久热在线av| 制服人妻中文乱码| 欧美久久黑人一区二区| 国产高清国产精品国产三级| av网站在线播放免费| 成人三级做爰电影| av又黄又爽大尺度在线免费看| 首页视频小说图片口味搜索| 日韩一卡2卡3卡4卡2021年| 女警被强在线播放| 午夜精品久久久久久毛片777| 如日韩欧美国产精品一区二区三区| 最新的欧美精品一区二区| 18在线观看网站| 亚洲av欧美aⅴ国产| 亚洲黑人精品在线| 啪啪无遮挡十八禁网站| 欧美精品一区二区免费开放| 天天操日日干夜夜撸| 一级,二级,三级黄色视频| 久久免费观看电影| 久久免费观看电影| 这个男人来自地球电影免费观看| 午夜福利在线观看吧| 成人手机av| 免费观看a级毛片全部| av福利片在线| 一区二区av电影网| 免费不卡黄色视频| 成人国产av品久久久| 十八禁人妻一区二区| 国产色视频综合| 一区在线观看完整版| 国产av又大| 男人操女人黄网站| 在线观看免费午夜福利视频| xxxhd国产人妻xxx| 悠悠久久av| 十八禁网站网址无遮挡| 亚洲av国产av综合av卡| www.精华液| 啦啦啦中文免费视频观看日本| 日日爽夜夜爽网站| 中文字幕高清在线视频| 人妻人人澡人人爽人人| 老司机亚洲免费影院| 国产精品一区二区精品视频观看| 国产精品一区二区精品视频观看| 日韩中文字幕欧美一区二区| 亚洲精品在线美女| 久久久久久人人人人人| 好男人电影高清在线观看| 丝瓜视频免费看黄片| 女人高潮潮喷娇喘18禁视频| av在线app专区| 999久久久国产精品视频| 欧美+亚洲+日韩+国产| 国产日韩欧美在线精品| 午夜福利乱码中文字幕| 国产91精品成人一区二区三区 | 巨乳人妻的诱惑在线观看| 国产av一区二区精品久久| 免费在线观看完整版高清| 亚洲中文av在线| 性色av乱码一区二区三区2| 丝袜人妻中文字幕| 国产成人av教育| 欧美一级毛片孕妇| 伦理电影免费视频| 精品国产乱子伦一区二区三区 | 亚洲精品粉嫩美女一区| 日韩欧美免费精品| 中国美女看黄片| 国产成人av教育| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品一区三区| 热re99久久国产66热| 丝袜脚勾引网站| 蜜桃国产av成人99| 91成人精品电影| 日本欧美视频一区| 亚洲精品一二三| videosex国产| 老鸭窝网址在线观看| 国产熟女午夜一区二区三区| 桃花免费在线播放| 欧美大码av| 国产成人a∨麻豆精品| 女性被躁到高潮视频| 国产日韩欧美视频二区| 91字幕亚洲| 精品人妻在线不人妻| av有码第一页| 亚洲欧美精品自产自拍| 亚洲熟女精品中文字幕| 在线av久久热| 午夜免费鲁丝| 亚洲va日本ⅴa欧美va伊人久久 | 男人添女人高潮全过程视频| 午夜福利,免费看| 免费观看av网站的网址| 两性夫妻黄色片| 中文字幕色久视频| 青青草视频在线视频观看| 亚洲成人手机| 国产精品一区二区精品视频观看| 午夜精品国产一区二区电影| 国产真人三级小视频在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲七黄色美女视频| 亚洲一卡2卡3卡4卡5卡精品中文| 各种免费的搞黄视频| 精品一区在线观看国产| 久久精品国产综合久久久| 99热全是精品| 国产野战对白在线观看| 欧美午夜高清在线| 狠狠婷婷综合久久久久久88av| 一区二区三区精品91| 两人在一起打扑克的视频| 青青草视频在线视频观看| 老司机亚洲免费影院| 狠狠精品人妻久久久久久综合| 欧美老熟妇乱子伦牲交| 日韩熟女老妇一区二区性免费视频| 一级,二级,三级黄色视频| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区免费欧美 | 国产精品.久久久| 欧美在线一区亚洲| 三级毛片av免费| 久久久精品94久久精品| 亚洲欧美一区二区三区久久| 另类精品久久| 欧美97在线视频| 日韩熟女老妇一区二区性免费视频| 久久天躁狠狠躁夜夜2o2o| 菩萨蛮人人尽说江南好唐韦庄| 久久影院123| 欧美激情久久久久久爽电影 | 日韩制服骚丝袜av| 欧美精品av麻豆av| 搡老熟女国产l中国老女人| 蜜桃国产av成人99| 80岁老熟妇乱子伦牲交| 精品国产乱码久久久久久男人| 香蕉国产在线看| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品一区二区www | 最近最新免费中文字幕在线| 成人国语在线视频| 国产成人免费无遮挡视频| 亚洲精品成人av观看孕妇| 国产成人系列免费观看| 90打野战视频偷拍视频| 成年人黄色毛片网站| 多毛熟女@视频| 国产精品熟女久久久久浪| 欧美 日韩 精品 国产| 91麻豆精品激情在线观看国产 | 中文字幕人妻丝袜制服| 国产欧美日韩综合在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区字幕在线| 久久久久久人人人人人| 美女高潮喷水抽搐中文字幕| 亚洲精华国产精华精| 各种免费的搞黄视频| 亚洲国产欧美网| 中国国产av一级| 亚洲一区中文字幕在线| 国产野战对白在线观看| videosex国产| 在线观看免费午夜福利视频| 国产精品欧美亚洲77777| 老司机深夜福利视频在线观看 | 亚洲五月婷婷丁香| 国产精品 欧美亚洲| 热99国产精品久久久久久7| 成人国产一区最新在线观看| 老汉色av国产亚洲站长工具| 久久久久国内视频| 国产亚洲欧美精品永久| 夜夜骑夜夜射夜夜干| 久久精品国产a三级三级三级| 19禁男女啪啪无遮挡网站| 一区二区三区精品91| 伦理电影免费视频| av免费在线观看网站| 精品一区二区三卡| 精品免费久久久久久久清纯 | 久久精品国产a三级三级三级| 19禁男女啪啪无遮挡网站| 中文欧美无线码| 免费av中文字幕在线| 水蜜桃什么品种好| 久久国产精品男人的天堂亚洲| 99精国产麻豆久久婷婷| 国产成人一区二区三区免费视频网站| 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品古装| 美女高潮喷水抽搐中文字幕| 最新的欧美精品一区二区| 久久久久精品国产欧美久久久 | 亚洲欧美色中文字幕在线| 国内毛片毛片毛片毛片毛片| 国产极品粉嫩免费观看在线| 久久 成人 亚洲| 久久人人97超碰香蕉20202| 女人久久www免费人成看片| 免费观看a级毛片全部| 国产99久久九九免费精品| 999久久久精品免费观看国产| 国产一卡二卡三卡精品| 超色免费av| 成人影院久久| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩一区二区三 | 一级片'在线观看视频| 99国产精品一区二区三区| 丁香六月天网| 日本a在线网址| 老司机福利观看| 老司机亚洲免费影院| 巨乳人妻的诱惑在线观看| 精品国产一区二区三区久久久樱花| 操出白浆在线播放| 人人澡人人妻人| 成人av一区二区三区在线看 | 黄片播放在线免费| 悠悠久久av| 国产成人精品在线电影| 少妇被粗大的猛进出69影院| 丝袜人妻中文字幕| 国产成人av激情在线播放| 午夜视频精品福利| 国产精品一区二区在线观看99| 国产成人一区二区三区免费视频网站| 在线观看免费高清a一片| 极品少妇高潮喷水抽搐| 99精国产麻豆久久婷婷| 一本色道久久久久久精品综合| 五月天丁香电影| 他把我摸到了高潮在线观看 | cao死你这个sao货| 男女高潮啪啪啪动态图| 性色av一级| 亚洲精品美女久久av网站| 欧美日韩福利视频一区二区| 99久久综合免费| 午夜福利视频在线观看免费| 亚洲欧美精品自产自拍| 欧美另类一区| 在线观看www视频免费| 国产在线视频一区二区| 国产麻豆69| 欧美激情久久久久久爽电影 | 欧美大码av| 老熟妇仑乱视频hdxx| 精品国产一区二区三区久久久樱花| 91麻豆av在线| 水蜜桃什么品种好| 亚洲成av片中文字幕在线观看| 亚洲欧美成人综合另类久久久| 丰满少妇做爰视频| avwww免费| 如日韩欧美国产精品一区二区三区| 一区二区三区四区激情视频| av线在线观看网站| 天堂中文最新版在线下载| 成人三级做爰电影| 黄网站色视频无遮挡免费观看| 岛国毛片在线播放| 最新在线观看一区二区三区| 色婷婷久久久亚洲欧美| 久久久欧美国产精品| 麻豆国产av国片精品| 亚洲av片天天在线观看| 国产在线观看jvid| 免费高清在线观看视频在线观看| 亚洲精品久久午夜乱码| 亚洲成人免费av在线播放| 亚洲一区二区三区欧美精品| 久久久久久久精品精品| videos熟女内射| 老鸭窝网址在线观看| 国产99久久九九免费精品| av片东京热男人的天堂| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区 | 免费高清在线观看视频在线观看| 免费一级毛片在线播放高清视频 | 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的| 国产欧美亚洲国产| 久久久久视频综合| 精品国产超薄肉色丝袜足j| 大陆偷拍与自拍| www.熟女人妻精品国产| 少妇粗大呻吟视频| 久久99一区二区三区| 精品国产乱子伦一区二区三区 | 69精品国产乱码久久久| 亚洲自偷自拍图片 自拍| 久久天堂一区二区三区四区| 亚洲国产av新网站| 国产精品99久久99久久久不卡| 国产欧美日韩精品亚洲av| 老司机午夜福利在线观看视频 | 青春草亚洲视频在线观看| 亚洲伊人色综图| 午夜福利在线观看吧| 色播在线永久视频| 他把我摸到了高潮在线观看 | tocl精华| 老司机深夜福利视频在线观看 | 免费久久久久久久精品成人欧美视频| 欧美日韩黄片免| 满18在线观看网站| 国产成人av激情在线播放| 精品亚洲成国产av| 十八禁人妻一区二区| 丝袜美足系列| 国产精品久久久人人做人人爽| av福利片在线| 欧美精品亚洲一区二区| 19禁男女啪啪无遮挡网站| 老司机福利观看| 999久久久国产精品视频| 午夜福利在线观看吧| 亚洲av成人一区二区三| a级片在线免费高清观看视频| e午夜精品久久久久久久| 日韩一区二区三区影片| 肉色欧美久久久久久久蜜桃| av国产精品久久久久影院| 午夜免费观看性视频| 色婷婷av一区二区三区视频| 国产亚洲一区二区精品| 中文字幕人妻丝袜制服| 久久99热这里只频精品6学生| av欧美777| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 免费高清在线观看日韩| 国产精品一区二区免费欧美 | 女警被强在线播放| 侵犯人妻中文字幕一二三四区| 成在线人永久免费视频| 我的亚洲天堂| 人妻 亚洲 视频| 女人精品久久久久毛片| 另类精品久久| 国产福利在线免费观看视频| 亚洲av片天天在线观看| 男女床上黄色一级片免费看| 亚洲精品国产一区二区精华液| 国产精品影院久久| 国产免费视频播放在线视频| 久久久精品免费免费高清| 少妇人妻久久综合中文| 999久久久精品免费观看国产| 伊人亚洲综合成人网| 9191精品国产免费久久| 日本黄色日本黄色录像| 国产激情久久老熟女| 97在线人人人人妻| a在线观看视频网站| 在线十欧美十亚洲十日本专区| 午夜福利免费观看在线| 欧美大码av| 日韩欧美一区视频在线观看| 亚洲成国产人片在线观看| 丝袜在线中文字幕| a在线观看视频网站| 欧美激情久久久久久爽电影 | 精品国产国语对白av| 99re6热这里在线精品视频| 国产激情久久老熟女| 午夜激情久久久久久久| 黄网站色视频无遮挡免费观看| 母亲3免费完整高清在线观看| 王馨瑶露胸无遮挡在线观看| 久久国产精品大桥未久av| 在线观看免费高清a一片| 另类亚洲欧美激情| 国产男女内射视频| 国产成人系列免费观看| 午夜老司机福利片| 三上悠亚av全集在线观看| 香蕉国产在线看| 亚洲熟女毛片儿| 亚洲一区二区三区欧美精品| 国产精品熟女久久久久浪| 丝袜美腿诱惑在线| 啦啦啦中文免费视频观看日本| 美女高潮喷水抽搐中文字幕| svipshipincom国产片| 日本欧美视频一区| 欧美黄色淫秽网站| 亚洲 国产 在线| 亚洲天堂av无毛| 国产精品久久久久久精品古装| 丝袜人妻中文字幕| 侵犯人妻中文字幕一二三四区| 国产成人精品久久二区二区91| 美国免费a级毛片| 99国产综合亚洲精品| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密| 一级毛片精品| 国产在线免费精品| 日日爽夜夜爽网站| 99国产精品免费福利视频| 天堂8中文在线网| 日韩 欧美 亚洲 中文字幕| 各种免费的搞黄视频| 一个人免费看片子| 国产成人欧美在线观看 | 久久香蕉激情| 久久久久久人人人人人| 夜夜夜夜夜久久久久| tube8黄色片| 日本猛色少妇xxxxx猛交久久| 亚洲av美国av| 久久国产亚洲av麻豆专区| 精品久久久久久久毛片微露脸 | 国产深夜福利视频在线观看| 极品人妻少妇av视频| 丝瓜视频免费看黄片| 一进一出抽搐动态| 少妇精品久久久久久久| 国产亚洲欧美精品永久| 国产欧美日韩一区二区三 | 老司机影院成人| 亚洲精品自拍成人| 曰老女人黄片| 色精品久久人妻99蜜桃| 一级黄色大片毛片| 嫁个100分男人电影在线观看|