韓文素 王澤如 劉宇 高景林 趙冬香 鐘義海 趙珊
摘 ?要:為明確市售昆蟲(chóng)病原線蟲(chóng)制劑對(duì)蜂巢小甲蟲(chóng)(Aethina tumida)幼蟲(chóng)和蛹的致病力,為該害蟲(chóng)的防治提供新的技術(shù)措施,室內(nèi)采用浸漬法、土壤法測(cè)定了5種不同品系昆蟲(chóng)病原線蟲(chóng)對(duì)蜂巢小甲蟲(chóng)末齡老熟幼蟲(chóng)和蛹的致病力,采用土壤法測(cè)定了小卷蛾斯氏線蟲(chóng)(Steinernema carpocapsae All)不同施用時(shí)間、不同施用劑量對(duì)蜂巢小甲蟲(chóng)幼蟲(chóng)致病力的影響。浸漬法生物測(cè)定結(jié)果表明,5種不同品系昆蟲(chóng)病原線蟲(chóng)對(duì)蜂巢小甲蟲(chóng)幼蟲(chóng)的致病力差異很大,其中小卷蛾斯氏線蟲(chóng)All侵染4 d、12 d后,蜂巢小甲蟲(chóng)幼蟲(chóng)的校正死亡率分別為67.50%±0.05%和72.36%±3.14%,均顯著高于其他品系。土壤法生物測(cè)定結(jié)果表明,昆蟲(chóng)病原線蟲(chóng)對(duì)蜂巢小甲蟲(chóng)幼蟲(chóng)具有明顯的致死作用,其中小卷蛾斯氏線蟲(chóng)All對(duì)蜂巢小甲蟲(chóng)幼蟲(chóng)的侵染效果達(dá)100%,顯著高于其他線蟲(chóng)品系。蜂巢小甲蟲(chóng)幼蟲(chóng)入土后,按不同時(shí)間順序施用小卷蛾斯氏線蟲(chóng)All,結(jié)果表明14 d前施用均能取得良好的防治效果。侵染期線蟲(chóng)小卷蛾斯氏線蟲(chóng)All與蜂巢小甲蟲(chóng)幼蟲(chóng)數(shù)量之比大于213∶1時(shí),防治效果最佳。因此小卷蛾斯氏線蟲(chóng)All具有防治蜂巢小甲蟲(chóng)的潛力,可在發(fā)生蜂巢小甲蟲(chóng)危害的蜂場(chǎng)推薦使用。
關(guān)鍵詞:昆蟲(chóng)病原線蟲(chóng);小卷蛾斯氏線蟲(chóng);蜂巢小甲蟲(chóng);致病力;生物測(cè)定
中圖分類(lèi)號(hào):S476.15;S895 ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
Abstract: This study aims to evaluate the pathogenicity of commercially available entomopathogenic nematodes against Aethina tumida larvae and pupa, thus develop a new agricultural method to control A. tumida beetle. The pathogenicity of 5 strains of entomopathogenic nematodes (EPNs) against wandering larvae and pupae of A. tumida were determined by the dipping and sand bioassays in the laboratory, respectively. In addition, the influence of different application time and dosage on the virulence of Steinernema carpocapsae All to A. tumida larvae was tested by sand bioassays under laboratory condition. The dipping bioassay results showed that the pathogenicity of 5 EPNs strains against A. tumida larvae was different under laboratory condition. The infection incubation of S. carpocapsae All against A. tumida larvae was the highest. The corrected mortality rate of A. tumida larvae infected by S. carpocapsae All were 67.50%±0.05% and 2.36%±3.14% after 4 d and 12 d, respectively, which was higher than that of other EPNs. The sand bioassay result demonstrated a significant treatment effect on A. tumida mortality when compared to the control. The S. carpocapsae All provided excellent control with 100% mortality of A. tumida larvae being obtained, which showed significantly higher mortality than A. tumida larvae exposed to any other nematode strains. Sequential applications of the nematodes following larvae entering sand also provided excellent control before 14 d application. The optimal control effect would be achieved when the ratio of S. carpocapsae All to A. tumida was more than 213∶1. So entomopathogenic nematodes S. carpocapsae All has a potential to control A. tumida larvae and pupae, it could be recommended for use in apiary where A. tumida occurred.
Keywords: entomopathogenic nematodes; Steinernema carpocapsae; Aethina tumida; pathogenicity; bioassay
DOI: 10.3969/j.issn.1000-2561.2021.05.028
蜂巢小甲蟲(chóng)(Aethina tumida Murray)屬鞘翅目露尾甲科,也譯為蜂箱小甲蟲(chóng),是源于撒哈拉以南非洲地區(qū)土著蜜蜂和其他社會(huì)性蜂群的一種寄生蟲(chóng)和食腐動(dòng)物[1]。在當(dāng)?shù)兀鼈兾:π詷O小。但是蜂巢小甲蟲(chóng)入侵美國(guó)和澳大利亞后,給當(dāng)?shù)仞B(yǎng)蜂業(yè)造成了巨大的經(jīng)濟(jì)損失[1-3],被認(rèn)為是造成蜂群崩潰失調(diào)病(colony collapse disorder)的因素之一[4]。當(dāng)前蜂巢小甲蟲(chóng)分布于除南極洲以外的所有大陸[5-8]。據(jù)報(bào)道,2017年我國(guó)廣東省汕尾新田鎮(zhèn)蜂群首次發(fā)現(xiàn)蜂巢小甲蟲(chóng)的危害[9],2018年在海南省昌江縣、白沙縣、瓊中縣蜂場(chǎng)發(fā)現(xiàn)危害,造成當(dāng)?shù)胤淙簱p毀[10],因此對(duì)于蜂巢小甲蟲(chóng)的防治刻不容緩。
蜂巢小甲蟲(chóng)成蟲(chóng)在蜂巢內(nèi)產(chǎn)卵,卵孵化為幼蟲(chóng)后取食蜂箱內(nèi)的蜂蜜、花粉、蜜蜂幼蟲(chóng),常常破壞掉整個(gè)蜂巢,發(fā)育到老熟階段(wandering larvae),便離開(kāi)蜂巢到附近的土壤里化蛹[8]。蛹期的發(fā)育時(shí)間可根據(jù)外界的環(huán)境溫度而發(fā)生變化,如在溫度為20~30 ℃的范圍內(nèi),蜂巢小甲蟲(chóng)在土壤內(nèi)的時(shí)間為18~84 d[11]。蜂巢小甲蟲(chóng)在低溫條件下發(fā)育緩慢[12]。老熟幼蟲(chóng)和蛹均藏身于土壤內(nèi),此階段是防治蜂巢小甲蟲(chóng)切斷其生活史的最好時(shí)機(jī)。據(jù)報(bào)道,國(guó)外的蜂農(nóng)使用殺蟲(chóng)劑如芐氯菊酯(permethrin)控制土壤里蜂巢小甲蟲(chóng)幼蟲(chóng)和蛹[13],但長(zhǎng)期使用殺蟲(chóng)劑易使害蟲(chóng)產(chǎn)生抗藥性,同時(shí)對(duì)蜜蜂等昆蟲(chóng)和人類(lèi)健康會(huì)造成危害。因此篩選安全、高效、可持續(xù)性的防治方法對(duì)蜂巢小甲蟲(chóng)的防控是非常重要的。
昆蟲(chóng)病原線蟲(chóng)(entomopathogenic nematodes, EPNs)是一類(lèi)專(zhuān)門(mén)寄生昆蟲(chóng)的有益線蟲(chóng),是20世紀(jì)初發(fā)展起來(lái)的很有潛能的生物防治因子,不污染環(huán)境,對(duì)人畜等脊椎動(dòng)物安全。用于農(nóng)林害蟲(chóng)防治的昆蟲(chóng)寄生線蟲(chóng)主要分布于斯氏屬(Steinernema)和異小桿屬(Heterorhabditis)。侵染期線蟲(chóng)利用昆蟲(chóng)體表的自然開(kāi)口(肛門(mén)、氣門(mén))、節(jié)間膜或傷口侵入寄主體內(nèi),穿過(guò)腸壁或氣管壁進(jìn)入寄主血腔,釋放攜帶的共生細(xì)菌,共生細(xì)菌在害蟲(chóng)的體腔內(nèi)迅速繁殖,分泌殺蟲(chóng)毒素蛋白抑制寄主免疫反應(yīng),從而致使寄主死亡[14-16]。EPNs可以在侵染的寄主體內(nèi)循環(huán)繁殖,直至線蟲(chóng)密度大和營(yíng)養(yǎng)匱乏時(shí)重新回到土壤中尋找新的寄主,因此EPNs可在土壤中存活很長(zhǎng)時(shí)間[17]。EPNs能主動(dòng)搜索寄主,對(duì)地下害蟲(chóng)特效[18],但昆蟲(chóng)病原線蟲(chóng)對(duì)地下害蟲(chóng)的防治效果受線蟲(chóng)種類(lèi)和品系及害蟲(chóng)種類(lèi)的影響[19]。國(guó)外已有利用昆蟲(chóng)病原線蟲(chóng)防治蜂巢小甲蟲(chóng)的報(bào)道[20-21],但不同品系對(duì)蜂巢小甲蟲(chóng)的防治效果差異很大。我國(guó)昆蟲(chóng)病原線蟲(chóng)資源豐富,有很多品系已經(jīng)商品化,海南氣候獨(dú)特,非常有必要篩選益于當(dāng)?shù)厥褂玫木€蟲(chóng)品系。因此本研究室內(nèi)測(cè)定了已經(jīng)商業(yè)化生產(chǎn)的小卷蛾斯氏線蟲(chóng)(Steinernema carpocapsae All)等5種不同品系昆蟲(chóng)病原線蟲(chóng)對(duì)蜂巢小甲蟲(chóng)的侵染力,以期為制定蜂巢小甲蟲(chóng)有效的防治措施提供科學(xué)的理論依據(jù)。
1 ?材料與方法
1.1 ?材料
蜂巢小甲蟲(chóng)(Aethina tumida):2019年5月23日,在海南省瓊中縣中華蜜蜂養(yǎng)蜂場(chǎng)中采集的蜂巢小甲蟲(chóng)幼蟲(chóng),帶回中國(guó)熱帶農(nóng)業(yè)科學(xué)院環(huán)境與植物保護(hù)研究所蜜蜂與傳粉昆蟲(chóng)實(shí)驗(yàn)室的隔離養(yǎng)蟲(chóng)室內(nèi)飼養(yǎng)。飼養(yǎng)方法參照Neumann等[22]的方法,蜂巢小甲蟲(chóng)成蟲(chóng)用蜂蜜飼喂,幼蟲(chóng)用蜂糧(含蜂蜜、花粉、蛋白質(zhì))飼喂。飼養(yǎng)條件為:溫度28 ℃,相對(duì)濕度80%,未成熟幼蟲(chóng),黑暗無(wú)光照約2周;老熟即將化蛹的幼蟲(chóng),自然光照14 h,持續(xù)1周,以便老熟幼蟲(chóng)離開(kāi)食物入土化蛹,隨后無(wú)光持續(xù)約20 d;蛹羽化為成蟲(chóng)出土后,取食,交配,產(chǎn)卵,自然光照14 h。選擇發(fā)育整齊的末齡幼蟲(chóng)(wandering larvae)備用。
供試線蟲(chóng):小卷蛾斯氏線蟲(chóng)(S. carpocapsae All,簡(jiǎn)稱(chēng)All)、長(zhǎng)尾斯氏線蟲(chóng)(S. Longicaudum X-7,簡(jiǎn)稱(chēng)X-7)、芫菁夜蛾斯氏線蟲(chóng)(S. Feltiae SF-SN,簡(jiǎn)稱(chēng)SN)有2種劑型,粉劑由濰坊宏潤(rùn)農(nóng)業(yè)科技有限公司提供;芫菁夜蛾斯氏線蟲(chóng)(S. Feltiae JY-90,簡(jiǎn)稱(chēng)JY-90)和All、X-7、SN海綿吸附劑型由浙江綠神天敵生物技術(shù)有限公司提供。印度異小桿線蟲(chóng)(Heterorhabditis indian LN2,簡(jiǎn)稱(chēng)LN2)劑型為海綿吸附劑型,由浙江綠神天敵生物技術(shù)有限公司提供。試驗(yàn)前將線蟲(chóng)置于8 ℃冰箱冷藏備用。
1.2 ?方法
1.2.1 ?不同昆蟲(chóng)病原線蟲(chóng)直接暴露和間接暴露對(duì)蜂巢小甲蟲(chóng)的致病力測(cè)定 ?試驗(yàn)1:直接暴露—浸漬法。參照Cuthbertson等[20]的方法,略有改動(dòng)。具體步驟如下:將粉劑或海綿吸附劑線蟲(chóng)用蒸餾水溶解,并用解剖顯微鏡評(píng)估1 mL線蟲(chóng)懸浮液中存活的線蟲(chóng)數(shù)量。然后根據(jù)廠家推薦,配置約10 000 IJs/mL的線蟲(chóng)懸浮液(感染期蟲(chóng)態(tài)infective juveniles,IJS),將單個(gè)蜂巢小甲蟲(chóng)末齡老熟幼蟲(chóng)浸入到含線蟲(chóng)的懸浮液中,輕輕晃動(dòng)2~3 s,將試蟲(chóng)取出放于含有蒸餾水浸濕的濾紙上,并置于直徑6 cm的培養(yǎng)皿中。每個(gè)處理設(shè)置10次重復(fù),每個(gè)重復(fù)10頭供試幼蟲(chóng),以不含線蟲(chóng)的蒸餾水設(shè)為對(duì)照,將各處理放入溫度為28 ℃,相對(duì)濕度為70%,光照為16L∶8D的暗室中。在處理后4 d、12 d記錄幼蟲(chóng)的死亡情況。判斷試蟲(chóng)死亡標(biāo)準(zhǔn):用毛筆尖輕觸蟲(chóng)體,5 s內(nèi)蟲(chóng)體不動(dòng)即視為死亡。同時(shí)將死亡幼蟲(chóng)浸入1%氯化鉀溶液,在超景深三維顯微系統(tǒng)(基恩士,KEYENCE)下進(jìn)行觀察并拍照,確認(rèn)昆蟲(chóng)病原線蟲(chóng)的侵染情況。
試驗(yàn)2:間接暴露—土壤法。將蜂場(chǎng)帶回的沙質(zhì)土壤在烘箱內(nèi)烘干,裝入7 cm×15 cm(直徑×高)的塑料杯,每杯裝500 g。配置10 000 IJs/mL的各品系線蟲(chóng)懸浮液,將50 mL懸浮液均勻倒進(jìn)塑料杯的土壤表面(土壤濕度10%),待溶液滲透到土壤中,即放入蜂巢小甲蟲(chóng)末齡老熟幼蟲(chóng)10頭。待幼蟲(chóng)完全鉆入土壤,用封口膜(扎孔)封住塑料杯,放于試驗(yàn)1相同的環(huán)境中。1個(gè)品系為1個(gè)處理,每個(gè)處理10杯(即每個(gè)處理10次重復(fù)),每杯10頭幼蟲(chóng),以蒸餾水為對(duì)照。為了滿(mǎn)足蜂巢小甲蟲(chóng)羽化為成蟲(chóng)的時(shí)間,各處理將持續(xù)存放6周。4周后每天觀察蜂巢小甲蟲(chóng)成蟲(chóng)的羽化情況并記錄。將沒(méi)有羽化為成蟲(chóng)的數(shù)量視為死亡數(shù)量,以此計(jì)算死亡率。
1.2.2 ?昆蟲(chóng)病原線蟲(chóng)不同施用時(shí)間對(duì)土壤內(nèi)蜂巢小甲蟲(chóng)的致病力測(cè)定 ?選用1.2.1中高致病力線蟲(chóng)品系為研究對(duì)象,測(cè)定其不同施用時(shí)間對(duì)土壤內(nèi)蜂巢小甲蟲(chóng)幼蟲(chóng)或蛹的致病力。線蟲(chóng)濃度和塑料杯大小同1.2.1。同一時(shí)間將10頭末齡老熟幼蟲(chóng)放入裝有土壤的塑料杯內(nèi),杯內(nèi)加適量水,待幼蟲(chóng)完全鉆入土壤內(nèi),用封口膜封住杯口,放于與1.2.1相同的試驗(yàn)環(huán)境中。實(shí)驗(yàn)設(shè)計(jì)4個(gè)處理時(shí)間,每個(gè)處理時(shí)間間隔1周,每個(gè)處理設(shè)10次重復(fù)(10杯),同一時(shí)間以蒸餾水處理為對(duì)照。末齡老熟幼蟲(chóng)入土24 h后首次將配置好的昆蟲(chóng)病原線蟲(chóng)懸浮液40 mL均勻倒入塑料杯內(nèi)土壤。從幼蟲(chóng)入土?xí)r間算起,每處理4周后每天觀察成蟲(chóng)出土情況,記錄羽化成蟲(chóng)數(shù)量。每處理持續(xù)存放6周,將沒(méi)有羽化為成蟲(chóng)的數(shù)量視為死亡數(shù)量,以此計(jì)算死亡率。
1.2.3 ?線蟲(chóng)不同劑量對(duì)土壤內(nèi)蜂巢小甲蟲(chóng)致病力的測(cè)定 ?選用1.2.1中高致病力昆蟲(chóng)病原線蟲(chóng),測(cè)定其不同劑量對(duì)蜂巢小甲蟲(chóng)末齡老熟幼蟲(chóng)的致病力。用蒸餾水將昆蟲(chóng)病原線蟲(chóng)稀釋為0、425、850、1700、3500、5000、10 000 IJs/mL的懸浮液。在5 cm×7.5 cm(直徑×高)的塑料杯內(nèi)裝入濕度約8%的土壤(高溫烘干)150 g,然后放入8頭末齡老熟幼蟲(chóng)。每杯加入1 mL線蟲(chóng)懸浮液,相當(dāng)于每個(gè)處理的線蟲(chóng)劑量為0、53、106、213、438、625、1250 IJs/頭甲蟲(chóng)幼蟲(chóng)。實(shí)驗(yàn)設(shè)6個(gè)濃度,每個(gè)濃度為1個(gè)處理,每個(gè)處理重復(fù)5次(5杯)。每隔4~5 d塑料杯內(nèi)加適量水,以保持合適的土壤濕度。4周后每天觀察記錄蜂巢小甲蟲(chóng)成蟲(chóng)羽化情況。將未羽化的數(shù)量視為死亡數(shù)量,以此計(jì)算死亡率。其他試驗(yàn)條件同1.2.1。
1.3 ?數(shù)據(jù)處理
利用SPSS Base Ver. 19.0軟件統(tǒng)計(jì)分析不同處理之間的差異顯著性,采用Tukeys HSD test進(jìn)行多重比較,采用獨(dú)立樣本t檢測(cè)進(jìn)行兩組間的差異比較,采用GraphPad Prism 5軟件制圖。試驗(yàn)所得數(shù)據(jù)采用以下公式計(jì)算:
死亡率=死亡蟲(chóng)數(shù)/供試總蟲(chóng)數(shù)×100%。
校正死亡率=[(處理死亡率-對(duì)照死亡率)/(1-對(duì)照死亡率)]×100%。
2 ?結(jié)果與分析
2.1 ?不同品系昆蟲(chóng)病原線蟲(chóng)對(duì)蜂巢小甲蟲(chóng)致病力的影響
不同品系昆蟲(chóng)病原線蟲(chóng)直接暴露對(duì)蜂巢小甲蟲(chóng)末齡老熟幼蟲(chóng)的致病力如圖1所示。小卷蛾斯氏線蟲(chóng)All海綿吸附劑侵染蜂巢小甲蟲(chóng)幼蟲(chóng)4 d和12 d后,蜂巢小甲蟲(chóng)幼蟲(chóng)的校正死亡率分別為72.00%±0.05%和78.00%±4.67%,小卷蛾斯氏線蟲(chóng)All粉劑侵染蜂巢小甲蟲(chóng)幼蟲(chóng)4 d和12 d后,蜂巢小甲蟲(chóng)幼蟲(chóng)的校正死亡率分別為67.50%± 0.05%和72.36%±3.14%。小卷蛾斯氏線蟲(chóng)All 2種劑型間差異不顯著性,而均顯著高于對(duì)照和其他線蟲(chóng)品系(4 d: df=6, 63, F=123.145, P<0.001; 12 d: df=6, 63, F=151.628, P<0.001)。將蜂巢小甲蟲(chóng)幼蟲(chóng)浸于1%氯化鉀溶液內(nèi),超景深三維顯微鏡下可觀察到小卷蛾斯氏線蟲(chóng)All存在于蜂巢小甲蟲(chóng)幼蟲(chóng)的體腔、脂肪等組織內(nèi)(圖2)。顯微鏡下還可觀察到存活的小卷蛾斯氏線蟲(chóng)All主動(dòng)從蜂巢小甲蟲(chóng)幼蟲(chóng)游向1%氯化鉀溶液。因此證實(shí)小卷蛾斯氏線蟲(chóng)All即使短暫接觸蜂巢小甲蟲(chóng)幼蟲(chóng)2~3 s也具備侵染能力。芫菁夜蛾斯氏線蟲(chóng)SN、長(zhǎng)尾斯氏線蟲(chóng)X-7、芫菁夜蛾斯氏線蟲(chóng)JY-90和印度異小桿線蟲(chóng)LN2侵染造成蜂巢小甲蟲(chóng)幼蟲(chóng)的校正死亡率僅為0%~(8.00±2.91)%,與對(duì)照間差異不顯著,尤其是芫菁夜蛾斯氏線蟲(chóng)JY-90幾乎不能侵染蜂巢小甲蟲(chóng)幼蟲(chóng)。因此這幾種線蟲(chóng)短暫暴露不具備侵染蜂巢小甲蟲(chóng)幼蟲(chóng)的潛力。
通過(guò)土壤法測(cè)定不同品系昆蟲(chóng)病原線蟲(chóng)對(duì)蜂All:小卷蛾斯氏線蟲(chóng)All海綿吸附劑;All(P):小卷蛾斯氏線蟲(chóng)All粉劑;SN(P):芫菁夜蛾斯氏線蟲(chóng)SN粉劑;X-7(P):長(zhǎng)尾斯氏線蟲(chóng)X-7粉劑;JY-90:芫菁夜蛾斯氏線蟲(chóng)JY-90海綿吸附劑;LN2:印度異小桿線蟲(chóng)LN2海綿吸附劑。
巢小甲蟲(chóng)末齡老熟幼蟲(chóng)的致病力如圖3所示。此方法可以更好地模擬蜂農(nóng)防治蜂場(chǎng)土壤內(nèi)蜂巢小甲蟲(chóng)末齡老熟幼蟲(chóng)或蛹的狀況。不同品系昆蟲(chóng)病原線蟲(chóng)施入土壤6周后,蜂巢小甲蟲(chóng)幼蟲(chóng)的校正死亡率均顯著高于對(duì)照(df=6, 63, F=47.713, P<0.001)。小卷蛾斯氏線蟲(chóng)All 2種劑型對(duì)蜂巢小甲蟲(chóng)幼蟲(chóng)的侵染效果幾乎達(dá)到100%,顯著高于其他線蟲(chóng)品系,2種劑型間差異不顯著。在處理后2周,顯微鏡下可以觀察到塑料杯封口膜扎孔處有聚集的昆蟲(chóng)病原線蟲(chóng)。芫菁夜蛾斯氏線蟲(chóng)SN、長(zhǎng)尾斯氏線蟲(chóng)X-7、芫菁夜蛾斯氏線蟲(chóng)JY-90和印度異小桿線蟲(chóng)LN2處理土壤后6周,蜂巢小甲蟲(chóng)幼蟲(chóng)的校正死亡率達(dá)(62.83±6.93)%~(78.61± 5.66)%。
2.2 ?小卷蛾斯氏線蟲(chóng)All不同施用時(shí)間對(duì)蜂巢小甲蟲(chóng)致病力的影響
小卷蛾斯氏線蟲(chóng)All粉劑不同施用時(shí)間對(duì)土壤內(nèi)蜂巢小甲蟲(chóng)幼蟲(chóng)或蛹均具有良好的防效,處理組的蜂巢小甲蟲(chóng)校正死亡率顯著高于對(duì)照組(P<0.001)。幼蟲(chóng)入土1、7 d后施用小卷蛾斯氏線蟲(chóng)All,無(wú)蜂巢小甲蟲(chóng)成蟲(chóng)羽化,蜂巢小甲蟲(chóng)幼蟲(chóng)校正死亡率達(dá)100%;幼蟲(chóng)入土14、21 d后,此時(shí)已在土壤內(nèi)化蛹,施用小卷蛾斯氏線蟲(chóng)All,蜂巢小甲蟲(chóng)蛹的校正死亡率分別為99.00%±1%、52.72%±5.74%(圖4)。
2.3 ?小卷蛾斯氏線蟲(chóng)All不同劑量對(duì)蜂巢小甲蟲(chóng)致病力的影響
蜂巢小甲蟲(chóng)幼蟲(chóng)死亡率隨線蟲(chóng)劑量的增加而顯著升高(df=6, 28, F=73.867, P<0.001)(圖5)。當(dāng)線蟲(chóng)與蜂巢小甲蟲(chóng)幼蟲(chóng)的數(shù)量比為53∶1和106∶1時(shí),蜂巢小甲蟲(chóng)幼蟲(chóng)的死亡率分別為55.00%±6.37%和62.50%±3.95%;而線蟲(chóng)與蜂巢小甲蟲(chóng)幼蟲(chóng)的數(shù)量比超過(guò)625∶1時(shí),蜂∶巢小甲蟲(chóng)幼蟲(chóng)全部死亡,未出現(xiàn)羽化的成蟲(chóng)。因此,利用小卷蛾斯氏線蟲(chóng)All防治土壤中蜂巢小甲蟲(chóng)幼蟲(chóng)的推薦濃度為≥3500 IJs/mL。
試驗(yàn)線蟲(chóng)為小卷蛾斯氏線蟲(chóng)All粉劑;不同小寫(xiě)字母表示處理間差異顯著(Tukeys HSD檢測(cè),P<0.05)。
3 ?討論
昆蟲(chóng)病原線蟲(chóng)喜潮濕隱蔽環(huán)境,適于防治土棲害蟲(chóng)[23],但不同品系昆蟲(chóng)病原線蟲(chóng)對(duì)同一害蟲(chóng)的防治效果不同[24]。蜂巢小甲蟲(chóng)是近兩年入侵我國(guó)的蜂群害蟲(chóng),急需有效的綠色防控手段。國(guó)內(nèi)商業(yè)化生產(chǎn)的小卷蛾斯氏線蟲(chóng)All、長(zhǎng)尾斯氏線蟲(chóng)X-7、芫菁夜蛾斯氏線蟲(chóng)SN/ JY-90、印度異小桿線蟲(chóng)LN2可有效防治小地老虎(Agrotis ypsilon)、韭菜遲眼蕈蚊(Bradysia odoriphaga)、暗黑鰓金龜(Holotrichia parallela)、黃曲條跳甲(Phyllotreta striolata)等農(nóng)業(yè)害蟲(chóng)[19, 25-27],而國(guó)內(nèi)利用昆蟲(chóng)病原線蟲(chóng)對(duì)蜂巢小甲蟲(chóng)的防治研究尚無(wú)報(bào)道。本研究結(jié)果表明,5種不同品系昆蟲(chóng)病原線蟲(chóng)對(duì)蜂巢小甲蟲(chóng)幼蟲(chóng)的侵染力差別很大,其中小卷蛾斯氏線蟲(chóng)All的致病力最高。此研究結(jié)果與Cuthbertson等[20]的研究結(jié)果相似,其使用的小卷蛾斯氏線蟲(chóng)品系S. carpocapsae (Capsanem)對(duì)蜂巢小甲蟲(chóng)的致死率高于S. kraussei和S. feltiae品系;而Ellis等[21]篩選了7個(gè)種、10個(gè)品系昆蟲(chóng)病原線蟲(chóng)對(duì)蜂巢小甲蟲(chóng)幼蟲(chóng)的致病力,結(jié)果表明S. riobrave和H. indica對(duì)蜂巢小甲蟲(chóng)幼蟲(chóng)的致病力最高。據(jù)Ebssa等[28]報(bào)道,昆蟲(chóng)病原線蟲(chóng)的致病力受昆蟲(chóng)病原線蟲(chóng)種類(lèi)、寄主齡期和評(píng)估時(shí)間的影響。一般而言,增加昆蟲(chóng)病原線蟲(chóng)的數(shù)量和延長(zhǎng)暴露時(shí)間均能提高不同齡期寄主的死亡率。本研究供試的蜂巢小甲蟲(chóng)幼蟲(chóng)均為即將化蛹的老熟幼蟲(chóng),直接暴露相同濃度的昆蟲(chóng)病原線蟲(chóng)2~3 s,僅小卷蛾斯氏線蟲(chóng)All成功附著蜂巢小甲蟲(chóng)幼蟲(chóng)體表并進(jìn)入其體內(nèi),使67.50%~78.00%的幼蟲(chóng)死亡;間接暴露相同濃度的昆蟲(chóng)病原線蟲(chóng)6周,5種昆蟲(chóng)病原線蟲(chóng)侵染蜂巢小甲蟲(chóng)幼蟲(chóng)使其死亡率達(dá)62.83%~100.00%,均顯著高于對(duì)照,因此本研究表明延長(zhǎng)暴露時(shí)間會(huì)不同程度地提高昆蟲(chóng)病原線蟲(chóng)的致病力。
寄主蛹期是昆蟲(chóng)病原線蟲(chóng)最不敏感的階段。已有研究表明,小卷蛾斯氏線蟲(chóng)S. carpocapsae 1、S. carpocapsae All對(duì)小地老虎的蛹無(wú)侵染能力[25],S. carpocapsae有些品系對(duì)小地老虎的侵染致死率不及50%[28]。蜂巢小甲蟲(chóng)在土壤里的化蛹階段是對(duì)其進(jìn)行防治的最佳時(shí)期,此階段蜂巢小甲蟲(chóng)離開(kāi)蜂箱,不會(huì)對(duì)蜜蜂產(chǎn)生負(fù)面影響。本研究結(jié)果表明,小卷蛾斯氏線蟲(chóng)All能有效防控蜂巢小甲蟲(chóng)蛹,在蜂巢小甲蟲(chóng)幼蟲(chóng)入土14 d和21 d后(已化蛹),施用小卷蛾斯氏線蟲(chóng)All后蜂巢小甲蟲(chóng)死亡率分別達(dá)99.00%±1%和100.00%。Ellis等[21]研究表明,蜂巢小甲蟲(chóng)蛹對(duì)昆蟲(chóng)病原線蟲(chóng)敏感,線蟲(chóng)S. riobrave 7-12和H. indica品系對(duì)蜂巢小甲蟲(chóng)蛹的致死率大于76%。已知侵染期線蟲(chóng)刺入寄主并在其體內(nèi)取食/繁殖約14 d后,新的侵染期線蟲(chóng)從寄主體內(nèi)爬出開(kāi)始尋找新的寄主[29],因此可利用線蟲(chóng)持續(xù)防控不斷入土化蛹的蜂巢小甲蟲(chóng)老熟幼蟲(chóng)和蛹。
昆蟲(chóng)病原線蟲(chóng)的施用劑量是影響防治效果的一個(gè)重要因素。一般而言,提高線蟲(chóng)的施用劑量會(huì)提高寄主的死亡率,但也會(huì)增加使用成本。本研究結(jié)果表明,小卷蛾斯氏線蟲(chóng)All與蜂巢小甲蟲(chóng)幼蟲(chóng)的數(shù)量比超過(guò)213∶1時(shí),其侵染力無(wú)顯著性差異,致使約100%的蜂巢小甲蟲(chóng)幼蟲(chóng)死亡。因小卷蛾斯氏線蟲(chóng)對(duì)滲透壓、干燥、低溫、缺氧、高溫和紫外線輻射有較強(qiáng)的耐受性,國(guó)內(nèi)生產(chǎn)廠家可以采用體外培養(yǎng)體系批量生產(chǎn)[30]。結(jié)合復(fù)雜的蜂場(chǎng)環(huán)境以及本研究結(jié)果,按廠家的推薦劑量(10 000 IJs/mL)施用可以有效防治土壤中的蜂巢小甲蟲(chóng)。
在生產(chǎn)實(shí)踐中,劑型影響線蟲(chóng)存活的保質(zhì)期。本研究中侵染蜂巢小甲蟲(chóng)的優(yōu)勢(shì)線蟲(chóng)小卷蛾斯氏線蟲(chóng)All粉劑和海綿吸附劑2種劑型,均在冰箱冷藏1周,試驗(yàn)前解剖顯微鏡下觀察到線蟲(chóng)存活狀況較為一致。直接暴露(浸漬法)和間接暴露(土壤法)測(cè)定結(jié)果表明,2種劑型對(duì)蜂巢小甲蟲(chóng)的防治效果無(wú)顯著性差異,因此生產(chǎn)實(shí)踐中均可使用。
參考文獻(xiàn)
[1] Neumann P, Elzen PJ. The biology of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae): Gaps in our knowledge of an invasive species[J]. Apidologie, 2004, 35(3): 229-247.
[2] Spiewok S, Duncan M, Spooner-Hart R, et al. Small hive beetle, Aethina tumida, populations II: Dispersal of small hive beetles[J]. Apidologie, 2008, 39(6): 683-693.
[3] Torto B, Fombong AT, Arbogast RT, et al. Monitoring Aethina tumida (Coleoptera: Nitidulidae) with baited bottom board traps: Occurrence and seasonal abundance in honey bee colonies in Kenya[J]. Environmental Entomology, 2010, 39(6): 1731-1736.
[4] Muerrle T M, Neumann P, Dames J F, et al. Susceptibility of adult Aethina tumida (Coleoptera: Nitidulidae) to entomopathogenic fungi[J]. Journal of Economic Entomology, 2006, 99(1): 1-6.
[5] Toufailia H A, Alves D A, Bená D C, et al. First record of small hive beetle, Aethina tumida Murray, in South Ameri-ca[J]. Journal of Apicultural Research, 2017, 56(1): 76-80.
[6] Calderón R A, Ramírez M. New record of the small hive beetle, Aethina tumida, in africanized honey bee colonies in Costa Rica[J]. Bee World, 2019, 96(3): 87-89.
[7] Muli E, Kilonzo J, Sookar P. Small hive beetle infestations in Apis mellifera unicolor colonies in Mauritius Island, Mauritius[J]. Bee World, 2018, 95(2): 44-45.
[8] Neumann P, Pettis J S, Sch?fer M O. Quo vadis Aethina tumida? Biology and control of small hive beetles[J]. Api-dologie, 2016, 47(3): 427-466.
[9] 趙紅霞, 王華堂, 侯春生, 等. 入侵中國(guó)的蜂箱小甲蟲(chóng)鑒定及發(fā)生為害調(diào)查[J]. 中國(guó)蜂業(yè), 2018, 69(11): 29-31.
[10] 鐘義海, 韓文素, 趙冬香, 等. 蜂巢小甲蟲(chóng)傳入中國(guó)的風(fēng)險(xiǎn)評(píng)估[J]. 植物檢疫, 2020, 34(2): 47-51.
[11] Cuthbertson A G S, Mathers J J, Blackburn L F, et al. Main-taining Aethina tumida (Coleoptera: Nitidulidae) under qua-rantine laboratory conditions in the UK and preliminary ob-servations on its behaviour. Journal of Apicultural Re-search and Bee World, 2008, 47(1): 192-193.
[12] Guzman L I d, Frake A M. Temperature affects Aethina tumida (Coleoptera: Nitidulidae) development[J]. Journal of Apicultural Research, 2007, 46(2): 88-93.
[13] Hood, W M. The small hive beetle, Aethina tumida: A re-view[J]. Bee World, 2004, 85(3): 51-59.
[14] Boemare N E, Akhurst R J, Mourant R G. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photor-habdus gen. nov[J]. International Journal of Systematic Bacteriology, 1993, 43(2): 249-255.
[15] Glazer I, Salame L, Goldenberg S, et al. Susceptibility of sap beetles (Coleoptera: Nitidulidae) to entomopathogenic nematodes[J]. Biocontrol Science and Technology, 1999, 9(2): 259-266.
[16] 李星月, 李其勇, 符慧娟, 等. 新型生防因子——昆蟲(chóng)病原線蟲(chóng)的研究進(jìn)展[J]. 四川農(nóng)業(yè)科技, 2019(1): 37-39.
[17] Tomalak M. Infectivity of entomopathogenic nematodes to soil-dwelling developmental stages of the tree leaf beetles Altica quercetorum and Agelastica alni[J]. Entomologia Ex-perimentalis et Applicata, 2004, 110(2): 125-133.
[18] Georgis R, Koppenh?fer A M, Lacey L A, et al. Successes and failures in the use of parasitic nematodes for pest con-trol[J]. Biological Control, 2006, 38(1): 103-123.
[19] 顏 ?珣, 郭文秀, 趙國(guó)玉, 等. 昆蟲(chóng)病原線蟲(chóng)防治地下害蟲(chóng)的研究進(jìn)展[J]. 環(huán)境昆蟲(chóng)學(xué)報(bào), 2014, 36(6): 1018-1024.
[20] Cuthbertson A G S, Mathers J J, Blackburn L F, et al. Screening commercially available entomopathogenic bio-control agents for the control of Aethina tumida (Coleoptera: Nitidulidae) in the UK[J]. Insects, 2012, 3(3): 719-726.
[21] Ellis J D, Spiewok S, Delaplane K S, et al. Susceptibility of Aethina tumida (Coleoptera: Nitidulidae) larvae and pupae to entomopathogenic nematodes[J]. Journal of Economic Entomology, 2010, 103(1): 1-9.
[22] Neumann P, Evans J D, Pettis J S, et al. Standard methods for small hive beetle research[J]. Journal of Apicultural Re-search, 2013, 52(4): 1-32.
[23] 劉奇志, 趙映霞, 嚴(yán)毓驊, 等. 我國(guó)昆蟲(chóng)病原線蟲(chóng)生物防治應(yīng)用研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2002, 7(5): 65-69.
[24] Georgisi R, Gaugler R. Predictability in biological control using entomopathogenic nematodes[J]. Journal of Economic Entomology, 1991, 84(3): 713-720.
[25] 李 ?根, 許文君, 王新中, 等. 不同品系昆蟲(chóng)病原線蟲(chóng)對(duì)煙草小地老虎的致病力[J]. 環(huán)境昆蟲(chóng)學(xué)報(bào), 2017, 39(5): 1025-1031.
[26] 武海斌, 范 ?昆, 辛 ?力, 等. 昆蟲(chóng)病原線蟲(chóng)對(duì)小地老虎的致病力測(cè)定及防治效果[J]. 植物保護(hù)學(xué)報(bào), 2015, 42(2): 244-250.
[27] 武海斌, 凌 ?飛, 宮慶濤, 等. 噻蟲(chóng)嗪對(duì)昆蟲(chóng)病原線蟲(chóng)侵染韭菜遲眼蕈蚊能力的影響[J]. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2016, 53(6): 1233-1241.
[28] Ebssa L, Koppenh?fer A M. Entomopathogenic nematodes for the management of Agrotis ipsilon: Effect of instar, ne-matode species and nematode production method[J]. Pest Management Science, 2012, 68(6): 947-957.
[29] Shapiro-Ilan D I, Gaugler R, Tedders W L, et al. Optimiza-tion of inoculation for in vivo production of entomopatho-genic nematodes[J]. Journal of Nematology, 2002, 34(4): 343-350.
[30] Yan X, Arain M S, Lin Y, et al. Efficacy of entomopatho-genic nematodes against the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae)[J]. Journal of Economic Entomology, 2020, 113(1): 64-72.
責(zé)任編輯:謝龍蓮