王晴晴,李國(guó)占,李長(zhǎng)武,張東飛,張洪軍*
(1.中國(guó)計(jì)量大學(xué)計(jì)量測(cè)試工程學(xué)院,浙江 杭州310018;2.蘇州市計(jì)量測(cè)試院,江蘇 蘇州215128)
層流流量計(jì)具有響應(yīng)速度快、準(zhǔn)確度高等優(yōu)點(diǎn),被廣泛用于流量測(cè)量領(lǐng)域。層流流量計(jì)基于哈根-泊肅葉定律工作,通過測(cè)量層流元件兩端壓降來實(shí)現(xiàn)流量測(cè)量[1]。傳統(tǒng)層流流量計(jì)通常在層流元件出口管道設(shè)置取壓腔室取壓,測(cè)得的差壓中必然存在毛細(xì)管進(jìn)出口局部損失和層流起始段流動(dòng)動(dòng)能損失等非線性壓損,流體兩側(cè)壓降與流量并不是嚴(yán)格的線性關(guān)系。
為了獲得高準(zhǔn)確度流量測(cè)量,層流元件設(shè)計(jì)需要較大的毛細(xì)管長(zhǎng)徑比[2],并需進(jìn)行5個(gè)方面影響的修正,分別為非理想氣體、壁面滑移、入口段、膨脹效應(yīng)以及熱影響修正[3-4]。臺(tái)灣計(jì)量標(biāo)準(zhǔn)中心(CMS)Feng等[5]采用玻璃毛細(xì)管為層流元件,選取多種影響因素修正后的計(jì)算模型對(duì)空氣和氮?dú)鉁y(cè)量數(shù)據(jù)進(jìn)行處理,并用二階多項(xiàng)式將其擬合,測(cè)量誤差在±0.17%之內(nèi),其毛細(xì)管長(zhǎng)細(xì)比超過500。實(shí)驗(yàn)室高精度氣體粘度測(cè)量也常采用層流法,中國(guó)計(jì)量科學(xué)研究院對(duì)氣體的理想流動(dòng)進(jìn)行了氣體徑向溫度場(chǎng)、體積膨脹等修正,成功測(cè)量了243.15 K~393.15 K氬氣在理想氣體狀態(tài)下的粘度數(shù)據(jù)[6],并在國(guó)際上首次建立雙毛細(xì)管氣體粘度測(cè)量系統(tǒng)[7]。
當(dāng)毛細(xì)管進(jìn)出口流動(dòng)損失較大時(shí),總壓降中線性和非線性部分可分開描述,為此,陜西省計(jì)量科學(xué)研究院張嘉祥[8]在考慮氣體密度和粘度對(duì)測(cè)量影響的基礎(chǔ)上建立了新的層流流量計(jì)數(shù)學(xué)模型—JX2009方程,流量計(jì)算公式中引入了雙流量系數(shù),將其運(yùn)用天然氣流量測(cè)量時(shí),相對(duì)誤差范圍為±1.8%。
為了從結(jié)構(gòu)設(shè)計(jì)方面減少非線性壓損影響,Pena等[9]提出了一種三個(gè)取壓點(diǎn)的層流元件方案,小流量時(shí)取全部長(zhǎng)度毛細(xì)管的壓降,大中流量時(shí)取毛細(xì)管后半部分的壓降,這樣一方面可以更好地利用差壓傳感器測(cè)量范圍,另一方面可減小差壓非線性部分占比,不過這種方法中增加了閥門切換系統(tǒng),裝置相對(duì)復(fù)雜。近幾年,西北工業(yè)大學(xué)王筱廬等[10]提出微小縫隙式層流元件,利用Berg[3]的模型對(duì)數(shù)據(jù)進(jìn)行修正,最大的引用誤差為±0.8%。
2020年,黃浩欽等[11]提出壓力位差式(Pressure potential differential type,PPD)層流流量傳感技術(shù),其傳感元件由兩個(gè)流道組成,含四個(gè)交叉對(duì)稱的層流組件,實(shí)驗(yàn)表明相對(duì)于傳統(tǒng)層流元件,PPD傳感元件測(cè)得差壓與流量之間有更好的線性關(guān)系。但是實(shí)驗(yàn)過程中未單獨(dú)考慮氣體膨脹性影響修正,而是包含在流量修正系數(shù)中。同年,王晴晴等[12]針對(duì)不可壓縮流體,對(duì)PPD傳感元件進(jìn)行了流體力學(xué)數(shù)值模擬研究,驗(yàn)證了該元件滿足兩條支路流阻特性相同的要求,并且未經(jīng)任何修正下流量與壓力位差具有良好的線性關(guān)系。
將PPD層流傳感技術(shù)應(yīng)用于氣體流量測(cè)量時(shí),諸多影響因素需要分析和修正。例如:①兩個(gè)支路流阻特性一致性問題。PPD層流流量傳感元件用于氣體流量測(cè)量時(shí),由于氣體沿流道流動(dòng)時(shí)會(huì)產(chǎn)生膨脹效應(yīng),流速沿流道不斷變化,兩條支路流動(dòng)阻力是否相同?流量是否相同?②氣體層流流量計(jì)膨脹影響修正方法。對(duì)于氣體流動(dòng),流道內(nèi)壓力沿流向逐漸降低,密度減小,體積流量增大,因此會(huì)帶來額外的壓損。氣體膨脹影響如何修正?這些問題的解決都有賴于傳感元件內(nèi)部流動(dòng)的深入理解。
由于采用實(shí)驗(yàn)方法難以詳細(xì)測(cè)量流道沿程壓力損失和內(nèi)部流場(chǎng),數(shù)值模擬方法則可彌補(bǔ)實(shí)驗(yàn)研究的不足,能夠提供有用的流動(dòng)細(xì)節(jié)。數(shù)值模擬方法應(yīng)用于相關(guān)領(lǐng)域,在氣體流動(dòng)細(xì)節(jié)研究方面發(fā)揮了重要作用,獲得許多新的發(fā)現(xiàn)。例如,Van[13]通過理論分析和數(shù)值模擬的方法求解毛細(xì)管內(nèi)可壓縮層流流動(dòng)計(jì)算粘度的方程。結(jié)果表明,測(cè)量結(jié)果最主要是對(duì)流體的可壓縮性帶來的影響進(jìn)行修正。劉臣勇[14]通過數(shù)值模擬分析長(zhǎng)度、直徑和出入口錐角等幾何參數(shù)對(duì)流量測(cè)量裝置內(nèi)部壓力分布和流量特性的影響規(guī)律,以便確定合適的氣體小流量測(cè)量裝置結(jié)構(gòu)。許文達(dá)等[15]通過CFD仿真對(duì)渦街流量計(jì)中可壓縮和不可壓縮流動(dòng)進(jìn)行研究,結(jié)果表明仿真得到的偏差曲線與理論計(jì)算和實(shí)驗(yàn)測(cè)試數(shù)據(jù)變化趨勢(shì)一致。
本文將主要采用數(shù)值模擬方法研究壓力位差式層流流量測(cè)量技術(shù)應(yīng)用于氣體流量測(cè)量時(shí)傳感元件內(nèi)部流場(chǎng)、流道阻力特性和差壓輸出特性,驗(yàn)證PPD層流流量傳感技術(shù)對(duì)于可壓縮氣體流量測(cè)量的適用性,研究氣體膨脹影響修正系數(shù)取值,同時(shí)對(duì)計(jì)算仿真結(jié)果進(jìn)行實(shí)驗(yàn)驗(yàn)證。
根據(jù)哈根-泊肅葉定律,對(duì)于不可壓牛頓流體充分發(fā)展圓管層流,體積流量qv正比于壓降Δp[16]:
式中:d為圓管直徑;μ為流體的動(dòng)力粘度;L為測(cè)壓點(diǎn)之間的管道長(zhǎng)度。
為了克服前文所提到的非線性壓損,如圖1所示,PPD層流流量傳感元件設(shè)計(jì)了雙流道結(jié)構(gòu),其流道由含有四個(gè)毛細(xì)管層流組件位置交叉對(duì)稱的雙支路組成。兩條支路上不同長(zhǎng)度層流組件中間設(shè)置取壓腔室,兩腔室取壓點(diǎn)之間的差壓為ΔP,即壓力位差[11-12]。
圖1 示意性給出了PPD傳感元件兩條支路上游毛細(xì)管內(nèi)部壓降情況。其中ΔP′、ΔP″為兩條支路上游毛細(xì)管組兩端的總壓降。兩條支路工作時(shí)具有相同的入口壓力P0,當(dāng)兩支路流量相同時(shí),上游毛細(xì)管進(jìn)出壓損、層流入口段壓損均相等,因此壓力位差ΔP=P′-P″=ΔP″-ΔP′=ΔP6″[11-12]。即ΔP相當(dāng)于支路2上游毛細(xì)管后半段層流充分發(fā)展段的流動(dòng)壓降,則流經(jīng)該支路的體積流量Qv為:
圖1 PPD傳感元件結(jié)構(gòu)及壓降示意圖[12]
式中:n為單個(gè)層流組件中的毛細(xì)管根數(shù);ΔL為兩種長(zhǎng)度毛細(xì)管的長(zhǎng)度之差。
式(2)成立是建立在假設(shè)不可壓縮流體流經(jīng)兩條支路的流量相同、流阻特性一致的基礎(chǔ)上。一般情況下,流體在層流元件內(nèi)的流動(dòng)會(huì)引起壓力產(chǎn)生變化,而壓力會(huì)造成氣體密度變化,從而導(dǎo)致體積流量沿流向改變,可能引起兩條支路流阻出現(xiàn)一定偏差,對(duì)此需要進(jìn)行分析和驗(yàn)證,以確認(rèn)該技術(shù)對(duì)于氣體測(cè)量的適用性。
應(yīng)用層流法進(jìn)行氣體流量測(cè)量需考慮多個(gè)方面的影響[16],如:流動(dòng)動(dòng)能變化、非理想氣體、流體壓縮性、毛細(xì)管壁面滑移和熱效應(yīng)等,這些因素都會(huì)引起額外的壓降變化。對(duì)于PPD傳感元件,理論上可以消除層流元件進(jìn)出口動(dòng)能變化影響,測(cè)量中低壓流體時(shí)非理想氣體影響可以忽略,由于粘性摩擦生熱與氣體膨脹效應(yīng)導(dǎo)致溫度降低可以相互抵消,熱效應(yīng)一般可忽略。圓管流動(dòng)氣體壁面滑移影響修正數(shù)值可用4KslipKn來估算。其中,滑移修正系數(shù)Kslip=1,努森數(shù)Kn為分子自由程λ與管道特征尺度d/2之比[3,17]。
式中:P為氣體的壓強(qiáng);T為絕對(duì)溫度;Rgas為氣體常數(shù)。本文毛細(xì)管直徑d=0.8 mm,介質(zhì)為空氣,在常溫常壓下,估算壁面滑移影響修正為10-4量級(jí),可忽略。因此,必須要考慮的影響因素可能只有氣體膨脹影響。
首先,在忽略體積膨脹引起的額外壓降情況下,分析流量與壓降關(guān)系。沿著毛細(xì)管管中流動(dòng)方向取一微元段dx,根據(jù)哈根-泊肅葉公式,壓降dP和質(zhì)量流量qm0的關(guān)系為:
式中:x為軸向坐標(biāo);ρ為流體密度。
對(duì)于理想氣體,壓強(qiáng)與密度之間滿足:
溫度不變的情況下可假設(shè)氣體密度與壓強(qiáng)成正比,對(duì)式(4)進(jìn)行積分,可得毛細(xì)管內(nèi)質(zhì)量流量qm0為[3-4]
式中:P1、P2分別為毛細(xì)管工作段兩端的壓力;ΔP=P1-P2。
當(dāng)考慮氣體膨脹導(dǎo)致額外壓降時(shí),根據(jù)伯努利方程,毛細(xì)管內(nèi)流動(dòng)動(dòng)能增大,壓力下降,則式(4)轉(zhuǎn)變?yōu)?
式中:qm為考慮膨脹影響情況下的質(zhì)量流量,第二項(xiàng)為動(dòng)能增加導(dǎo)致的額外壓降,α為動(dòng)能修正系數(shù),當(dāng)管中為充分發(fā)展層流流動(dòng)時(shí),α=2。
取α=2,對(duì)式(7)進(jìn)行積分,可得:
一般情況下,式(8)中分母第二項(xiàng)遠(yuǎn)小于1,忽略其展開式中的多次項(xiàng)并引入誤差修正系數(shù)Kexp,則質(zhì)量流量qm可近似為:
根據(jù)上述推導(dǎo),當(dāng)不考慮膨脹引起的流速分布變形情況下Kexp=0.5,文獻(xiàn)[3]和[13]考慮這種影響后,建議Kexp=1,本文將根據(jù)數(shù)值模擬數(shù)據(jù)進(jìn)行驗(yàn)證。
數(shù)值模擬研究中,選用單根毛細(xì)管組成層流元件。圖2為兩條支路的物理模型,支路1上游為短毛細(xì)管,支路2上游為長(zhǎng)毛細(xì)管,給定相同流量情況下針對(duì)兩條支路分別進(jìn)行計(jì)算,可對(duì)比其流阻(即總壓降)是否相同。兩支路各段差壓記法分別如圖所示,其中取x軸為流向坐標(biāo),坐標(biāo)原點(diǎn)位于上游毛細(xì)管的進(jìn)口處。
圖2 兩支路的物理模型
毛細(xì)管內(nèi)徑d=0.8 mm,管道和取壓腔內(nèi)徑D=6 mm。為保證長(zhǎng)毛細(xì)管后半段流動(dòng)為層流充分發(fā)展?fàn)顟B(tài),毛細(xì)管長(zhǎng)度應(yīng)超過層流起始段長(zhǎng)度。層流流動(dòng)速度分布在起始段內(nèi)不斷發(fā)展,當(dāng)管內(nèi)中心流速達(dá)到充分發(fā)展段流速的99%時(shí)可認(rèn)為進(jìn)入充分發(fā)展段流動(dòng)[18]。圓管層流起始段長(zhǎng)度Le可以按照下式估算:
式中:C=0.056。
當(dāng)最大工作雷諾數(shù)Re為2 000時(shí),則Le=90 mm,短毛細(xì)管長(zhǎng)度可以取100 mm,長(zhǎng)毛細(xì)管長(zhǎng)度為150 mm。
利用幾何建模軟件ICEM構(gòu)建幾何模型和進(jìn)行三維網(wǎng)格劃分。網(wǎng)格數(shù)量與質(zhì)量對(duì)模擬計(jì)算結(jié)果有直接的影響,在進(jìn)行正式仿真計(jì)算之前,需要進(jìn)行網(wǎng)格無關(guān)性驗(yàn)證。參考文獻(xiàn)[12],本文網(wǎng)格數(shù)選取3443040能夠滿足計(jì)算要求。
為了更好的分析氣體膨脹效應(yīng)對(duì)PPD傳感技術(shù)測(cè)量結(jié)果的影響,對(duì)可壓縮模型和不可壓縮模型分別進(jìn)行仿真計(jì)算。在不可壓縮模型中,其流體密度選擇為常數(shù),而可壓縮模型中流體選擇理想空氣,其他邊界條件設(shè)置相同。入口設(shè)置質(zhì)量流量邊界,兩條支路給定相同的質(zhì)量流量qmr,由式(11)可計(jì)算得到單根毛細(xì)管中氣體的雷諾數(shù)。
式中:A為毛細(xì)管橫截面積。
出口設(shè)置為壓力邊界,壁面設(shè)置光滑、無滑移。選用大渦模擬方法,小尺度的渦通過引入亞格子應(yīng)力建立與大渦的關(guān)系進(jìn)行計(jì)算[18],采用亞格子模型(WALE model)能夠通過判斷流場(chǎng)結(jié)構(gòu)去改變亞格子應(yīng)力以避免過多粘性所帶來的數(shù)值誤差。
圖3 為Re=1 000時(shí),支路2毛細(xì)管內(nèi)同一軸向位置的橫截面(x=120 mm)處,采用不可壓縮和可壓縮流體兩種模型計(jì)算獲得的時(shí)均速度云圖。圖中可見,可壓縮模型計(jì)算結(jié)果中v=35 m/s的區(qū)域比不可壓縮模型明顯大,兩者相對(duì)于毛細(xì)管橫截面占比的差別約為2.5%,意味著前者截面平均流速和流體動(dòng)能比后者大。由于計(jì)算入口條件是相同的,顯然氣體可壓縮性起了作用,產(chǎn)生更多壓損,流速和體積流量增大更快。
圖3 時(shí)均速度云圖,Re=1 000
實(shí)際流體的流動(dòng)過程中由于粘性摩擦的存在,伴隨著能量轉(zhuǎn)換過程,一部分流動(dòng)機(jī)械能不可逆地轉(zhuǎn)化為熱能。氣體總壓是氣流中靜壓與動(dòng)壓之和,總壓的變化可以體現(xiàn)這種不可逆機(jī)械能損失(簡(jiǎn)稱能量損失)。圖3顯示了雷諾數(shù)Re=1 000時(shí),支路2長(zhǎng)毛細(xì)管總壓沿軸向變化情況,兩條曲線分別為采用不可壓縮模型和可壓縮模型的結(jié)果。
圖4 可以看出,相對(duì)比不可壓縮模型,采用可壓縮模型計(jì)算的總壓變化速率較快。表1為兩個(gè)模型中長(zhǎng)毛細(xì)管兩端總壓數(shù)據(jù),其中P1為x=-20 mm處過流截面的總壓,P2為x=156 mm處過流截面的總壓,ΔPt為兩者之差,即ΔPt=P1-P2。
圖4 總壓沿毛細(xì)管流向變化曲線,Re=1 000
表1 兩種氣體模型的總壓數(shù)據(jù) 單位:Pa
表1 數(shù)據(jù)顯示可壓縮模型中毛細(xì)管兩端的總壓損失較不可壓縮模型增大52.38 Pa,相對(duì)于不可壓縮模型中的總壓損失ΔPt的偏差為1.8%。
表2 列出了兩支路總差壓數(shù)據(jù),其中,ΔP1、ΔP2分別為支路1和支路2的總差壓(參見圖2);δΔP為ΔP1和ΔP2的相對(duì)偏差值,由式(12)給出,即
表2 數(shù)據(jù)顯示,在整個(gè)雷諾數(shù)范圍內(nèi)(Re=50~2 000),兩條支路總壓降的相對(duì)偏差最大為0.05%,在一般測(cè)量精度要求情況下,可認(rèn)為兩條支路流動(dòng)阻力相同。如此可以推測(cè),PPD層流流量傳感技術(shù)應(yīng)用于氣體測(cè)量時(shí),兩條并聯(lián)支路流量也必然相等,原理分析過程中的假設(shè)是成立的。
表2 支路總差壓數(shù)據(jù)
兩條支路的流阻特性一致,流經(jīng)支路的流量相同,上述單獨(dú)計(jì)算模擬的兩條支路可以相當(dāng)于一個(gè)PPD傳感元件的兩支路,基于兩支路計(jì)算數(shù)據(jù)進(jìn)行進(jìn)一步分析。
在前面提到的氣體膨脹影響理論分析過程中,如果假設(shè)層流流速分布為理想的二次拋物線,則動(dòng)能修正系數(shù)α=2,公式中(9)的Kexp=0.5。但由于膨脹效應(yīng)影響,流速分布可能并不是理想的二次拋物線。圖5為仿真計(jì)算支路2中x=120 mm處氣體層流流動(dòng)速度剖面,其中u(y)為徑向坐標(biāo)y處軸向流速,v為截面平均流速,坐標(biāo)原點(diǎn)位于圓管中心。顯然,由于膨脹影響,截面流速不再是二次拋物線分布,當(dāng)雷諾數(shù)增加時(shí),與拋物線分布差異更加明顯。
圖5 可壓縮性對(duì)管內(nèi)層流速度剖面的影響
表3 列出PPD傳感元件測(cè)得差壓和流量數(shù)據(jù)處理結(jié)果。其中:qmk0為氣體膨脹影響修正前的流量值,即Kexp=0,計(jì)算公式見式(6);qmk1、qmk2分別為Kexp=0.5、1時(shí)按照式(9)進(jìn)行氣體膨脹性修正后的流量值;δc為其對(duì)應(yīng)的相對(duì)誤差,相對(duì)誤差計(jì)算公式為
式中:qmc為計(jì)算得到的質(zhì)量流量,其中c可以為k0,k1或k2;qmr為真實(shí)質(zhì)量流量值,即數(shù)值計(jì)算給定準(zhǔn)確值。
表3 中數(shù)據(jù)顯示,未引入膨脹修正時(shí),流量計(jì)算值qmk0與實(shí)際值qmr的偏差(即誤差)隨著雷諾數(shù)的增加而增大,相對(duì)誤差δk0最大可達(dá)到3.44%。圖6為不同膨脹系數(shù)修正后的誤差曲線圖,對(duì)比Kexp=1和Kexp=0.5的修正結(jié)果,圖中顯示前者明顯好于后者,取Kexp=1修正后的最大測(cè)量誤差為0.32%。文獻(xiàn)[3]和[13]建議Kexp應(yīng)該取1,本數(shù)值計(jì)算結(jié)果驗(yàn)證了這一取值。
表3 不同膨脹修正系數(shù)結(jié)果對(duì)比
圖6 不同膨脹系數(shù)的誤差曲線
ΔP11、ΔP21分別為兩條支路上游毛細(xì)管兩端的差壓值(參見圖2),其值可等價(jià)于長(zhǎng)度為100 mm、150 mm的傳統(tǒng)層流流量傳感元件測(cè)得的差壓。取Kexp=1,qm1、qm2分別為根據(jù)ΔP11、ΔP21按照式(9)計(jì)算的流量值,相對(duì)誤差同樣參照(13)進(jìn)行計(jì)算,此時(shí)式(13)中c為1或2,計(jì)算數(shù)據(jù)見于表4。同時(shí),將3種差壓計(jì)算得到的流量值與真實(shí)流量值qmr分別進(jìn)行對(duì)比,如圖10所示。
表4 常規(guī)層流流量傳感元件測(cè)試數(shù)據(jù)
由表3、表4中數(shù)據(jù)可以看出,在未經(jīng)非線性修正情況下,傳統(tǒng)層流流量傳感元件測(cè)量相對(duì)誤差δ1、δ2隨著雷諾數(shù)的增加呈上漲趨勢(shì),其值一直比δk2大。其中δ1、δ2在最大雷諾數(shù)工況下分別超過49%和33%。此外,可以看出,δ2一直較δ1較小,這是因?yàn)榍罢呙?xì)管長(zhǎng)徑比大,非線性影響相對(duì)較小。
另一方面,圖7顯示在整個(gè)測(cè)量范圍內(nèi),根據(jù)PPD傳感元件測(cè)得差壓計(jì)算得到的流量值與真實(shí)流量吻合非常好,最大偏差僅為0.32%,PPD傳感元件相對(duì)誤差至少要比傳統(tǒng)層流元件小一個(gè)量級(jí)。這種新型測(cè)量技術(shù)可以很好地將層流入口段和毛細(xì)管進(jìn)出口的影響消除,從而可以達(dá)到更高的測(cè)量精度和更大的量程比。
圖7 未經(jīng)非線性修正的流量與差壓關(guān)系曲線
為了進(jìn)一步驗(yàn)證數(shù)值計(jì)算結(jié)果,設(shè)計(jì)了PPD傳感元件的實(shí)驗(yàn)?zāi)P?圖8(a)),并對(duì)其進(jìn)行實(shí)驗(yàn)測(cè)試。整個(gè)模型由兩個(gè)支路管道組成,管道采用不銹鋼材料,每條支路內(nèi)放置兩個(gè)長(zhǎng)度不同的不銹鋼毛細(xì)管組件(圖8(b)),組件兩端的支撐板用于密封和毛細(xì)管定位。
圖8 PPD傳感元件實(shí)驗(yàn)?zāi)P?/p>
在實(shí)際應(yīng)用中,為了獲得更小的毛細(xì)管長(zhǎng)徑比,管內(nèi)中心流速達(dá)到充分發(fā)展段流速的95%時(shí)可近似認(rèn)為進(jìn)入層流充分發(fā)展流動(dòng)[19],此時(shí)式(10)中C=0.033。選取的毛細(xì)管內(nèi)徑為0.8 mm,當(dāng)工作最大雷諾數(shù)Re=1 400時(shí),Le=37 mm,設(shè)計(jì)中取長(zhǎng)短兩種毛細(xì)管長(zhǎng)度分別為40 mm和90 mm。單個(gè)毛細(xì)管組件中毛細(xì)管的根數(shù)為53,層流元件模型設(shè)計(jì)最大流量約為5.4 m3/h。
實(shí)驗(yàn)系統(tǒng)如圖9所示,主要包括PPD層流元件模型、音速噴嘴氣體流量標(biāo)準(zhǔn)裝置和微差壓測(cè)量?jī)x器。其中,音速噴嘴氣體流量標(biāo)準(zhǔn)裝置流量范圍為0.016 m3/h~6.5 m3/h,測(cè)量不確定度為±0.3%(k=2),采用FCO560微差壓校準(zhǔn)儀測(cè)量?jī)蓚€(gè)取壓腔室之間的壓差,該校準(zhǔn)儀的量程為±2.5 kPa,測(cè)量精度為讀數(shù)的0.05%±0.03 Pa。實(shí)驗(yàn)流量范圍為0.025 6 m3/h~5.30 m3/h。
圖9 實(shí)驗(yàn)系統(tǒng)圖
表5 為實(shí)驗(yàn)測(cè)試數(shù)據(jù),表中qs為音速噴嘴氣體流量標(biāo)準(zhǔn)裝置設(shè)定和給出的標(biāo)準(zhǔn)流量,其他參數(shù)含義與仿真計(jì)算相同。為了便于直觀對(duì)比,將表5中相對(duì)誤差數(shù)據(jù)繪制成散點(diǎn)圖,如圖10所示。表5和圖10數(shù)據(jù)顯示,在未引入氣體膨脹修正情況下(Kexp=0),PPD傳感元件整體測(cè)量誤差隨流量增大而增大,最大流量時(shí)達(dá)到+2.41%;當(dāng)采用Kexp=1進(jìn)行膨脹修正后,在大約200倍的實(shí)驗(yàn)測(cè)量范圍內(nèi),測(cè)量誤差在±0.8%以內(nèi),說明膨脹影響得到了較好的修正,這與數(shù)值計(jì)算結(jié)果是一致的。另一方面,測(cè)試數(shù)據(jù)可看出,隨著流量增大,毛細(xì)管流動(dòng)阻力(差壓)增大,膨脹影響也相應(yīng)增大,如果不進(jìn)行膨脹修正會(huì)給測(cè)量帶來較大誤差。
圖10 流量的相對(duì)誤差分布
同時(shí),表5數(shù)據(jù)表明在采用膨脹修正后,PPD層流元件測(cè)量流量與標(biāo)準(zhǔn)流量偏差很小,再次驗(yàn)證了計(jì)算仿真結(jié)果和PPD層流流量測(cè)量技術(shù)原理的正確性。
表5 PPD傳感元件實(shí)驗(yàn)測(cè)試數(shù)據(jù)
需要指出的是,關(guān)于PPD傳感元件用于氣體流量測(cè)量時(shí)兩條支路流阻特性基本一致的實(shí)驗(yàn)結(jié)果在文獻(xiàn)[12]中已給出,有興趣的讀者可參考該文獻(xiàn)。從本文研究結(jié)果來看,PPD氣體層流流量技術(shù)完全可以用于實(shí)際傳感器設(shè)計(jì),而設(shè)計(jì)過程中應(yīng)解決傳感器集成化和模塊化問題。與傳統(tǒng)層流流量傳感器相比,PPD層流流量傳感器的缺點(diǎn)是元件組成相對(duì)復(fù)雜,含有4個(gè)毛細(xì)管組件,會(huì)增加一定成本,但增加量比較有限。
本文針對(duì)可壓縮氣體流量測(cè)量,對(duì)PPD傳感元件進(jìn)行了數(shù)值模擬和實(shí)驗(yàn)測(cè)試,主要工作和結(jié)果如下:①分別采用可壓縮模型與不可壓縮模型進(jìn)行計(jì)算仿真。發(fā)現(xiàn)采用可壓縮性模型時(shí),毛細(xì)管內(nèi)流動(dòng)總壓變化速率更快,管內(nèi)中心區(qū)域速度更大,說明氣體壓縮性對(duì)流動(dòng)和壓降有明顯影響。②對(duì)氣體PPD傳感元件兩條支路流動(dòng)阻力特性進(jìn)行了仿真研究。流量相同情況,兩條支路總壓降的相對(duì)偏差均不超過±0.05%,流阻特性可視為一致,說明這種新型測(cè)量技術(shù)應(yīng)用于氣體流量測(cè)量的假設(shè)條件是成立的。③對(duì)層流流量測(cè)量中氣體膨脹影響進(jìn)行理論分析,并對(duì)修正系數(shù)的取值進(jìn)行仿真計(jì)算和實(shí)驗(yàn)驗(yàn)證,結(jié)果表明,膨脹修正系數(shù)Kexp=1時(shí),修正后的流量測(cè)量誤差基本在±0.8%之內(nèi),這一結(jié)果與前人研究是一致的。④將PPD傳感元件與傳統(tǒng)層流流量傳感元件進(jìn)行對(duì)比,結(jié)果顯示,在整個(gè)計(jì)算雷諾數(shù)范圍內(nèi)(Re=50~2 000),不進(jìn)行非線性修正情況下,PPD層流元件流量最大相對(duì)誤差僅為0.32%,較傳統(tǒng)層流元件至少小1個(gè)量級(jí)。