• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于自適應(yīng)相關(guān)多采樣技術(shù)的CMOS圖像傳感器列級(jí)單斜ADC設(shè)計(jì)

    2021-07-16 08:36:06衡佳偉聶凱明徐江濤
    傳感技術(shù)學(xué)報(bào) 2021年4期
    關(guān)鍵詞:單斜微電子天津大學(xué)

    高 靜,衡佳偉,聶凱明,徐江濤

    (1.天津大學(xué)微電子學(xué)院,天津300072;2.天津市成像與感知微電子技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津300072)

    The readout noise originated from the pixel and the column readout chain is a significant factor to limit the performance of CMOS image sensors(CISs).Such readout noise includes the temporal random noise and the quantization noise during A/D conversion phase.Especially under low illumination,the noise has a considerable effect on signal-to-noise ratio(SNR).Considering the cost and performance,smaller device dimensions become a marked trend of CIS development.Since small size allows for a rise in the number of devices without increasing the chip area[1].However,the noise level is deteriorated as a small pixel source follower(SF)contributes worse temporal random noise in the readout circuits.Therefore,it is necessary to enhance SNR by mitigating the noise level.In general,it is an effective approach to reducing noise by using low-noise readout circuitry.The column-parallel single-slope(SS)ADC has been widely applied in CIS.The reason is that it provides relatively low noise with simple circuit topology,small area,and low power consumption.

    Recently multiple-slope architecture[2-3],pre-amplifier with gain-adaptive[4-6],and correlated multiple sampling(CMS)technique[7-11]have been presented to reduce the noise.The CMS technique employed in SS ADC is effective for suppressing the random noise originating from the in-pixel SF and the readout circuit.However,the total conversion time increases linearly with the number of sampling times(M),which slows down the readout speed.This problem is solved by using the two-step ADC architecture[12-13]or two-column ADCs for the parallel multi-sampling[14].Nevertheless,the larger power consumption and circuit area are serious problems.Additionally,a random noise reduction technique has been reported while keeping the A/D conversion time[8].The basic concept of the technique is to utilize a triangle waveform reference,which controls the number of sampling.However,owing to the average operation,the integer divider occupies a large area.Furthermore,a pseudo-multiple sampling technique has been achieved as well[10-11],which alters the resolution of SS ADC according to the number of samplings.It is an effective way to keep the readout speed,along with noise reduction by dividing a higher resolution A/D conversion into a few lower resolution conversions.However,the quantization noise limits the readout noise suppression.

    In this paper,a column-level SS ADC with an adaptive correlated multiple sampling(ACMS)technique is introduced to selectively reduce the readout noise.The basic concept of the proposed technique is that the range and gain of the ramp signal adaptively alter according to the output swing of pixels.For the small-swing signal,a ramp with small-range and highgain is applied for the CMS operation.In contrast,for the large-swing signal,a ramp with large-range and lowgain is enough.The reason is that SNR is dependent on the photon shot noise at high light intensity,which cannot be reduced by multi-sampling operation in a single frame[7].Therefore,the low readout noise is needed at low light while at high light it could be relaxed slightly without too much penalty on SNR.The proposed ACMS method reduces the random noise and the quantization noise in low light conditions.Moreover,the method solves the low frame rate problem of conventional CMS.A simple digital circuit with the signal swing detection function is designed as well.In this circuit,the suitable ramp signal is selected by means of the comparator output.

    1 Conventional CMS technique

    The A/D conversion of SS ADC is accomplished by lots of comparisons between the analog input voltage and a ramp voltage.Although the method is simple,it requires 2nclock periods for eachn-bit conversion.The scenario becomes worse when the multiple sampling operation is used for the A/D conversion.The conversion time is linearly proportional to the sampling times,which will significantly affect readout speed.Additionally,as the sampling time increases,the noise suppression capability of the CMS is limited by the low-frequency noise,i.e.,1/fand random telegraph signal(RTS)noise from the in-pixel SF[15].For further noise reduction,it is necessary to reduce the A/D conversion time of the multiple sampling operation.

    For the pixel output signal,in the initial phase,the pixel cell is reset and the reset level is output.Then,the signal level of the pixel is output after the exposure.The signal level is gradually decreased as the light intensity is increased.Therefore,the swing of the pixel output signal is proportional to the light intensity.Fig.1 shows the ramp and pixel output waveform of the A/D conversion with 3-times sampling operation.At low-light illumination,most of the full-range ramp is not valid because the output swing of the pixel is small.Therefore,the effective A/D conversion time is short.Accordingly,an ACMS technique is presented to overcome the drawbacks of the conventional CMS technique.

    Fig.1 Conventional CMS readout scheme with small output swing

    2 Proposed ACMS technique

    There are two main noise sources in SS ADC,namely,the input-referred random noise and the quantization noise of ADC.The main temporal random noise is contributed by the noise of in-pixel SF,pre-amplifier,and ADC.After digitization,the output of ADC will have an additional quantization noise.It is expressed as:

    whereVqunis the quantization noise depending on the resolutionn,VLSBis the quantization step size,andV Ris the input range of SS ADC.The quantization error is approximated as“white noise”.

    The relationship between incident light illumination and various noise sources is plotted on a graph,as shown in Fig 2(a).Most of the random noise is not influenced by light intensity.These noise sources form the constant random noise,including thermal,1/f,and RTS noise.The readout noise consists of constant random noise and quantization noise,which is a key factor to limit SNR under low illumination.In addition to readout noise,photon shot noise is present in CIS.During the exposure time,the number of photons striking the sensor is random,which results in the shot noise.The relation between the number of photoelectrons(Nsig)in the signal and its associated noiseNphs(both expressed by the number of electrons)is given by:

    Since the shot noiseNphsdepends on theNsig.Thus,under high illumination,SNR is limited by the shot noise.The readout noise does not have to be as low as it should be for the small-swing signal.

    Accordingly,an ACMS technique is proposed to compensate for SNR while keeping the frame rate.Relying on the light intensity,the suitable ramp voltage is automatically selected.For high-light pixels with the large output signal,a full-range and low-gain ramp is enough.Conversely,for the small-swing signal,the ACMS technique utilizes a small-range and high-gain ramp multiple times.In this way,the constant random noise is reduced by a large number of samplings and the quantization error would be improved with the highresolution.Therefore,SNR is enhanced by the proposed ACMS technique at low-light levels,as shown in Fig.2

    Fig.2 Conceptual plot of the relation between light illumination and noise

    (b).

    If the constant random noise is low enough by increasing the sampling number,the quantization noise becomes the limiting factor of the SNR at low light.Therefore,instead of a linear ramp,a piece-wise-linear ramp signal is adopted.For simplicity,the piece-wise-linear ramp is supposed to be a binary increasing gain.As shown in Fig.2(b),the quantization noise increases fromVqunto 2Vqun,then to 4Vqun,etc.

    The resolution of the piece-wise-linear ramp should be matched to the random noise.Therefore,it is essential to compute the pixel output levels at which the resolution and the number of sampling times need to be increased.A simple quality factorκis defined as follows:

    whereVphsis the shot noise voltage.The output thermal noise powerand 1/fnoise powerafter the CMS process are given by Refs.[16-17]

    whereS ntis the power spectrum density of the thermal noise,T0is the sampling period,k fis the flicker noise coefficient,andCi nandC f bare the input capacitor and the feedback capacitor of the pre-amplifier,respectively.

    The condition of the pixel output signal level is computed by combining equations(1)through(5),which yields the following expression:

    whereqis the elementary charge,GSFis the SF gain,Gamprepresents the voltage gain of the pre-amplifier,CFDis the capacitor of the floating diffusion(FD)node,andVrstandVsigare the reset level and signal level of the pixel output,respectively.According to equation(6),the optimal division of the signal level is obtained.

    SNR is the ratio between the signal and the total noise at a given input level.From Fig.2(a),it is clear that SNR should have different expressions under different illumination conditions:

    whereNreadis the readout noise.According to formula(7),the factorκis set to 0.4 and 0.04 under low and high light conditions,respectively.It is a conservative design to ensure that both the quantization noise and the random noise maintain a sufficiently low noise level.Considering the range of pixel output and ADC input,the default gain of the pre-amplifier is 2×,where CISs offer the maximum dynamic range.Conservatively,the initial resolution is 12-bit and the gain ratio of adjacent ramps is set to 6 dB.To sufficiently reduce noise by a large number of samplings at low-light illumination,M=2 is employed for the maximum ramp signal(ramp1).A summary of such a piecewise-linear ramp is given in Table 1.Each ramp covers a part of the signal swing.

    Table 1 Summary of the piece-wise-linear ramp scheme

    As can be seen in Table 1,the SS ADC with ACMS technique provides 12 to 14 bits variable-resolution in different ADC input ranges.The darkest pixel output signal is converted 15-times whereas the brightest one is done twice.Unlike the default ramp signal(ramp1),other ramps require to be reset after switching the ramp signal according to each comparator output.Thus,reset operation needs to be subtracted from the number of signal conversion times.In addition,the compensation among sampling number,resolution,and the ramp range forbids the counter overflow.

    Another advantage of the piece-wise-linear ramp is that the conversion time is not increased.In the proposed ACMS technique,TACMS,the total A/D conversion time with thek-th ramp,is given by:

    wheren0is the initial resolution of the SS ADC andTclkis the period of the counter clock.TCMS,the total A/D conversion time of conventional CMS,is given by:

    Fig.3 shows the total A/D conversion time histogram under different sampling number.n0=12 bit andTclk=5 ns in this paper.For proposed ACMS,the total conversion time is kept 40.96μs.For 15-times multiple sampling,the ACMS technique achieves a 7.5×reduction in A/D conversion time compared with the conventional CMS.

    Fig.3 A/D conversion time with proposed ACMS and conventional CMS

    3 Circuit design and operation principles

    3.1 Column-parallel SS ADC

    The column-parallel SS ADC is shown in Fig.4(a)along with the typical 4T pixel structure and preamplifier.The programmable gain amplifier(PGA)is an inverting voltage amplifier with 1×-8×variable analog gains(Gamp).The variableGampis dictated by the capacitance ratio ofC i n/C f b.The SS ADC with ACMS function consists of a multiple-ramp generator,a comparator,an up-counter,two latches,and a ramp selector.

    Fig.4 Column-parallel SS ADC design and operation principles

    Fig.4(b)shows the timing chart of the pixel devices and column readout circuits.Firstly,the photodiode(PD)and FD node of pixel are reset.The pre-amplifier and comparator are reset sequentially.The switch RST,S1,andS2are closed sequentially to isolate both the offset voltage and reset noise of every stage in a next capacitor[18-19].The noise is cancelled by the ACMS method later on.The up-counter is also reset at the same time.Then the amplified reset voltage is compared with the ramp signal generated by the multiple-ramp generator.In the case ofN-times amplified reset voltage sampling,the up-counter begins counting up synchronously when the comparator output(Vcomp)is“H”during the conversion phase.Finally,the reset voltage sampling data in the up-counter is stored in latch1 by enabling EN1.The latch1 output(Dout1)corresponds toN-times sampling of the amplified reset level and the offset voltage,which is expressed as:

    whereDrst,Nis theN-times sampled data of amplified reset voltage andDoffset,Nis the included offset voltage afterN-times multiple sampling.

    After the TX is closed and the photo charge from the PD is transferred to the FD node,TheVampascends to the amplified signal level accordingly.The conversion of signal level is divided into two phases,namely,a ramp selection phase and an A/D conversion phase.To save time,the first phase is combined with the second conversion phase.During the selection phase,the SS ADC compares signal voltage with ramp1 by default.Based on the results of the ramp selector(the detailed method is described in Section 3.2),each comparator is connected to the most appropriate ramp among ramp1,ramp2,ramp3,and ramp4 when the comparator flips.After selecting the ramp,the operation phase moves to the second and the subsequent multiple-sampling function is performed.Similarly,the signal voltage sampling data in the up-counter is stored in latch2 by enabling EN2.Dout2is expressed as follows:

    whereDsig,Mis theM-times sampled data of amplified signal voltage andDoffset,Mis the included offset voltage after multiple sampling.The final data processing is achieved byDout1,Dout2,and the output of the ramp selector.The final output(Dout)for each pixel is expressed as follows:

    Thus,the offset voltage is eliminated by digital correlated double sampling(D-CDS).

    The proposed ACMS technique is realized using a classical SS ADC architecture by changing the ramp generator.In this paper,four ramps are required.Therefore,the proposed technique increases area and power consumption due to the multiple-ramp generator.For a large-array CIS,the increase of area and power has a small impact.Since the multiple-ramp generator is shared by all column ADCs.The four ramps have different gains and ranges.However,the gain and range of the ramps are unchanged during the second conversion phase,which decreases the possibility of SS ADC nonlinearity and instability.

    3.2 Ramp selector

    The core idea of the ACMS technique is to abate readout noise in such a way that the suitable ramp signal is automatically chosen by the comparator output.Relying on the ACMS technique,SNR is compensated,especially at dark-light illumination.Thus,it is necessary to detect the amplified signal swing before A/D conversion.

    The designed ramp selector with its timing diagram is depicted in Fig.5.VampandVcompare the pre-amplifier and comparator output,respectively.Three index signals(index1,index2,and index3)are used to divide signal swing.Initially,the maximum ramp signal(ramp1)is connected to the comparator by resetting all DFFs to“L”.Once the comparator output flips from“L”to“H”,DFFs are used to lock the level of the three index signals.For example,in the case of Fig.5,a logic“011”is latched by the DFFs and stored in a data memory.Next,the logic value is fed back to a 3-to-8 decoder,which connects the suitable ramp to each comparator.The corresponding relationship between the output of the three DFFs(Q1Q2Q3)and the selected ramp is given in Table 2.

    Fig.5 Designed ramp selector with its timing diagram

    Table 2 Relationship between Q1 Q2 Q3 and selected ramp

    The ramp selector only requires some extra switches and digital circuits in every column.Therefore,the selector only leads to the slight increment of the area and power consumption.

    3.3 Multiple-ramp generator

    The proposed SS ADC requires four ramp waveforms instead of only one.Therefore,it is the most critical that the multiple ramps are well-matched.Since capacitors match better than resistors,the multiple-ramp generator is implemented by switch-capacitor(SC)circuits in this paper.There are many different coding architectures,such as binary-weighted,thermometer coded,and segmented DAC.Generally,to reduce the area and power,the DAC based on binary-weighted SC array with an attenuation capacitor is employed[20-21].However,the extra parasitic capacitor would affect the linearity and reliability of the DAC,particularly for the parasitic capacitor of the attenuation capacitor.In addition,the weight of each unit capacitor is different,which causes larger cross-talk and glitches when the state of the switch is changed.Therefore,the thermometer coded SC array is adopted.During each time,there is only onebit change,which is capable of effectively reducing the jitter and unreliability of the ramps[22].Moreover,the differential nonlinearity(DNL)of the ramp voltage is smaller,if the generator does not use the attenuation capacitor.Fig.6 shows a simplified circuit diagram of the proposed ramp generator.

    Fig.6 Simplified circuit diagram of the proposed ramp generator

    During the reset phase of the ramp generator,the switchSrstis closed.The bottom plates of all capacitors are also connected to the reference voltageVreflvia switchesb i(i=0,1,2,…,2n-1).Then theSrstgets open and the bottom plates of all capacitors are sequentially connected toVrefh.The output voltage of the DAC(VDAC)is given as:

    whereaandbare the number of capacitors connected to theVrefland theVrefh,respectively.Anda+b=2n-1.

    According to equation(13)and considering the parasitic capacitorC P,VDACis given by:

    The parasitic capacitor does not cause the nonlinearity of the ramp signal.However,whena=0 andb=2n-1,the above equation is simplified as:

    At this time,VDACis not equal toVrefh,which would reduce the output range of the DAC.This effect is reduced by increasing theVrefh.Thus,the reference voltageVreflandVrefhare generated by a programmable voltage generator(PVG).The PVG is implemented by a set of serial resistors.Every step voltage in the resistor ladder isIbg×Rload,whereIbgis generated by the bandgap voltage,Rloadis the unit resistors.TheVreflandVrefhare increased or decreased by the step voltage.

    Another advantage of the programmable voltage is that it could calibrate the offset voltage among multiple ramps.The offset voltage includes input offset voltage of the multiple-ramp generator,unstable reference voltage,and the offset of the output buffer.The offsets cause a vertical shift of the four ramps(the shift of ramp3 and ramp4 are not plotted),as shown in Fig.7(a).The residual error is converted to an incorrect digital code,resulting in a dead band.This error correction scheme is shown in Fig.7(b)with the ramp2 example.The range of the four ramps is programmable via digital codes,which could cover the residual errors.The offset voltage is removed by selecting an appropriate reference voltage.Moreover,the dead bands are avoided by creating some overlap between the four ramps.

    Fig.7 Ramp signal plots

    Because of the thermometer coded,the mismatch of the capacitors has little effect on the linearity of the four ramps.However,owing to the process mismatch,the gain error causes performance degradation at the threshold voltage between the four ramps.

    During the selection phase,the ramp selector switches the ramp voltage from ramp1 to the most appropriate ramp.Therefore,the output digital codes at the threshold voltage between the four ramps are expressed as:

    whereVthkis the threshold voltage between ramp1 and rampk(k=2,3,4),S1is the slope of ramp1,Skis the slope of rampk,Tclkis the period of the counter clock,andDkandD′kare the minimum voltage of ramp1 and the maximum voltage of rampk(both expressed by the output digital codes)at the threshold voltageVthk,respectively.The error is calculated as:

    From equation(18),the sampling number(M=2k)also affects the error.The problem is easily solved by resetting the up-counter after switching the ramp signal.At this time,equations(17)and(18)are rewritten as follows:

    From equation(20),the sampling number(M=2k-1)does not affect the error.Furthermore,to minimize the error,calibration technique is needed to calibrate the slope mismatch at the threshold voltage.A gain ratioβkof the four ramps is defined as:

    The calibration technique is shown in Fig.8.Three preset voltagesV1,V2,andV3are offered from a DAC.In the beginning,the preset voltagesV1is converted by both ramp1 and rampk to obtainD1,LandDk,L,where the SS ADC is forced to connect to either ramp1 or rampk.Then the preset voltagesV2andV3are converted sequentially by rampk and ramp1 to obtainDk,HandD1,H.Finally,the gain ratioβkis calculated as:

    Fig.8 Calibration technique of the gain error

    The digital output is calibrated byβkat the connecting points between the four ramps.Note that three preset voltages are not close to the connecting points.Since the better linearity and reliability in the middle of the four ramps.Combined with the description in Section 3,F(xiàn)ig.9 illustrates the CIS readout and calibration flow with the ACMS technique.

    Fig.9 CIS readout and calibration flow with the ACMS technique

    4 Simulation results

    The presented ACMS technique based on SS ADC is designed and simulated in a standard 0.11μm CMOS process.The supply voltage is 3.3 V for analog circuitry and 1.5 V for digital.A complete A/D conversion period from PGA to the SS ADC is set to 64μs,and it does not increase with the sampling number and resolution.The ADC provides 12 to 14 bits variable-resolution in different input ranges.The power consumption of each column is 125μW,which includes the consumption of the SS ADC(90μW)and the PGA(35μW).Moreover,the layout of column-parallel PGA and ADC is illustrated in Fig.10.The single-column PGA and ADC occupy the area of 6μm×750μm and 6μm×880μm,respectively.

    Fig.10 Layout of designed PGA and SS ADC

    The linearity and reliability of the SS ADC is determined by the performance of the multiple-ramp generator.Fig.11 shows the simulation results of the generator output signal.The ramp signal waveforms are relatively smooth and glitch-free.After the calibration of the offset voltage,the simulated DNL and integral nonlinearity(INL)of the ramp signals are shown in Fig.12.The DNL and INL are+0.001 36/-0.001 86 LSB and+1.609/-1.677 LSB,respectively.Furthermore,the noise of the entire multiple-ramp generator is 31.2μVrms.Thus,the multiple-ramp generator meets the accuracy and reliability demands without serious nonlinear problems.

    Fig.11 Simulation results of the generator output signal

    Fig.12 Performance of DNL and INL

    The simulated input-referred random noise under different PGA gain modes is shown in Fig.13.The input range of the SS ADC is divided into four intervals.As the input voltage decreases,the input-referred random noise is reduced from 200μVrmsto 90μVrmsatGamp=2.The temporal random noise reduction of the proposed ACMS technique is about 55% in low-light conditions.The random noise decreased with the increase of sampling number and PGA gain until it is finally down to 59μVrmsatM=15 andGamp=8.Another observation concluded from Fig.13 is that the noise reduction effect of the ACMS technique declines slightly at higher gain settings.

    Fig.13 Simulated input-referred random noise under different PGA gain

    The input-referred readout noise after the proposed ACMS process is shown in Fig.14.As the input voltage decreases,the readout noise is reduced from 211μVrmsto 92μVrmsatGamp=2.The noise reduction corresponds to 7.21 dB SNR improvement at low-light-level illumination.Compared with the random noise in Fig.13,the readout noise is only slightly increased in low light conditions.The conventional CMS is applied(Gamp=1,M=3,and 12-bit resolution)for comparison,the simulated readout noise is about 300μVrms.However,by applying ACMS technique(Gamp= 1,M= 3,and 12-bit resolution),312 μVrmsreadout noise is obtained.Equation(4)means that the ACMS technique with reducedT0increases the thermal noise.However,the 1/fnoise decreases with theT0decreases as equation(5)suggests.Therefore,in this paper,the dominant noise contributor is the thermal noise,instead of the 1/fnoise from the pixel SF.For the same M,though the noise performance of ACMS is slightly worse than the CMS,the A/D conversion time is effectively reduced.The simulation results confirm that the novel presented ACMS scheme achieves a good noise reduction effect while without any increase of total A/D conversion time.

    Fig.14 Simulated input-referred readout noise after the ACMS process

    Combining equation(2),the shot noise of the pixel is added by generating the random number using the Poisson distribution.Fig.15 shows SNR curves with proposed ACMS and conventional CMS(forM=2)technique atGamp=2.For large signals,the points of both curves are completely coincided.The reason is that the large signal is the shot noise dominated which cannot be reduced by the ACMS technique.For small signals,SNR is enhanced by the ACMS technique.Therefore,the proposed ACMS reduces the readout noise at low light.

    Fig.15 The relation between SNR and signal(expressed by the number of electrons)with proposed ACMS and conventional CMS technique

    Table 3 lists a noise performance summary and gives a comparison of this work with the prior arts.Compared with Refs.[8,12-13,23],this work achieves the state-of-the-art performance in input-referred random noise.The figure of merit(FoM)in Table 3 is defined as:

    Table 3 Performance summary and comparison

    wherevnis the input-referred random noise andTADCis the total A/D conversion time for each pixel output.This paper achieves a good FoM of 3.77 nVrms·s,which means the simultaneous capability of maintaining both low noise and high speed.

    5 Conclusion

    In this paper,an ACMS technique is presented to selectively suppress random noise and quantization noise according to the signal swing.The SS ADC architecture incorporates four ramps with different gains and durations.Each ramp covers a part of the input range of the ADC.Moreover,the calibration methods of offset voltage and gain error improve the linearity of the ramp signals.The simulated DNL and INL of the ramp signals are+0.001 36/-0.001 86 LSB and+1.609/-1.677 LSB,respectively.The proposed column-parallel SS ADC achieves 59μVrmsreadout noise atM=15 andGamp=8.The improvement of SNR is 7.21 dB atGamp=2.Additionally,The FoM of the implemented ADC realizes 3.77 nVrms·s while keeping the A/D conversion time.The simulation results show that the suggested ACMS technique successfully mitigates readout noise and enhances SNR at dark-light illumination.

    Acknowledgments

    This work was supported by the Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology.

    猜你喜歡
    單斜微電子天津大學(xué)
    合肥云之微電子有限公司
    先進(jìn)微電子與光電子材料與器件專題引言
    《天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》簡(jiǎn)介
    微電子封裝器件熱失效分析與優(yōu)化研究
    電子制作(2018年17期)2018-09-28 01:57:10
    學(xué)生寫話
    低溫單斜相BiPO4∶Tb3+納米晶的合成及其發(fā)光性能
    10位高速分級(jí)比較型單斜模數(shù)轉(zhuǎn)換器
    南海新生代玄武巖中單斜輝石地球化學(xué)特征及其地質(zhì)意義
    天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)2014年總目次
    具有物聯(lián)網(wǎng)特色的微電子專業(yè)人才培養(yǎng)機(jī)制探索
    亚洲精品乱码久久久v下载方式 | 最近最新免费中文字幕在线| 一个人免费在线观看的高清视频| 又爽又黄无遮挡网站| 亚洲成人中文字幕在线播放| 日韩有码中文字幕| 亚洲国产欧洲综合997久久,| 国产伦在线观看视频一区| 国产淫片久久久久久久久 | 香蕉久久夜色| a在线观看视频网站| 村上凉子中文字幕在线| 精品久久久久久久久久免费视频| 亚洲国产色片| 人人妻,人人澡人人爽秒播| 天天躁日日操中文字幕| 精品人妻1区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲精华国产精华精| 色在线成人网| 久久精品亚洲精品国产色婷小说| 国产激情久久老熟女| or卡值多少钱| 精品福利观看| 精品无人区乱码1区二区| 午夜免费观看网址| 天堂av国产一区二区熟女人妻| 午夜福利视频1000在线观看| 男女床上黄色一级片免费看| 亚洲欧美日韩无卡精品| 99热精品在线国产| 91av网站免费观看| 亚洲专区中文字幕在线| 少妇的逼水好多| 久久午夜亚洲精品久久| 国产av不卡久久| 白带黄色成豆腐渣| 18禁黄网站禁片免费观看直播| 国产成人av激情在线播放| 老司机午夜十八禁免费视频| 九色成人免费人妻av| 午夜视频精品福利| 在线国产一区二区在线| 日韩欧美在线二视频| 国产成人影院久久av| 九九久久精品国产亚洲av麻豆 | 一级毛片精品| 午夜激情福利司机影院| 成人特级av手机在线观看| 人妻夜夜爽99麻豆av| av片东京热男人的天堂| 国产亚洲精品久久久com| 中文字幕人妻丝袜一区二区| 成年女人看的毛片在线观看| 看免费av毛片| 91麻豆av在线| 香蕉国产在线看| 香蕉av资源在线| 一二三四在线观看免费中文在| 久久国产精品人妻蜜桃| 国产成人av教育| 国产精品自产拍在线观看55亚洲| 国产男靠女视频免费网站| 无限看片的www在线观看| 久久国产精品人妻蜜桃| 国产精品美女特级片免费视频播放器 | 看黄色毛片网站| 亚洲欧美激情综合另类| 欧美激情在线99| 九九久久精品国产亚洲av麻豆 | 日韩欧美国产一区二区入口| 久久久久精品国产欧美久久久| 一个人观看的视频www高清免费观看 | 看片在线看免费视频| 国产成人欧美在线观看| 久久九九热精品免费| a级毛片在线看网站| 久久亚洲精品不卡| 亚洲国产高清在线一区二区三| 久久人妻av系列| 免费看美女性在线毛片视频| 国产高清视频在线播放一区| 在线国产一区二区在线| av女优亚洲男人天堂 | 最好的美女福利视频网| 亚洲色图av天堂| 中文资源天堂在线| 亚洲avbb在线观看| 三级毛片av免费| 美女cb高潮喷水在线观看 | 黄色片一级片一级黄色片| 黄色视频,在线免费观看| 午夜福利免费观看在线| 亚洲国产精品999在线| 日韩国内少妇激情av| 久久这里只有精品19| 两性夫妻黄色片| 国产欧美日韩一区二区精品| 日韩欧美免费精品| 亚洲18禁久久av| 女同久久另类99精品国产91| 黑人操中国人逼视频| www.精华液| tocl精华| 亚洲精品中文字幕一二三四区| 亚洲激情在线av| 日本黄大片高清| 可以在线观看毛片的网站| aaaaa片日本免费| 在线观看午夜福利视频| 啪啪无遮挡十八禁网站| 久久久成人免费电影| 此物有八面人人有两片| 亚洲专区国产一区二区| 淫秽高清视频在线观看| 国产伦一二天堂av在线观看| 国产亚洲欧美98| 一边摸一边抽搐一进一小说| 国产精品自产拍在线观看55亚洲| 国产成人福利小说| 亚洲美女视频黄频| 每晚都被弄得嗷嗷叫到高潮| 婷婷亚洲欧美| 小蜜桃在线观看免费完整版高清| 99精品在免费线老司机午夜| 亚洲欧洲精品一区二区精品久久久| 精品午夜福利视频在线观看一区| 亚洲色图 男人天堂 中文字幕| 国产高清视频在线观看网站| 色综合亚洲欧美另类图片| 午夜福利在线在线| 动漫黄色视频在线观看| 一本综合久久免费| 日本在线视频免费播放| 禁无遮挡网站| 夜夜爽天天搞| 精品久久久久久久毛片微露脸| 欧美黄色片欧美黄色片| 国产伦精品一区二区三区视频9 | 男人和女人高潮做爰伦理| 一个人免费在线观看电影 | 色视频www国产| 亚洲精华国产精华精| 亚洲七黄色美女视频| 成在线人永久免费视频| АⅤ资源中文在线天堂| 日韩欧美国产一区二区入口| 国产精品亚洲一级av第二区| 看黄色毛片网站| 天堂网av新在线| 最新美女视频免费是黄的| 九色国产91popny在线| 女人被狂操c到高潮| 亚洲五月天丁香| 国产精品自产拍在线观看55亚洲| 舔av片在线| 亚洲av美国av| 热99在线观看视频| 欧美在线黄色| 免费看a级黄色片| 黄色日韩在线| 黑人操中国人逼视频| 99久久99久久久精品蜜桃| 国产欧美日韩精品一区二区| 欧美大码av| 国产成人欧美在线观看| 免费观看的影片在线观看| 日本 欧美在线| 欧美激情在线99| 色播亚洲综合网| 天天躁日日操中文字幕| 成人特级av手机在线观看| 日韩欧美一区二区三区在线观看| 国产野战对白在线观看| 国产乱人伦免费视频| 日韩大尺度精品在线看网址| 狂野欧美白嫩少妇大欣赏| 久久午夜亚洲精品久久| 香蕉国产在线看| 亚洲精品久久国产高清桃花| 99riav亚洲国产免费| 日韩av在线大香蕉| or卡值多少钱| 日韩av在线大香蕉| 免费大片18禁| 日日干狠狠操夜夜爽| 亚洲精品粉嫩美女一区| 国产一区二区在线观看日韩 | 1024手机看黄色片| 国模一区二区三区四区视频 | 成人精品一区二区免费| 成人欧美大片| 日日夜夜操网爽| 久久久久性生活片| 国产麻豆成人av免费视频| 亚洲成av人片免费观看| www.www免费av| 1024手机看黄色片| 欧美黄色淫秽网站| 精品久久蜜臀av无| 色综合欧美亚洲国产小说| 久久伊人香网站| 欧美日韩福利视频一区二区| 国产不卡一卡二| 国产精品一及| 国产成人精品无人区| 亚洲aⅴ乱码一区二区在线播放| 香蕉国产在线看| 久久午夜亚洲精品久久| 国产成人aa在线观看| 成年女人毛片免费观看观看9| 99久久精品国产亚洲精品| 国产成人aa在线观看| 美女 人体艺术 gogo| 日本撒尿小便嘘嘘汇集6| 老司机福利观看| 精品无人区乱码1区二区| 亚洲人成伊人成综合网2020| 国模一区二区三区四区视频 | 香蕉国产在线看| 久99久视频精品免费| 两人在一起打扑克的视频| 热99re8久久精品国产| 女警被强在线播放| 国产亚洲精品久久久com| 后天国语完整版免费观看| 99在线视频只有这里精品首页| 美女cb高潮喷水在线观看 | 亚洲av电影不卡..在线观看| 欧美中文综合在线视频| 欧美极品一区二区三区四区| 成人鲁丝片一二三区免费| 国产激情久久老熟女| 中文字幕最新亚洲高清| 啦啦啦韩国在线观看视频| 啦啦啦韩国在线观看视频| 日日夜夜操网爽| 又黄又粗又硬又大视频| 欧美高清成人免费视频www| 精品久久久久久久久久久久久| 啦啦啦韩国在线观看视频| 国产亚洲精品综合一区在线观看| 亚洲av片天天在线观看| 免费看光身美女| 999久久久精品免费观看国产| 波多野结衣高清无吗| 国产精品久久久久久精品电影| 亚洲国产欧美人成| cao死你这个sao货| 欧美日韩一级在线毛片| 久久久久精品国产欧美久久久| 好看av亚洲va欧美ⅴa在| 国产午夜福利久久久久久| 色综合亚洲欧美另类图片| 欧美zozozo另类| 日韩有码中文字幕| 日本三级黄在线观看| 精品国产乱子伦一区二区三区| 搡老熟女国产l中国老女人| 日韩精品中文字幕看吧| 亚洲中文字幕一区二区三区有码在线看 | 日韩欧美国产一区二区入口| 在线永久观看黄色视频| 亚洲av成人av| 九色成人免费人妻av| 亚洲欧美一区二区三区黑人| 成人无遮挡网站| 夜夜夜夜夜久久久久| 亚洲国产中文字幕在线视频| 最近最新中文字幕大全电影3| 欧美日韩瑟瑟在线播放| 999精品在线视频| 免费看a级黄色片| 久久精品国产亚洲av香蕉五月| 性色av乱码一区二区三区2| 亚洲欧美日韩卡通动漫| 99久国产av精品| 欧美绝顶高潮抽搐喷水| 99视频精品全部免费 在线 | 一个人免费在线观看的高清视频| 亚洲人与动物交配视频| 制服人妻中文乱码| www日本在线高清视频| 人人妻,人人澡人人爽秒播| 亚洲av日韩精品久久久久久密| 欧美乱妇无乱码| 久久久久精品国产欧美久久久| 日韩精品中文字幕看吧| 亚洲av美国av| 免费看十八禁软件| 91麻豆av在线| 天天一区二区日本电影三级| 国产av在哪里看| 色综合站精品国产| 精品一区二区三区视频在线 | 欧洲精品卡2卡3卡4卡5卡区| 白带黄色成豆腐渣| 久久久国产欧美日韩av| 欧美日韩乱码在线| 免费看日本二区| 白带黄色成豆腐渣| 日韩成人在线观看一区二区三区| 啪啪无遮挡十八禁网站| 精品午夜福利视频在线观看一区| 亚洲国产欧美网| 国产三级中文精品| 国产精品一区二区三区四区久久| 国模一区二区三区四区视频 | 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久久久99蜜臀| 亚洲国产看品久久| 综合色av麻豆| 精品一区二区三区视频在线 | 一本精品99久久精品77| 免费无遮挡裸体视频| 欧美在线黄色| a级毛片在线看网站| 久久人妻av系列| 日韩欧美 国产精品| 88av欧美| 国产淫片久久久久久久久 | 亚洲成人免费电影在线观看| 久久国产乱子伦精品免费另类| 嫩草影院精品99| 亚洲欧美日韩高清专用| 国内精品久久久久精免费| 97碰自拍视频| 在线观看美女被高潮喷水网站 | 午夜免费激情av| 丰满人妻熟妇乱又伦精品不卡| 又黄又粗又硬又大视频| 亚洲真实伦在线观看| 国产精品av久久久久免费| 99久久精品国产亚洲精品| 天堂av国产一区二区熟女人妻| 夜夜看夜夜爽夜夜摸| 亚洲美女视频黄频| 免费搜索国产男女视频| 麻豆国产av国片精品| 色综合欧美亚洲国产小说| 韩国av一区二区三区四区| 日本黄大片高清| 国产蜜桃级精品一区二区三区| 免费搜索国产男女视频| 免费看日本二区| 国产亚洲精品一区二区www| 男人舔女人的私密视频| 床上黄色一级片| 在线观看午夜福利视频| 一卡2卡三卡四卡精品乱码亚洲| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| 国产精品女同一区二区软件 | 亚洲av免费在线观看| 亚洲欧美日韩卡通动漫| 国产97色在线日韩免费| 婷婷丁香在线五月| 一本综合久久免费| 久久国产乱子伦精品免费另类| 我要搜黄色片| 中出人妻视频一区二区| 无限看片的www在线观看| 国产男靠女视频免费网站| 日本a在线网址| 99久久精品国产亚洲精品| 一本综合久久免费| 成人三级黄色视频| 亚洲狠狠婷婷综合久久图片| 桃色一区二区三区在线观看| 99久久精品一区二区三区| 日韩精品青青久久久久久| 亚洲精品美女久久av网站| 国产精品美女特级片免费视频播放器 | 性欧美人与动物交配| 免费一级毛片在线播放高清视频| 亚洲精品在线美女| 淫秽高清视频在线观看| 久久久国产成人免费| 黑人欧美特级aaaaaa片| 亚洲精品一卡2卡三卡4卡5卡| 精华霜和精华液先用哪个| 亚洲av熟女| 成年免费大片在线观看| 国产精品亚洲美女久久久| 国产男靠女视频免费网站| 黄频高清免费视频| 午夜福利成人在线免费观看| 国产精品国产高清国产av| 日韩精品青青久久久久久| 舔av片在线| 欧美中文日本在线观看视频| 中文资源天堂在线| 国产又色又爽无遮挡免费看| 国产一区二区三区在线臀色熟女| 在线看三级毛片| 一本综合久久免费| 国产三级中文精品| 成在线人永久免费视频| 国产成人一区二区三区免费视频网站| 色综合婷婷激情| 日韩成人在线观看一区二区三区| 免费看十八禁软件| 最近最新中文字幕大全电影3| 欧美日韩综合久久久久久 | 欧美一级毛片孕妇| 欧美高清成人免费视频www| 国产男靠女视频免费网站| 免费搜索国产男女视频| 国产精品永久免费网站| h日本视频在线播放| 国产精品一及| 国产精华一区二区三区| 亚洲精品乱码久久久v下载方式 | 黄色丝袜av网址大全| 欧美日韩瑟瑟在线播放| 国产精品,欧美在线| 香蕉国产在线看| 看免费av毛片| 动漫黄色视频在线观看| 丰满人妻一区二区三区视频av | 国产精品一区二区三区四区免费观看 | 一个人免费在线观看电影 | 亚洲电影在线观看av| 日韩 欧美 亚洲 中文字幕| 欧美xxxx黑人xx丫x性爽| 色综合婷婷激情| 中文字幕人成人乱码亚洲影| 欧美色视频一区免费| 久久久久免费精品人妻一区二区| 亚洲欧美日韩无卡精品| 成人无遮挡网站| 啦啦啦观看免费观看视频高清| 日本五十路高清| 一个人观看的视频www高清免费观看 | 日韩有码中文字幕| 久久久久久久久中文| 五月伊人婷婷丁香| 一边摸一边抽搐一进一小说| 亚洲av中文字字幕乱码综合| 中文字幕人成人乱码亚洲影| 毛片女人毛片| 一本综合久久免费| 国产精品,欧美在线| 午夜精品久久久久久毛片777| 特级一级黄色大片| 他把我摸到了高潮在线观看| 老司机午夜十八禁免费视频| 国产精品一区二区三区四区免费观看 | 国产欧美日韩一区二区三| 亚洲五月婷婷丁香| 看黄色毛片网站| 91av网一区二区| 亚洲精品久久国产高清桃花| 国产av麻豆久久久久久久| 欧美av亚洲av综合av国产av| 亚洲成人久久爱视频| 99热6这里只有精品| 一本综合久久免费| 宅男免费午夜| 亚洲欧美激情综合另类| 国产精品亚洲一级av第二区| 中文字幕熟女人妻在线| 淫妇啪啪啪对白视频| 中文字幕人成人乱码亚洲影| 美女 人体艺术 gogo| 久久香蕉精品热| 午夜亚洲福利在线播放| 亚洲av成人精品一区久久| 国产野战对白在线观看| 午夜精品久久久久久毛片777| 两性午夜刺激爽爽歪歪视频在线观看| 99精品欧美一区二区三区四区| 91麻豆av在线| 亚洲av成人不卡在线观看播放网| 69av精品久久久久久| 啦啦啦观看免费观看视频高清| www日本黄色视频网| 男人的好看免费观看在线视频| 日韩大尺度精品在线看网址| 精品国产三级普通话版| 久久久国产成人精品二区| 日韩精品青青久久久久久| 99在线视频只有这里精品首页| 精品福利观看| 听说在线观看完整版免费高清| 看免费av毛片| 国产精品,欧美在线| 日本三级黄在线观看| 91av网一区二区| 高清毛片免费观看视频网站| 免费看光身美女| 久久久久久国产a免费观看| 在线播放国产精品三级| 最好的美女福利视频网| 国产真实乱freesex| 亚洲成人免费电影在线观看| 香蕉丝袜av| 亚洲在线观看片| 午夜免费观看网址| www.精华液| 中文字幕人成人乱码亚洲影| 国产单亲对白刺激| 精品电影一区二区在线| 成人无遮挡网站| 欧美日韩国产亚洲二区| 五月玫瑰六月丁香| 欧美成人免费av一区二区三区| 国产精品综合久久久久久久免费| 免费看十八禁软件| 天天一区二区日本电影三级| 久久久国产精品麻豆| 国产探花在线观看一区二区| 国产一区二区在线观看日韩 | 老汉色∧v一级毛片| 性色av乱码一区二区三区2| 国产精品野战在线观看| 久久婷婷人人爽人人干人人爱| 99久久精品国产亚洲精品| 国产一级毛片七仙女欲春2| 90打野战视频偷拍视频| www.熟女人妻精品国产| 99国产极品粉嫩在线观看| 18禁黄网站禁片午夜丰满| 99视频精品全部免费 在线 | 免费在线观看日本一区| 久久精品国产亚洲av香蕉五月| www国产在线视频色| 18禁观看日本| 亚洲欧美日韩高清专用| 日本黄色视频三级网站网址| 国产成人精品久久二区二区91| 香蕉久久夜色| 久久久久久久午夜电影| 美女被艹到高潮喷水动态| 深夜精品福利| 欧美成人免费av一区二区三区| 亚洲精品一区av在线观看| 久99久视频精品免费| 亚洲中文字幕一区二区三区有码在线看 | 欧美黑人欧美精品刺激| 中文在线观看免费www的网站| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 欧美日本亚洲视频在线播放| 99在线视频只有这里精品首页| 白带黄色成豆腐渣| 51午夜福利影视在线观看| 欧美日韩国产亚洲二区| 深夜精品福利| 国产精品一区二区免费欧美| 村上凉子中文字幕在线| 三级毛片av免费| 午夜福利高清视频| 久久久色成人| 一二三四在线观看免费中文在| 99精品久久久久人妻精品| 天天一区二区日本电影三级| 国产精品女同一区二区软件 | 午夜成年电影在线免费观看| 国产爱豆传媒在线观看| 一本久久中文字幕| 在线观看免费视频日本深夜| 免费搜索国产男女视频| 国产伦在线观看视频一区| 亚洲av日韩精品久久久久久密| 精品国内亚洲2022精品成人| 波多野结衣高清作品| 国产精品 欧美亚洲| 久久精品国产亚洲av香蕉五月| 亚洲精品乱码久久久v下载方式 | 每晚都被弄得嗷嗷叫到高潮| 国产精华一区二区三区| 黄色成人免费大全| 一边摸一边抽搐一进一小说| 黄色成人免费大全| 亚洲aⅴ乱码一区二区在线播放| www日本在线高清视频| 精品免费久久久久久久清纯| 熟妇人妻久久中文字幕3abv| 精品久久久久久久毛片微露脸| 日日摸夜夜添夜夜添小说| 免费高清视频大片| 天堂网av新在线| av欧美777| 国产成人欧美在线观看| 午夜福利在线在线| 在线观看免费午夜福利视频| 一区二区三区高清视频在线| 香蕉国产在线看| 国产精品综合久久久久久久免费| 两性夫妻黄色片| 精品不卡国产一区二区三区| 性色av乱码一区二区三区2| 久久久久久久久中文| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 久久久久久久午夜电影| 国产熟女xx| 中文字幕熟女人妻在线| 成人永久免费在线观看视频| 日韩欧美免费精品| 超碰成人久久| 两个人视频免费观看高清| 国产精品一区二区三区四区免费观看 | 欧美xxxx黑人xx丫x性爽| 变态另类成人亚洲欧美熟女| 亚洲精品久久国产高清桃花| 久久香蕉精品热| 两性夫妻黄色片| 人妻夜夜爽99麻豆av| 国产精品美女特级片免费视频播放器 | 久久婷婷人人爽人人干人人爱| 欧美国产日韩亚洲一区| 丰满人妻一区二区三区视频av | 嫩草影院入口|