• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Y2O3-MgO Composite Nano-ceramics Prepared from Core-shell Nano-powders

    2021-07-23 04:18:36JIANGHongtaoQINHaimingFENGShaoweiCHENHongbingJIANGJun
    發(fā)光學(xué)報(bào) 2021年7期
    關(guān)鍵詞:納米粉體核殼沉淀法

    JIANG Hong-tao, QIN Hai-ming, FENG Shao-wei, CHEN Hong-bing, JIANG Jun

    (1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315201, China;2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;3. University of Chinese Academy of Sciences, Beijing 100049, China;4. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)

    Abstract: Y2O3-MgO composite nano-ceramics are regarded as a significant candidate of infrared transparent ceramics on account of excellent optical and mechanical properties. Nevertheless, a huge challenge remains regarding the critical optical scattering and needless absorption in the near- and mid-infrared bands, which hinders its applications in extreme harsh environments. In present work, Y2O3-MgO core-shell structure nano-powders were prepared via urea precipitation method before that Y2O3-MgO composite nano-ceramics were prepared under spark plasma sintering. Thermogravimetric and differential scanning calorimetry(TG/DSC), X-ray diffraction and scanning electron microscope were performed to analyze as prepared core-shell structure nano-powders and composite nano-ceramics. The size of Y2O3-MgO core-shell structure nano-powders is about 250 nm, and average grain size of the prepared ceramics is approximately 360 nm. The transmittance is 57% at 6 μm, and the Vickers hardness is 820 HV. The powder synthesis method accomplished in present work offers a novel solution for composite nano-ceramics, which easily regulate particle size and proportion of different components.

    Key words: Y2O3-MgO composite nano-ceramics; core-shell structure nano-powder; urea precipitation method; spark plasma sintering

    關(guān) 鍵 詞:Y2O3-MgO復(fù)相納米陶瓷; 核殼結(jié)構(gòu)納米粉體; 尿素沉淀法; 放電等離子燒結(jié)

    1 Introduction

    In recent years, infrared window materials are brought into focus due to widely used in infrared tracking, identification, search, guidance, navigation, and thermal imaging[1-7]. In order to cope with various application environments, the performance of infrared window materials need to meet the following requirements: infrared transparency, high mechanical strength, high thermal conductivity, and resistance to thermal shock and erosion[5-6]. However, it is not realistic to improve the operational properties of infrared materials(ZnS, Al2O3and MgAl2O4) that have been widely used in extreme environments and under severe loads, such as aerospace applications[7]. Recently, progress of the composite ceramic as a competitive candidate in this area brings new driving power.

    Among all nano-composite ceramics, the Y2O3-MgO nano-composite ceramics are presentative infrared transparent ceramic, since the Y2O3-MgO nano-composite ceramics process outstanding thermal and mechanical properties for extreme environments[8-10]. The most commonly approach to sintering Y2O3-MgO nano-composite ceramics is the spark plasma sintering(SPS). SPS regarded as a rapid solidification sintering method is an especially efficient technique, through which the sintering time can be massively decreased owing to the rapid heating rate at a speed higher than 100 ℃/min compared with conventional sintering methods. For the pressureless sintering, the higher sintering temperature and the longer sintering time lead to dramatically grain growth, particularly in the final period of the densification. For another, SPS enhances the driving force of sintering by dynamically activating plastic deformation and diffusion processes, which is efficacious to restrict the grain growth under a lower sintering temperature and high intensity of pressure. In 2010, Jiangetal.[11]prepared Y2O3-MgO nano-composite ceramics with the grain size less than 100 nm by SPS sintering under a load of 80 MPa. Liuetal.[12]used SPS to sinter the powders after ultrasonic horn treatment to prepare the Y2O3-MgO nano-composite ceramics at 50 MPa. Huangetal.[13]prepared the Y2O3-MgO nano-composite ceramics with a grain size of 100-200 nm through SPS sintering with 100 MPa. Then, Xuetal.[14]prepared the Y2O3-MgO nano-composite ceramics with a grain size of 100-300 nm through SPS sintering under 50 MPa, which got the nano-powder through the esterification sol-gel route. Recently, Safronovaetal.[15]explored the influence of temperature on the Y2O3-MgO nano-composite ceramics during SPS sintering. At the same time, Liuetal.[16]and Maetal.[17]independently explored the influence of pressure and LiF sintering aid on grain growth of Y2O3-MgO ceramics.

    In present work, the homogenous Y2O3-MgO core-shell structure nano-powders were prepared through urea precipitation approach. In order to obtain high sinterability powders, the calcination temperature, powder morphology and size of Y2O3-MgO core-shell structure nano-powders were studied compared with that of single-phase Y2O3. Y2O3-MgO composite nano-ceramics were sintered by SPS using core-shell powders as the beginning powders. This core-shell nano-powders preparation method and SPS procedure are simple and inexpensive, which provide a novel way to fabricate Y2O3-MgO composite nano-ceramics.

    2 Experimental and Characterizations

    Y2O3-MgO core-shell structure nano-powders were prepared by urea precipitation. The raw materials were Y2O3(5N), nitric acid(AR), urea(99%), and MgO(99.9%, 50 nm). Firstly, 0.015 mol Y(NO3)3solution was prepared by dissolving 0.007 5 mol Y2O3in a certain number of HNO3. Next, Y(NO3)3solution was added together with 0.5 mol urea into a three-necked flask of 2 000 mL. Then, MgO was weighted with a volume ratio of 1∶1 to Y2O3into the container through stirring and dispersing sufficiently. After that, MgO was transferred to the solution in the three-necked flask. Currently, there were about 1 300 mL of solution in the three-necked flask. Finally, the three-necked flask was placed in a heating mantle to heat the solution temperature from room temperature to (85±1) ℃ in about 40 min. At the same time, an electric stirrer was used to stir at a rate of 500 r/min. When the solution was obviously turbid, the reaction was maintained in this state for 2 h. After two hours, the resulting suspension was obtained by suction filtration, and then the suspension was placed in an oven and dried at 80 ℃ for 24 h. The dried precursors were put into the muff furnace and calcined at the selected temperature for 1 h, after which 0.25% LiF(99%) was added and the powders were ground, and then screened with a 140-mesh sieve.

    Transparent Y2O3ceramics powders were also prepared by urea precipitation method, and then ground and screened with 140 mesh, and then compressed intoφ10 discs by a powder tablet machine. The ceramic tablets were compacted at 200 MPa using a cold isostatic press. The sintering method was vacuum sintering, the temperature was 1 750 ℃, and the holding time was 4 h.

    The powders obtained above were sintered into ceramics through SPS(LABOX-1575, SinterL and Inc., Japan). The powder samples loaded into the graphite mold were heated from room temperature to a pre-set temperature(1 200 ℃) at the heating rate of 100 ℃/min under vacuum(10 Pa) and the dwell time was 8 min with the pressure of 50 MPa. The sintered Y2O3-MgO composite nano-ceramics were annealed in the air at 1 000 ℃ for 15 h to eliminate oxygen vacancies, carbon and residual stress. When measuring infrared transmittance, the sample is polished on both sides to a thickness of~0.9 mm.

    XRD patterns were measured by a Bruker D8 X-ray diffractometer with Cu Kα radiation(λ=0.154 056 nm) at 40 kV and 40 mA. Thermal analysis of the precursors was measured by thermogravimetric/differential scanning calorimetry(TG/DSC, STA 449F3, NETZSCH, Germany) at a heating rate of 10 K/min in air. A thermal field emission scanning electron microscope(TFE-SEM, Thermo Scientific Verios G4 UC) was used to observe the microscopic morphology of the powders. The particle size distributions of the powders were measured by Laser particle size analyzer(HELOS-OASIS, Sympatec GmbH, Germany). The grain and grain boundary morphology of the ceramic were measured by a field emission scanning electron microscope(FE-SEM, Hitachi S4800, Japan). The transmittance in the wavelength range ofλ=0.25-2.5 μm was conducted by using a spectrometer(Lambda 950, Perkin Elmer Co., USA). Fourier transform infrared spectroscopy(NICOLET 6700, Thermo Co, USA) was used to measure the transmittance of the mirror polished samples at a range of 2.5-10 μm. An image analysis microhardness tester(HV-1000/S, SIOMM, Shanghai) was used to carry out a 10 s, 100 N load test to obtain the Vickers hardness result.

    3 Results and Discussion

    Fig.1 TG-DSC curves of the Y2O3-MgO core-shell structure nano-powder precursors

    Fig.2 shows XRD patterns of MgO nano-powders, Y2O3nano-powder precursors, Y2O3-MgO core-shell structure nano-powder precursors and Y2O3-MgO core-shell structure nano-powders calcined at different temperatures. Compared with Y2O3nano-powder precursors, Y2O3-MgO core-shell structure nano-powder precursors appear weaker MgO peaks. The other peaks may be caused by the formation of the coating structure and some changes in the disordered structure of the outer layer. According to thermal analysis, the powders have reached its crystallization temperature at 650 ℃. After reaching 750 ℃, the powders have been completely crystallized, and no obvious heat absorption and exotherm were observed, and the quality almost no longer changes. As a result, 750 ℃ is the optimum calcination temperature for the powders. The XRD of core-shell structure nano-powders calcined at 650, 750, 850 ℃are consistent with that of Y2O3and MgO, and there is no obvious change between them, except that the peak shape gradually becomes sharp with the increase of temperature, indicating that the powders have basically formed phase at 650 ℃. Therefore, the calcined temperature of Y2O3-MgO core-shell structure nano-powder precursors is higher about 100 ℃ than precursor crystallization temperature in order to remove possible traces of carbon- and nitrogen-containing compounds.

    Fig.2 XRD patterns of MgO nano-powders, Y2O3 nano-powder precursors, Y2O3-MgO core-shell structure nano-powder precursors and Y2O3-MgO core-shell structure nano-powders calcined at different temperatures.

    Fig.3 shows the micromorphology of MgO nano-powders, Y2O3powders, Y2O3-MgO core-shell structure nano-powder precursors and Y2O3-MgO core-shell structure nano-powders. The powder size of MgO nano-powders in Fig.3(a) is about 50 nm, and the powder morphology are relatively uniform. Fig.3(b) shows the prepared Y2O3powders by the urea precipitation method. The size of Y2O3powders with good sphericity and good monodispersity is about 200-300 nm. The micrograph of Y2O3-MgO core-shell structure nano-powder precursors (Fig.3(c)) is much more similar to that of MgO nano-powders due to the nucleation process starting on the surface of MgO nano-powders. As shown in Fig.3(d), Y2O3-MgO core-shell structure nano-powders with soft agglomeration are composed of microcrystals. Y2O3-MgO core-shell structure nano-powders exhibit a clear interface between core and shell, which indicates the MgO nano-powders as a core are successfully cladded with Y2O3powders as a shell. The size distribution of all the powders is shown in Fig.4. Compared with the SEM images, the four kinds of powders have different degrees of agglomeration. Fig.4(a) shows the particle size distribution of MgO nano-powders is around 600 nm, which is quite different from the SEM image. This is due to the small size of MgO nano-powders and large specific surface area, which is easy to form large agglomerated particles. According to Fig.4(b), the size of Y2O3powders is mainly concentrated in 200-300 nm, which is more consistent with Fig.3(b) image. Therefore, the larger particles are ascribed to slightly agglomerating of Y2O3powders. Fig.4(c) shows that the particle size distribution of Y2O3-MgO core-shell structure nano-powder precursors is mainly 100-300 nm. Since the precursors have not undergone crystallization after calcination, the particles have not grown. From Fig.4(d), the agglomeration of Y2O3-MgO core-shell structure nano-powders nearly disappear with uniform size distribution at about 250 nm. After calcined at low temperature, the inorganic acid ions are decomposed and core-shell structure powders did not happen growing up. Fig.5 shows the EDS mapping images of Y2O3-MgO core-shell structure nano-powders calcined at 750 ℃. As represented in Fig.5, Y, Mg and O elements are evenly distributed throughout Y2O3-MgO core-shell

    Fig.3 SEM images of MgO nano-powders(a), Y2O3 powders(b), Y2O3-MgO core-shell structure nano-powder precursors(c), Y2O3-MgO core-shell structure nano-powders(d).

    Fig.4 Particle size distributions of MgO nano-powders(a), Y2O3 powders(b), Y2O3-MgO core-shell structure nano-powder precursors(c), Y2O3-MgO core-shell structure nano-powders(d).

    Fig.5 EDS mapping images of Y2O3-MgO core-shell structure nano-powders calcined at 750 ℃ structure nano-powders. However, the content distribution of Y is denser than that of Mg due to Y distributing on the outer surface of core-shell structure.

    Fig.6 shows the micro-morphology of Y2O3ceramics and Y2O3-MgO composite nano-ceramics, and the EDS mapping images of Y2O3-MgO composite nano-ceramics. From Fig.6(a) and (b), the average grain size of the Y2O3ceramics is about 100 μm, while the average grain size of the Y2O3-MgO composite nano-ceramics is about 360 nm. It can be seen from the image that Y2O3ceramics show larger grains and irregular grain growth, while the grains of Y2O3-MgO composite nano-ceramics are smaller and the grain growth is more uniform. Following BSE images and EDS mapping images, in Fig.6(d), the white phase and black phase are respectively Y2O3and MgO. At the same time, the grain size of MgO is generally smaller than that of Y2O3, and the larger MgO grains may be caused by the incomplete coating structure. And from the Fig.6(d), obviously, it can be seen that the black phase is surrounded by the white phase, that is, MgO is surrounded by Y2O3, which corresponds to the prepared core-shell structure nano-powders, thus confirming the construction of the core-shell structure. The core-shell structure nano-powders are beneficial to a more even distribution of the two grains, which is conducive to inhibiting growth of ceramic grains in a smaller scale. It indicates that the core-shell structure nano-powders has a certain binding effect on the grain growth during sintering, making the grains unable to grow at will.

    Fig.7 shows IR transmittance spectra of Y2O3ceramics and Y2O3-MgO composite nano-ceramics.

    Fig.6 SEM images of Y2O3 ceramics(a) and Y2O3-MgO composite nano-ceramics(b). BSE images of Y2O3 ceramics(c) and Y2O3-MgO composite nano-ceramics(d). (e)-(g)EDS mapping images of (b).

    Fig.7 IR transmittance spectra of Y2O3 ceramics and Y2O3-MgO composite nano-ceramics with the thickness of 0.9 mm. Inset: the photo of synthesized Y2O3 ceramics(left) and Y2O3-MgO composite nano-ceramics(right).

    Fig.8 shows the comparison of Vickers hardness of Y2O3ceramics and Y2O3-MgO composite nano-ceramics. The Vickers hardness of Y2O3ceramics is about 780 HV, and the Vickers hardness of Y2O3-MgO composite nano-ceramics is about 820 HV. Compared with Y2O3ceramics, after adding MgO, its mechanical properties have indeed improved. However, its hardness is far from reaching the required level, so the powder preparation and sintering process still need to be improved.

    Fig.8 Vickers hardness of Y2O3 ceramics and Y2O3-MgO composite nano-ceramics

    4 Conclusion

    Y2O3-MgO core-shell structure nano-powders with the particle size of about 250 nm were successfully prepared by urea precipitation method. Y2O3-MgO composite nano-ceramics with the average grain size of 360 nm are accomplishedviaSPS treatment. Grain size of Y2O3-MgO composite nano-ceramics is more uniform and smaller compared with Y2O3ceramics, indicating that the core-shell structure has certain binding effect on the grain growth. This core-shell structure nano-powders preparation method offers a new approach to further control the grain size of nano-composite ceramics. However, the transmittance and Vickers hardness of Y2O3-MgO composite nano-ceramics are not good enough, so the powder preparation and sintering process still need to be explored. Together with the SPS treatment, the method accomplished in this work provides a novel way to fabricate Y2O3-MgO composite nano-ceramics.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.

    20210095.

    猜你喜歡
    納米粉體核殼沉淀法
    硝酸銀沉淀法去除高鹽工業(yè)廢水中鹵化物對(duì)COD測(cè)定的干擾
    溶液燃燒法制備Mo–La2O3納米粉體及燒結(jié)性能的研究
    核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    陶瓷可飽和吸收體用Co:MgAl2O4納米粉體的制備
    納米粉體改性瀝青的流變性能分析
    石油瀝青(2018年4期)2018-08-31 02:29:40
    核殼型含氟硅丙烯酸酯無(wú)皂拒水劑的合成及應(yīng)用
    濕法磷酸化學(xué)沉淀法除鎂工藝
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點(diǎn)的水熱法合成及其光致發(fā)光性能
    混凝沉淀法處理含鉛礦坑涌水
    Y2O3:Er3+和Y2O3:Er3+,Yb3+納米粉體的制備及上轉(zhuǎn)換發(fā)光性能的研究
    国产成人系列免费观看| 精品国产乱码久久久久久男人| 桃红色精品国产亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 无限看片的www在线观看| 国产欧美日韩一区二区三区在线| 欧美激情 高清一区二区三区| 亚洲七黄色美女视频| 女警被强在线播放| 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 欧美精品亚洲一区二区| 国产高清激情床上av| 成在线人永久免费视频| 如日韩欧美国产精品一区二区三区| 亚洲综合色网址| 天天躁日日躁夜夜躁夜夜| 成人av一区二区三区在线看| 亚洲精品美女久久久久99蜜臀| 在线观看午夜福利视频| xxx96com| 亚洲三区欧美一区| 一二三四社区在线视频社区8| 欧美日韩成人在线一区二区| 欧美中文综合在线视频| 亚洲欧美精品综合一区二区三区| 人妻 亚洲 视频| 满18在线观看网站| 亚洲avbb在线观看| 麻豆成人av在线观看| 欧美黑人精品巨大| 国产黄色免费在线视频| 亚洲国产中文字幕在线视频| 亚洲专区国产一区二区| 18禁国产床啪视频网站| 成人国语在线视频| 在线十欧美十亚洲十日本专区| 亚洲精品在线观看二区| 久久中文字幕人妻熟女| 91麻豆av在线| 国产乱人伦免费视频| 日本五十路高清| av有码第一页| 午夜老司机福利片| 一级毛片高清免费大全| 乱人伦中国视频| 国产精品九九99| 久9热在线精品视频| 91老司机精品| 美女视频免费永久观看网站| 岛国毛片在线播放| 视频区图区小说| 国产99久久九九免费精品| 激情视频va一区二区三区| 欧美黑人精品巨大| 国产精品成人在线| 国产成人av激情在线播放| 中文亚洲av片在线观看爽 | 国产成人av激情在线播放| 激情视频va一区二区三区| 精品乱码久久久久久99久播| 国产精品美女特级片免费视频播放器 | 国产野战对白在线观看| 国产av精品麻豆| 国产麻豆69| 看黄色毛片网站| 纯流量卡能插随身wifi吗| 久久久久精品人妻al黑| 国产欧美日韩综合在线一区二区| 午夜91福利影院| 99久久人妻综合| 亚洲av电影在线进入| 在线观看日韩欧美| 香蕉久久夜色| 久久精品熟女亚洲av麻豆精品| 最近最新中文字幕大全免费视频| 欧美大码av| 亚洲成人免费电影在线观看| 在线天堂中文资源库| 久久香蕉激情| 天天躁日日躁夜夜躁夜夜| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 久久久国产一区二区| 精品福利观看| 久久草成人影院| 欧美日韩亚洲国产一区二区在线观看 | 国产成人av激情在线播放| 黑人猛操日本美女一级片| 欧美大码av| 国产成+人综合+亚洲专区| 国产精品乱码一区二三区的特点 | 免费在线观看黄色视频的| x7x7x7水蜜桃| 久久草成人影院| 亚洲在线自拍视频| 王馨瑶露胸无遮挡在线观看| 侵犯人妻中文字幕一二三四区| 性色av乱码一区二区三区2| 热99re8久久精品国产| 精品第一国产精品| 丰满人妻熟妇乱又伦精品不卡| 久久人妻熟女aⅴ| 国产精品 国内视频| 在线观看午夜福利视频| 69av精品久久久久久| 国产精品偷伦视频观看了| 热99re8久久精品国产| 亚洲综合色网址| 国产aⅴ精品一区二区三区波| 91精品国产国语对白视频| 一本综合久久免费| 国产精品国产高清国产av | 欧美日韩乱码在线| 人成视频在线观看免费观看| 大香蕉久久成人网| 欧美色视频一区免费| 国产成人免费观看mmmm| 淫妇啪啪啪对白视频| 免费在线观看视频国产中文字幕亚洲| 国产精品综合久久久久久久免费 | 中文字幕制服av| 久久久国产精品麻豆| 老司机午夜十八禁免费视频| 在线观看66精品国产| 中文字幕人妻丝袜一区二区| 夜夜夜夜夜久久久久| 又黄又爽又免费观看的视频| 精品久久久久久,| 久久精品人人爽人人爽视色| 校园春色视频在线观看| 成年版毛片免费区| 两个人免费观看高清视频| 亚洲中文av在线| 一级作爱视频免费观看| 久久热在线av| 国产精品一区二区精品视频观看| 人人妻人人爽人人添夜夜欢视频| 操美女的视频在线观看| 一级黄色大片毛片| 精品久久久久久久毛片微露脸| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 91成年电影在线观看| 亚洲免费av在线视频| 亚洲午夜精品一区,二区,三区| 日韩精品免费视频一区二区三区| 久9热在线精品视频| 99久久99久久久精品蜜桃| 啦啦啦免费观看视频1| a级毛片在线看网站| 久久国产精品人妻蜜桃| 国产高清视频在线播放一区| 高清黄色对白视频在线免费看| av天堂久久9| 老司机靠b影院| 精品久久久久久久毛片微露脸| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆成人av在线观看| 久久久水蜜桃国产精品网| 操美女的视频在线观看| 一边摸一边抽搐一进一出视频| avwww免费| 一区二区三区精品91| 高潮久久久久久久久久久不卡| 欧美日韩亚洲高清精品| 视频区欧美日本亚洲| 色婷婷av一区二区三区视频| 国产亚洲精品久久久久久毛片 | 中文字幕高清在线视频| 午夜福利视频在线观看免费| 国产色视频综合| 国产1区2区3区精品| 国产野战对白在线观看| a级毛片在线看网站| 国产99久久九九免费精品| 免费黄频网站在线观看国产| 久久久国产成人免费| 日韩免费高清中文字幕av| 80岁老熟妇乱子伦牲交| 日本vs欧美在线观看视频| 下体分泌物呈黄色| 色94色欧美一区二区| 99久久综合精品五月天人人| 女人被躁到高潮嗷嗷叫费观| av网站免费在线观看视频| 看免费av毛片| 精品一品国产午夜福利视频| 久9热在线精品视频| 久久精品亚洲精品国产色婷小说| 亚洲男人天堂网一区| av片东京热男人的天堂| 美女视频免费永久观看网站| 久久国产精品大桥未久av| 黑人猛操日本美女一级片| 中文字幕制服av| 国产成人精品无人区| 最新美女视频免费是黄的| 日韩欧美国产一区二区入口| 最新的欧美精品一区二区| 一级毛片精品| 热99久久久久精品小说推荐| 久久久久视频综合| 自线自在国产av| 母亲3免费完整高清在线观看| 欧美最黄视频在线播放免费 | 午夜福利一区二区在线看| 99香蕉大伊视频| 欧美 亚洲 国产 日韩一| 人妻一区二区av| 极品人妻少妇av视频| 亚洲欧美精品综合一区二区三区| 香蕉丝袜av| 国产精品一区二区在线不卡| 国产成人系列免费观看| 午夜老司机福利片| 国产99白浆流出| 精品久久久久久久毛片微露脸| www.精华液| 黑人巨大精品欧美一区二区蜜桃| 欧美亚洲 丝袜 人妻 在线| 91精品国产国语对白视频| av欧美777| 国产欧美日韩一区二区精品| 亚洲欧美日韩另类电影网站| 香蕉丝袜av| 淫妇啪啪啪对白视频| 国产精品久久久av美女十八| 日本一区二区免费在线视频| 亚洲精品在线美女| 一夜夜www| 亚洲在线自拍视频| 另类亚洲欧美激情| 久久久久国产一级毛片高清牌| 妹子高潮喷水视频| 一区二区日韩欧美中文字幕| 香蕉国产在线看| 女人爽到高潮嗷嗷叫在线视频| 80岁老熟妇乱子伦牲交| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播| av超薄肉色丝袜交足视频| 日日摸夜夜添夜夜添小说| 久久精品熟女亚洲av麻豆精品| bbb黄色大片| 欧美日韩av久久| 一区福利在线观看| 亚洲五月天丁香| 色综合婷婷激情| 在线永久观看黄色视频| 91麻豆av在线| 亚洲成人免费av在线播放| 亚洲色图 男人天堂 中文字幕| 不卡av一区二区三区| 亚洲精品粉嫩美女一区| 久久热在线av| 精品国产美女av久久久久小说| 三级毛片av免费| 女同久久另类99精品国产91| 欧美精品人与动牲交sv欧美| 一本大道久久a久久精品| 18禁国产床啪视频网站| 国产精品欧美亚洲77777| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 久久精品亚洲熟妇少妇任你| 在线天堂中文资源库| www.精华液| 超碰97精品在线观看| avwww免费| 日本a在线网址| 中文字幕制服av| 午夜福利免费观看在线| 午夜精品在线福利| 亚洲av成人一区二区三| 中文字幕制服av| 99精国产麻豆久久婷婷| 女人被狂操c到高潮| 老司机在亚洲福利影院| 久久精品国产a三级三级三级| 狠狠狠狠99中文字幕| 最近最新中文字幕大全电影3 | 国产精品一区二区在线不卡| 国产精品1区2区在线观看. | 国产精品成人在线| 亚洲欧美日韩高清在线视频| 12—13女人毛片做爰片一| 90打野战视频偷拍视频| 国产麻豆69| 美女扒开内裤让男人捅视频| 在线观看www视频免费| 久久香蕉国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 99精品在免费线老司机午夜| 久久国产精品影院| 18禁国产床啪视频网站| 亚洲av成人不卡在线观看播放网| 女性生殖器流出的白浆| 日韩熟女老妇一区二区性免费视频| 免费在线观看黄色视频的| 丁香六月欧美| 丁香欧美五月| 亚洲色图 男人天堂 中文字幕| 精品卡一卡二卡四卡免费| 啦啦啦免费观看视频1| 视频在线观看一区二区三区| 男男h啪啪无遮挡| 免费少妇av软件| 国产精品自产拍在线观看55亚洲 | 亚洲国产欧美网| 天堂俺去俺来也www色官网| 免费在线观看完整版高清| 国产成人系列免费观看| 中文字幕精品免费在线观看视频| 久久人人97超碰香蕉20202| 亚洲精品国产精品久久久不卡| 99国产精品一区二区蜜桃av | 色综合欧美亚洲国产小说| 老熟妇乱子伦视频在线观看| 亚洲美女黄片视频| 69av精品久久久久久| 男女高潮啪啪啪动态图| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 丝袜美腿诱惑在线| 国产激情久久老熟女| 成人永久免费在线观看视频| 久久精品国产清高在天天线| 热99re8久久精品国产| 国产精品一区二区免费欧美| 制服人妻中文乱码| 三上悠亚av全集在线观看| 国产成人精品在线电影| 成年人黄色毛片网站| 午夜成年电影在线免费观看| 亚洲午夜精品一区,二区,三区| 国产一区在线观看成人免费| 国产精品九九99| 国产精品美女特级片免费视频播放器 | 成人手机av| av天堂久久9| 好男人电影高清在线观看| 黄色视频不卡| 国产精品秋霞免费鲁丝片| 国产在视频线精品| 精品亚洲成a人片在线观看| 国产精品av久久久久免费| 欧美色视频一区免费| 久久国产亚洲av麻豆专区| 精品一品国产午夜福利视频| 大片电影免费在线观看免费| 欧美精品高潮呻吟av久久| 久久久精品国产亚洲av高清涩受| 日韩制服丝袜自拍偷拍| 亚洲成a人片在线一区二区| ponron亚洲| 两性夫妻黄色片| 黑人巨大精品欧美一区二区mp4| 久久99一区二区三区| 99国产精品一区二区三区| 天天添夜夜摸| 人人妻人人添人人爽欧美一区卜| 午夜影院日韩av| 国产亚洲精品一区二区www | 久久ye,这里只有精品| 九色亚洲精品在线播放| 午夜福利,免费看| 日韩有码中文字幕| 久久 成人 亚洲| 久久久国产欧美日韩av| 亚洲av熟女| 搡老乐熟女国产| 麻豆成人av在线观看| 极品教师在线免费播放| 黑人欧美特级aaaaaa片| 欧美av亚洲av综合av国产av| 男女下面插进去视频免费观看| 叶爱在线成人免费视频播放| av片东京热男人的天堂| 欧美日韩av久久| 久久久久精品人妻al黑| av网站在线播放免费| 成人av一区二区三区在线看| 岛国毛片在线播放| av网站在线播放免费| 亚洲中文字幕日韩| 午夜福利免费观看在线| 国产单亲对白刺激| xxxhd国产人妻xxx| 亚洲美女黄片视频| 亚洲人成电影观看| 啦啦啦视频在线资源免费观看| 男女午夜视频在线观看| 人成视频在线观看免费观看| 免费观看精品视频网站| 午夜视频精品福利| 国产精品久久久久久人妻精品电影| 最近最新中文字幕大全电影3 | 久热爱精品视频在线9| 免费高清在线观看日韩| 窝窝影院91人妻| 91麻豆精品激情在线观看国产 | 成人永久免费在线观看视频| 成在线人永久免费视频| 天天躁日日躁夜夜躁夜夜| 91成年电影在线观看| 色综合婷婷激情| 女人久久www免费人成看片| 日日夜夜操网爽| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区免费| 人妻一区二区av| 色综合欧美亚洲国产小说| 欧美 日韩 精品 国产| 国产精品久久久久久人妻精品电影| 在线观看免费高清a一片| 亚洲成人国产一区在线观看| 人妻久久中文字幕网| 美女视频免费永久观看网站| 免费人成视频x8x8入口观看| 91在线观看av| 亚洲熟妇中文字幕五十中出 | 久久国产精品人妻蜜桃| 国产淫语在线视频| 夜夜夜夜夜久久久久| 国产无遮挡羞羞视频在线观看| 亚洲七黄色美女视频| 日日爽夜夜爽网站| 精品乱码久久久久久99久播| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 亚洲成国产人片在线观看| 欧美 日韩 精品 国产| 一级片免费观看大全| 精品国产国语对白av| 久久精品国产清高在天天线| 亚洲综合色网址| www.自偷自拍.com| 青草久久国产| 亚洲三区欧美一区| 一级片免费观看大全| 搡老熟女国产l中国老女人| 亚洲成av片中文字幕在线观看| 久久国产精品男人的天堂亚洲| 国产成人欧美在线观看 | 亚洲国产中文字幕在线视频| 亚洲成人国产一区在线观看| 免费观看精品视频网站| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 男女下面插进去视频免费观看| 欧美精品亚洲一区二区| 欧美亚洲 丝袜 人妻 在线| 12—13女人毛片做爰片一| 亚洲人成伊人成综合网2020| 午夜影院日韩av| 人妻久久中文字幕网| 国产免费av片在线观看野外av| 亚洲欧洲精品一区二区精品久久久| 久久天堂一区二区三区四区| 看免费av毛片| 免费观看人在逋| 欧美不卡视频在线免费观看 | 国产高清videossex| 亚洲男人天堂网一区| 日日爽夜夜爽网站| 久久人妻福利社区极品人妻图片| 美女国产高潮福利片在线看| 久久久久国内视频| 老熟妇仑乱视频hdxx| 日韩一卡2卡3卡4卡2021年| 99re在线观看精品视频| 91大片在线观看| 亚洲中文av在线| 国产免费男女视频| 麻豆av在线久日| 999精品在线视频| 性少妇av在线| 日韩欧美一区视频在线观看| 国产成人av激情在线播放| 老司机影院毛片| 无限看片的www在线观看| 亚洲av欧美aⅴ国产| 国产精品亚洲一级av第二区| 麻豆国产av国片精品| 韩国精品一区二区三区| 成年女人毛片免费观看观看9 | 亚洲成国产人片在线观看| 国产av一区二区精品久久| 国产99久久九九免费精品| 91av网站免费观看| 久久香蕉精品热| 视频区图区小说| 国产精品久久久av美女十八| 中文字幕最新亚洲高清| 91成年电影在线观看| 一边摸一边抽搐一进一出视频| 青草久久国产| 色在线成人网| 最近最新中文字幕大全电影3 | 久久人人爽av亚洲精品天堂| 成在线人永久免费视频| 亚洲国产精品合色在线| 欧美色视频一区免费| 久久久国产欧美日韩av| 国产aⅴ精品一区二区三区波| 色94色欧美一区二区| 免费日韩欧美在线观看| 欧美亚洲 丝袜 人妻 在线| 老熟女久久久| 国内久久婷婷六月综合欲色啪| 捣出白浆h1v1| 午夜91福利影院| 亚洲精品自拍成人| 男人舔女人的私密视频| 人妻久久中文字幕网| 99re6热这里在线精品视频| 亚洲一区二区三区不卡视频| 欧美亚洲 丝袜 人妻 在线| 国产精品秋霞免费鲁丝片| www.自偷自拍.com| 国产精品 欧美亚洲| 亚洲精品粉嫩美女一区| 又黄又爽又免费观看的视频| 久9热在线精品视频| 国产在线观看jvid| 高潮久久久久久久久久久不卡| 日韩欧美免费精品| 国产亚洲精品久久久久久毛片 | 国产淫语在线视频| 99精品在免费线老司机午夜| 国产av精品麻豆| 国产精品亚洲一级av第二区| 色婷婷av一区二区三区视频| 国产91精品成人一区二区三区| 黑人操中国人逼视频| 久久精品成人免费网站| 嫩草影视91久久| svipshipincom国产片| av有码第一页| 国产精品1区2区在线观看. | 国产精品亚洲一级av第二区| 亚洲欧美激情综合另类| 他把我摸到了高潮在线观看| 9191精品国产免费久久| 国产黄色免费在线视频| 女人高潮潮喷娇喘18禁视频| 久久人妻av系列| 日韩欧美免费精品| 国产一区二区三区视频了| 精品久久蜜臀av无| 亚洲av美国av| 午夜福利影视在线免费观看| 国产色视频综合| 丁香欧美五月| 亚洲 欧美一区二区三区| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 交换朋友夫妻互换小说| 亚洲国产精品合色在线| 国产精品影院久久| 久久国产精品大桥未久av| 精品国产国语对白av| 久久99一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 国产精品九九99| 国产成人免费无遮挡视频| 国产精品av久久久久免费| 欧美国产精品va在线观看不卡| 免费在线观看影片大全网站| 日韩视频一区二区在线观看| 午夜日韩欧美国产| 国产精品一区二区在线观看99| 757午夜福利合集在线观看| 男女免费视频国产| 国产精品亚洲一级av第二区| 十八禁人妻一区二区| 亚洲专区中文字幕在线| 十分钟在线观看高清视频www| 一区福利在线观看| xxxhd国产人妻xxx| 99国产综合亚洲精品| 色老头精品视频在线观看| 亚洲一区二区三区欧美精品| 身体一侧抽搐| 午夜老司机福利片| 国产野战对白在线观看| 国产精品偷伦视频观看了| 天堂俺去俺来也www色官网| 麻豆av在线久日| 国产欧美日韩一区二区三区在线| 日本vs欧美在线观看视频| av在线播放免费不卡| 国产高清videossex| 亚洲中文av在线| 亚洲一区二区三区不卡视频| 美女高潮到喷水免费观看| 亚洲自偷自拍图片 自拍| 国产精品av久久久久免费| 国产精品国产高清国产av | 精品国内亚洲2022精品成人 | 中出人妻视频一区二区| 91麻豆精品激情在线观看国产 | netflix在线观看网站| 亚洲精品中文字幕一二三四区| 女同久久另类99精品国产91| 18禁黄网站禁片午夜丰满| 国产日韩欧美亚洲二区| 大码成人一级视频| 国产91精品成人一区二区三区| 真人做人爱边吃奶动态| 午夜亚洲福利在线播放| 欧美不卡视频在线免费观看 | 91精品三级在线观看| 在线观看舔阴道视频|