• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust optimization design on impeller of mixed-flow pump

    2021-07-16 07:14:38,

    , , , , ,

    (1.School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China)

    Abstract: To increase the robustness of the optimization solutions of the mixed-flow pump, the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly, the robustness of the optimization solution was mathematically defined, and then calculated by Monte Carlo sampling method.Thirdly, the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems, to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly, using response surface model, a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally, based on a multi-objective genetic optimization algorithm, a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump, it is found that the internal flow field of the optimized pump has been improved under various operating conditions, the hydraulic performance has been improved consequently, and the range of high efficient zone has also been widened.Besides, with the changing of working conditions, the change trend of the hydraulic performance of the optimized pump becomes gentler, the flow field distribution is more uniform, and the influence degree of the varia-tion of working conditions decreases, and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump, and provides references for optimization problems of other fluid machinery.

    Key words: mixed-flow pump;multi-objective genetic optimization;robust optimization;response surface method;2D blade design theory

    The mixed-flow pump is widely used in a variety of industrial fields as a good substitution of the centri-fugal pump and axial-pump.However, uncertainties such as the random fluctuation of working conditions will make the optimality and stability of the running pump worse[1-4].Therefore, it is of great engineering value and practical significance to find the optimal pump shape with strong anti-jamming capability from uncertainties.

    In existing researches, single-point and multi-point optimizations were mainly used for the mixed-flow pump.WANG, et al[5]used the surrogate model and intelligent optimization algorithm to optimize mixed-flow pumps.WANG, et al[6]optimized a mixed-flow pump under the design operating condition and studied its cavitation performance.JIN, et al[7]applied a weighted-average agent model in a mixed-flow pump optimization, considering the design and off-design operating conditions simultaneously.LIU, et al[8]optimized a mixed-flow pump to obtain the maximum weighted-average hydraulic performance under different working conditions.ZHOU[9]established a three-point hydraulic optimization method to improve pump efficiency under multiple working conditions.In these researches, environmental parameters, optimization va-riables, and objective functions were all predetermined excluding the influence of uncertainties.However, the pump′s performance and operating stability may deterio-rate greatly, once the working conditions fluctuate.

    Based on the above issues, this paper aims to develop a robust optimization method for the impeller of a mixed-flow pump to increase its hydraulic performance and working stability at the same time.

    1 Original pump

    As shown in Fig.1, the pump under investigation is a vertical mixed-flow pump with outlet guide vanes.Its main design specifications are a specific speed ofns=520.17, a flow rate ofQd=4 500 m3/h, and a head ofH=10.34 m at a rotating speed ofn=735 r/min.The main geometric parameters of its impeller are inlet diameterD1=532.58 mm, outlet diameterD2=663.10 mm, blade numberZ1=4.The main geometric parameters of its guide vanes are inlet diameterD3=706.54 mm, outlet diameterD4=641.61 mm, blade numberZ2=6.

    Fig.1 Schematic diagram of mixed-flow pump

    Numerical simulations are performed using ANSYS CFX software.From Fig.2, the computational domain consists of four parts including the inlet flow channel, impeller, guide vanes and outlet flow channel.Structured hexahedral grids are generated for the whole computational domain, and grids near the blade surface are refined with localy+less than 5.The total gird number is minimized to 3 132 042 through the grid indepen-dence test[10-13].

    Fig.2 Computational domain

    A uniform inlet flow distribution is imposed by setting the flow velocity and a turbulence density of 5%.The outlet is assumed to be a free flow outlet, and the static pressure is set to be 1.01×105Pa here.For the wall boundaries, the non-slip wall boundary condition is imposed.

    SSTk-εand standardk-εturbulence models are used for the(0.8-1.0)Qdand(1.0-1.4)Qdworking conditions respectively.The logarithmic wall function is employed to estimate the wall shear stress.The ″Frozen-Rotor-Interface″ model is used to transfer data between the rotor and stator[14-16].

    Simulated pump heads and efficiency are compa-red with the tested ones, as shown in Tab.1.It is found that they are in good agreement under all working conditions, and the maximum relative error is less than 5%.

    Tab.1 Comparison of the simulated and tested data

    Fig.3 shows the simulated static pressure contour on blade surfaces.Fig.4 shows the simulated relative streamlines in the impeller and absolute streamlines in the guide vanes.It is found that with the change of working conditions, the inner flow status in the impel-ler and guide vanes changes, which may aggravate the adverse flow, and lead to unstable flow status and extra energy loss in the original pump.Thus, robust optimization is used to improve its working stability under different working conditions.

    Fig.3 Static pressure contours on blade surfaces

    Fig.4 Relative streamlines in impeller and absolute streamlines in guide vanes

    2 Blade parameterization

    In the 2D blade design theory, a blade profile equation is constructed to build the mathematical relation between the space streamline wrap angle and the meridian streamline length, as shown in Eq.(1).It is also called the motion equation of fluid particle, because it reflects the three-dimensional flow track of particles in the impeller.

    (1)

    where,θrepresents space streamlinewrap angle;srepresents the meridians treamline length;ωrefers to the rotating speed;rrefers to the radial coordinate;vmrepresents the meridian velocity;vurrefers to the velocity moment.

    Using Eq.(1), each space streamline can be decided after the corresponding meridian streamline is given.Then, the blade shape can be decided by mixing all space streamlines and changed by giving the different distribution ofvur.

    According to the working principle of the vane pump, the velocity moment difference between the inlet and outlet of the impeller can be calculated by Eq.(2).

    (2)

    where, Δ(vur)refers to the velocity moment differe-nce;vu1r1andvu2r2are the velocity moment at the inlet and outlet respectively;Hrepresents the pump head;ηhrepresents the hydraulic efficiency;gis the gravitational acceleration.

    Then, by introducing a dimensionless quartic po-lynomial functionf(x),vurcan also be described as

    vur=vu1r1+f(x)·Δ(vur),

    (3)

    f(x)=ax4+bx3+cx2+dx+e,

    (4)

    where,xrepresents the relative meridian streamline length,x=s/s0;s0represents the total meridian strea-mline length;a,b,c,d, andeare coefficients which can be determined by boundary conditions given in Eq.(5).

    (5)

    In this way, giving differentx1,x2andx3, diffe-rent quartic polynomial functionf(x)is built, and then different distribution ofvuris given, and different blade shape is obtained.

    3 Robust optimization

    The robustness of feasible solutions is defined as the size of the variable region of objective functions caused by the variation of environmental parameters.It is mathematically defined as

    X∈Ω ,i=1, 2, …,m,

    (6)

    where,mdenotes the number of objective functions;crefers to the environmental parameters;X=(x1,x2, …,xn)represents the optimization variable;nrepresents the dimension of the optimization variable; Ω represents the feasible solution space;F(X)repre-sents the objective function;δrepresents the interfere-nce vector;Bδis the neighborhood with the interference vectorδas the radius.

    Since Eq.(6)is difficult to solve, the integral is replaced by summation using Monte Carlo sampling method.Eq.(6)is changed into a new form as

    (7)

    where,Mindicates the random sampling size in the disturbing neighborhoodBδ;ξjrepresents thej-th sample; and Norm(ξj)refers to the infinite vector norm ofξj.

    3.1 Optimization objectives

    To improve the headHand hydraulic efficiencyηof the mixed-flow pump, and reduce their fluctuation ranges as far as possible when the flow rate varies between 0.8Qdand 1.4Qd, the optimization problem is divided into two sub-optimization problems, including the optimal sub-optimization problem and the robust sub-optimization problem, as expressed by Eq.(8).

    (8)

    where,rH(X)andrη(X)are the robustness corresponding to the headH(X)and hydraulic efficiencyη(X)respectively.

    Using weight factorsλ1,λ2,λ3andλ4, the two optimization objective of each sub-optimization problem can be synthesized into a single objective as

    (9)

    Finally, the optimization problem turns into a two-objective maximization problem, in a form as

    Maximize[Optimal(X),-Robust(X)].

    (10)

    To give equal treatment toH(X),η(X),rH(X)andrη(X), weight factorsλ1,λ2,λ3andλ4are all set to be 0.5 here.

    3.2 Optimization variable and value range

    Parametersx1,x2, andx3constitute a three-dimensional optimization variable as

    X=[x1,x2,x3].

    (11)

    According to the previous research results, the ranges of the optimization variable are set to be 0

    3.3 Initial sample space

    According to the value range of the optimization variableX, a uniform design table U37(373)is used to arrange a 3-factor, 37-level initial sample space.Numerical simulations are performed in the whole flow channel of the 37 different pumps under different wor-king conditions.Then,H(X)andη(X)are obtained based on the simulated results.rH(X)andrη(X)are calculated using Eq.(7).Optimal(X)and-Robust(X)are calculated according to Eq.(9).The first 10 groups of data in the initial sample space are listed in Tab.2.

    Note that, data in Tab.2 are normalized using Eq.(12)to make them vary between 0 and 1.

    Tab.2 The first 10 groups of data in the initial sample space

    (12)

    where,iandjrefers to the index of row and columnyjminandyjmaxrefers to the minimal and maximum sample inj-column, andyjiindicates the sample ini-row andj-column.

    3.4 Optimization strategy

    Based on the first 32 groups of data in the initial sample space, response surface methodology(RSM)is used to construct surrogate models between the optimization variable and objective function.

    On the Matlab platform, a double-loop iterative optimization process is designed using a multi-objective genetic algorithm, as shown in Fig.5.

    Fig.5 Flow chart of the robust optimization

    The first generation of the population is generated randomly and has 200 individuals which are encoded and decoded by the binary encoding and decoding method.Then, the crossover probability, mutation probability and the Pareto-Fraction are set to be 0.8, 0.2 and 0.3, to produce the new generation of the po-pulation by selection, mutation and crossover operations.Thirdly, based on the pre-established RSM surrogate model, the fitness value of each new individual is assigned, and the individuals with high fitness value is selected out and manipulated to produce the next generation of the population by genetic operators.This step will be repeated until the preset maximum iteration number is reached or convergence conditions are satisfied.Finally, the optimal solution is chosen from the last generation of population.Comparisons are made between the RSM predicted and CFD calculated values.If the relative error between them is larger than 3%, the optimal solution will be re-added into the sample space, the surrogate model will be retrained, and the whole optimization process will repeat until the error requirements are met.

    4 Results and discussion

    The optimization is run on the Matlab platform with a 12 core 2.1 GHz workstation, and the convergence conditions are satisfied after 118 steps of iteration which costs about 48 hours.From the Pareto frontier, one optimal solutionX=[x1,x2,x3]=[0.313 1, 0.287 9, 0.001 9]is chosen.Then, nume-rical simulations are carried out on the optimized pump.Finally, based on simulation results, compari-sons are made between the original and optimized pumps.

    4.1 Comparison of hydraulic performance

    Fig.6 shows the simulatedH-Qandη-Qcurves of the original and optimized pump.

    Fig.6 Hydraulic performances before and after optimization

    It is observed that after optimization the efficiency under all working conditions is generally improved,the flow rate corresponding to the highest efficiency point shifts to the left about 0.1Qdand the highest efficiency point changes from 74.11% to 77.07%, with an increase of 2.96%.From theH-Qcurves, it is found that after optimization the head is slightly decreased under the small flow rate, and obviously increased after the flow rate reaches 1.25Qd.

    To make further comparisons, the width of the high efficiency zoneHEis defined as

    HE=(Q1-Q2)/QHE,

    (13)

    where,QHEis the flow rate corresponding toη=ηmax;Q1andQ2represent the upper and lower flow rate corresponding toη=0.95ηmax.

    It is found that theHEof the original pump is about 0.265, while theHEof the optimized one is 0.289, with a relative increase of 8.88%.Thus, it can be concluded that the high efficiency area of the mixed-flow pump is widened after optimization.

    4.2 Comparison of inner flow field

    Fig.7 shows the simulated static pressure contour on blade surfaces of the optimized pump.

    Fig.7 Static pressure contours on the blade surface after optimization

    Comparing it with Fig.3, it is found that, on the pressure side of the blade surfaces, the area of high pressure zone near the rim decreases after optimization, and the maximum pressure value decreases for the same condition.The small area of low pressure zone near the hub at the inlet also disappears under the 0.8Qdand 1.0Qdconditions, which indicates that the cavitation is weakened at the blade inlet side under the condition of small flow rate.With the increase of flow rate, the static pressure distribution on the optimized blade changes more uniformly, but a local low-pressure zone appears again at the inlet side of the blade when the flow rate reaches 1.4Qd.

    On the suction side of the blade surfaces, the small area of low pressure zone near the hub at the blade inlet edge disappears after optimization, and the local high pressure zone at the outlet edge is also wea-kened under the flow rate of 0.8Qd, 1.0Qdand 1.2Qd.With the increase of flow rate, although a local low-pressure zone still exists at approximately a third of the blade length near the blade inlet edge, the area of the low-pressure zone is significantly smaller than that be-fore optimization.It indicates that the possibility of ca-vitation is weakened.Based on the above analysis, it can be concluded that the static pressure distribution on the blade surface after robust optimization changes more uniformly with operating parameters.

    Fig.8 shows the simulated relative streamlines in the impeller and absolute streamlines in the guide vanes of the optimized pump.

    Fig.8 Relative streamlines in impeller and absolute streamlines in guide vanes after optimization

    Comparing it with Fig.4, it is found that, under the flow rate of 0.8Qdand 1.0Qd, the stability of flow in the mixed-flow pump has been greatly improved after optimization.The phenomenon of streamline staggering at the outlet of the impeller and inside the guide vane has been weakened.In addition, the number of vortices at the blade inlet decreases, and the vortices size becomes smaller.Under the flow rate of 1.0Qd, the vortex at the trailing edge of the guide vane disappears after optimization.With the increase of flow rate, stream-lines in the impeller and guide vane changes more uniformly after optimization, which indicates that the influence of flow rate fluctuation on adverse flow is weakened.

    5 Conclusions

    1)To improve hydraulic performances of the mixed-flow pump and minimize their fluctuation range in case of variations under working conditions, the robust optimization on the impeller of the pump can be decomposed into two sub-optimization problems including the optimal sub-optimization and the robust sub-optimization problem.

    2)The uniform test design is a good method to guarantee the reasonable distribution of the initial trai-ning samples for the establishment of the surrogate model.The RSM surrogate model has the smallest overall error and is more suitable for the optimization problem of the mixed-flow pump.

    3)Multi-objective genetic optimization algorithm is found to be an efficient way to solve the robust optimization model built for the impeller of the mixed-flow pump.A two-loop iterative optimization method is specially designed to upgrade the sample space and surrogate model with the optimization process, which ensures the rationality of the optimization direction, as well as the acquisition of the global optimal solutions.

    4)By comparing the hydraulic performance and internal flow field of the original and optimized pump, it is found that the hydraulic performance, the optimality and stability of the internal flow field of the pump under variable operating conditions are impro-ved, and influence the degree of the variation of ope-rating parameters is weakened.The robust optimization method proposed in this paper proves to be a reasonable way to optimize the mixed-flow pump, and provides references for optimization problems of other fluid machinery.

    国产成人福利小说| 欧美成人精品欧美一级黄| 长腿黑丝高跟| 12—13女人毛片做爰片一| 亚洲欧美日韩东京热| 日韩欧美国产在线观看| 51国产日韩欧美| 亚洲av一区综合| 久久亚洲精品不卡| 色综合色国产| 99久久成人亚洲精品观看| а√天堂www在线а√下载| 日韩三级伦理在线观看| 久久精品国产自在天天线| 亚洲激情五月婷婷啪啪| 少妇高潮的动态图| 久久久久久久久中文| 国产色爽女视频免费观看| 老师上课跳d突然被开到最大视频| 一级黄片播放器| 亚洲四区av| 91久久精品国产一区二区成人| 免费高清视频大片| 日韩欧美一区二区三区在线观看| 婷婷精品国产亚洲av在线| 国产视频一区二区在线看| 久久精品国产亚洲av涩爱 | 别揉我奶头~嗯~啊~动态视频| 亚洲婷婷狠狠爱综合网| 成人午夜高清在线视频| 国产一区二区在线av高清观看| 九九久久精品国产亚洲av麻豆| 少妇人妻一区二区三区视频| 美女免费视频网站| 国产爱豆传媒在线观看| 国产极品精品免费视频能看的| a级一级毛片免费在线观看| 国产高清三级在线| 国产乱人偷精品视频| 在线播放国产精品三级| 欧美成人免费av一区二区三区| 最新在线观看一区二区三区| 国产日韩欧美视频二区| 插阴视频在线观看视频| 卡戴珊不雅视频在线播放| av国产精品久久久久影院| 亚洲精品国产成人久久av| 大片电影免费在线观看免费| 2018国产大陆天天弄谢| 一级片'在线观看视频| 少妇被粗大猛烈的视频| 亚洲熟女精品中文字幕| 精品人妻偷拍中文字幕| 精品国产一区二区三区久久久樱花| 亚洲欧美日韩东京热| 成人午夜精彩视频在线观看| 成人美女网站在线观看视频| 中文字幕免费在线视频6| 亚洲欧美日韩另类电影网站| 久久午夜福利片| 美女福利国产在线| av天堂久久9| 99热网站在线观看| 国内揄拍国产精品人妻在线| 成人黄色视频免费在线看| 只有这里有精品99| 久久久亚洲精品成人影院| 欧美xxⅹ黑人| 国产女主播在线喷水免费视频网站| 免费av不卡在线播放| 欧美激情国产日韩精品一区| 国产毛片在线视频| 亚洲丝袜综合中文字幕| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久国产电影| 亚洲精品国产av蜜桃| 一级黄片播放器| 男女边摸边吃奶| 久久久久久伊人网av| 婷婷色麻豆天堂久久| 日产精品乱码卡一卡2卡三| 国产黄色免费在线视频| 91久久精品电影网| 国产成人精品福利久久| 中国美白少妇内射xxxbb| 成人美女网站在线观看视频| 成年av动漫网址| 男女无遮挡免费网站观看| 大又大粗又爽又黄少妇毛片口| 免费黄网站久久成人精品| av卡一久久| 久久久久人妻精品一区果冻| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av电影在线观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产男人的电影天堂91| 国产精品三级大全| 夫妻午夜视频| 国产亚洲午夜精品一区二区久久| 亚洲精品国产色婷婷电影| 各种免费的搞黄视频| 久久精品国产自在天天线| 精品人妻偷拍中文字幕| 高清黄色对白视频在线免费看 | 久久精品久久精品一区二区三区| 少妇裸体淫交视频免费看高清| 国产精品女同一区二区软件| 少妇猛男粗大的猛烈进出视频| 国产综合精华液| 一区二区三区四区激情视频| 亚洲色图综合在线观看| 国产高清有码在线观看视频| 成人漫画全彩无遮挡| 青春草亚洲视频在线观看| 啦啦啦在线观看免费高清www| 日本与韩国留学比较| 三级国产精品欧美在线观看| 日韩一本色道免费dvd| 少妇人妻 视频| 国产精品人妻久久久影院| 国产精品国产三级国产av玫瑰| av播播在线观看一区| 汤姆久久久久久久影院中文字幕| 中文欧美无线码| 自拍偷自拍亚洲精品老妇| av福利片在线| 看十八女毛片水多多多| 97超碰精品成人国产| 大香蕉久久网| 伦理电影大哥的女人| 欧美最新免费一区二区三区| 欧美最新免费一区二区三区| 色94色欧美一区二区| 国产黄片美女视频| 22中文网久久字幕| 91午夜精品亚洲一区二区三区| 在线观看免费日韩欧美大片 | 少妇高潮的动态图| 欧美日韩一区二区视频在线观看视频在线| 亚洲成人av在线免费| 亚洲av二区三区四区| 日日摸夜夜添夜夜添av毛片| 日韩欧美一区视频在线观看 | 久久久午夜欧美精品| 精华霜和精华液先用哪个| 女人精品久久久久毛片| 亚洲自偷自拍三级| 亚洲欧洲日产国产| 色视频在线一区二区三区| 国产成人a∨麻豆精品| 国产成人aa在线观看| 黄色视频在线播放观看不卡| 久久精品夜色国产| 国产精品一二三区在线看| 国产无遮挡羞羞视频在线观看| 亚洲精品中文字幕在线视频 | av专区在线播放| 国产av一区二区精品久久| 久久久久久久久久成人| 伦理电影大哥的女人| 午夜福利在线观看免费完整高清在| 纵有疾风起免费观看全集完整版| 亚洲av日韩在线播放| 插逼视频在线观看| 日韩,欧美,国产一区二区三区| 免费看光身美女| 人人妻人人爽人人添夜夜欢视频 | 亚洲第一区二区三区不卡| 高清午夜精品一区二区三区| 久久热精品热| 五月伊人婷婷丁香| 丰满人妻一区二区三区视频av| av一本久久久久| 亚洲国产最新在线播放| 久久久久网色| 国产乱来视频区| 国产爽快片一区二区三区| 一级爰片在线观看| kizo精华| 熟女电影av网| 国产精品成人在线| 国产欧美另类精品又又久久亚洲欧美| 欧美另类一区| 丰满少妇做爰视频| 亚洲欧美一区二区三区国产| 国产精品伦人一区二区| 涩涩av久久男人的天堂| 两个人免费观看高清视频 | 色吧在线观看| 亚洲精品国产成人久久av| 卡戴珊不雅视频在线播放| 国内精品宾馆在线| 免费看av在线观看网站| 免费黄频网站在线观看国产| 日韩在线高清观看一区二区三区| av有码第一页| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久久久久婷婷小说| 国内少妇人妻偷人精品xxx网站| 22中文网久久字幕| 2022亚洲国产成人精品| 免费人妻精品一区二区三区视频| 一区二区av电影网| 久久ye,这里只有精品| 丰满迷人的少妇在线观看| 美女cb高潮喷水在线观看| 欧美日韩av久久| 午夜激情福利司机影院| 精品一区二区三区视频在线| 国产精品嫩草影院av在线观看| 色婷婷久久久亚洲欧美| 国产片特级美女逼逼视频| 狂野欧美白嫩少妇大欣赏| 在线亚洲精品国产二区图片欧美 | 日韩亚洲欧美综合| 天堂俺去俺来也www色官网| 新久久久久国产一级毛片| 岛国毛片在线播放| 国产 一区精品| 视频中文字幕在线观看| 亚洲综合精品二区| 久久精品国产a三级三级三级| 80岁老熟妇乱子伦牲交| 人妻制服诱惑在线中文字幕| 肉色欧美久久久久久久蜜桃| 免费人妻精品一区二区三区视频| 亚洲伊人久久精品综合| 日本猛色少妇xxxxx猛交久久| 在线观看人妻少妇| 人人妻人人看人人澡| 国产成人精品福利久久| av在线观看视频网站免费| 丰满人妻一区二区三区视频av| 一级二级三级毛片免费看| 2021少妇久久久久久久久久久| 中文字幕制服av| 少妇的逼水好多| 亚洲av日韩在线播放| 极品人妻少妇av视频| 大片电影免费在线观看免费| 校园人妻丝袜中文字幕| 国产精品嫩草影院av在线观看| 啦啦啦啦在线视频资源| 久久婷婷青草| 亚洲无线观看免费| 最近中文字幕2019免费版| 国产免费福利视频在线观看| 汤姆久久久久久久影院中文字幕| 国产精品秋霞免费鲁丝片| 久久久久视频综合| 男女国产视频网站| 综合色丁香网| 国产在视频线精品| 18禁动态无遮挡网站| 欧美变态另类bdsm刘玥| 肉色欧美久久久久久久蜜桃| 久久精品国产自在天天线| 国产综合精华液| 国产在视频线精品| 麻豆乱淫一区二区| av在线app专区| 国产精品一区二区三区四区免费观看| 国产成人精品无人区| 亚洲怡红院男人天堂| 少妇裸体淫交视频免费看高清| 狂野欧美激情性bbbbbb| 97在线人人人人妻| 在线播放无遮挡| 少妇高潮的动态图| 国产免费一级a男人的天堂| 国产一区二区三区av在线| 亚洲伊人久久精品综合| 欧美另类一区| 久久韩国三级中文字幕| 乱系列少妇在线播放| 亚洲成人一二三区av| tube8黄色片| a级片在线免费高清观看视频| 黄色日韩在线| 中文欧美无线码| 一边亲一边摸免费视频| 久久97久久精品| 欧美成人精品欧美一级黄| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产精品999| 男女免费视频国产| www.色视频.com| 亚洲色图综合在线观看| 少妇 在线观看| 一级爰片在线观看| 亚洲第一区二区三区不卡| 少妇丰满av| 午夜福利视频精品| 久久久久久久国产电影| 国产精品.久久久| 国产亚洲5aaaaa淫片| 亚洲伊人久久精品综合| 伦理电影免费视频| 一级毛片我不卡| 91精品国产九色| 成年女人在线观看亚洲视频| 久久久久久久久久久免费av| 精品人妻偷拍中文字幕| 国产欧美日韩综合在线一区二区 | 国产精品一区二区在线不卡| 日韩欧美精品免费久久| 国产无遮挡羞羞视频在线观看| 少妇的逼水好多| 亚洲第一区二区三区不卡| 桃花免费在线播放| 夜夜骑夜夜射夜夜干| 丁香六月天网| 九九在线视频观看精品| 精品久久久久久电影网| 丰满少妇做爰视频| 极品少妇高潮喷水抽搐| 久久久久久久久久成人| 男人舔奶头视频| 高清av免费在线| av不卡在线播放| 精品亚洲成a人片在线观看| 精品少妇黑人巨大在线播放| 午夜日本视频在线| 国产精品免费大片| 久久国内精品自在自线图片| 内地一区二区视频在线| 国产男女超爽视频在线观看| 亚洲av成人精品一二三区| 偷拍熟女少妇极品色| 麻豆精品久久久久久蜜桃| 人妻 亚洲 视频| 日韩人妻高清精品专区| 日韩av免费高清视频| 曰老女人黄片| 久久av网站| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区蜜桃 | 免费不卡的大黄色大毛片视频在线观看| 激情五月婷婷亚洲| 色婷婷久久久亚洲欧美| 高清在线视频一区二区三区| 国产老妇伦熟女老妇高清| 韩国高清视频一区二区三区| 亚洲国产精品999| 久久精品国产自在天天线| 夜夜骑夜夜射夜夜干| tube8黄色片| 国产永久视频网站| 免费av中文字幕在线| 亚洲av免费高清在线观看| 午夜免费男女啪啪视频观看| 日韩不卡一区二区三区视频在线| 99久久综合免费| 国产精品蜜桃在线观看| 国产在线视频一区二区| 免费人妻精品一区二区三区视频| 国产男女内射视频| 久久国内精品自在自线图片| 国产精品麻豆人妻色哟哟久久| 欧美xxⅹ黑人| 国产精品欧美亚洲77777| 午夜激情福利司机影院| 中文资源天堂在线| 如日韩欧美国产精品一区二区三区 | 热re99久久精品国产66热6| 成人午夜精彩视频在线观看| 天堂中文最新版在线下载| 国产精品国产三级国产av玫瑰| 少妇裸体淫交视频免费看高清| 日韩一区二区三区影片| 欧美人与善性xxx| 亚洲美女视频黄频| 国产免费一区二区三区四区乱码| 高清在线视频一区二区三区| 亚洲电影在线观看av| 啦啦啦在线观看免费高清www| 日韩一本色道免费dvd| 亚洲av成人精品一二三区| 毛片一级片免费看久久久久| av在线app专区| 免费观看av网站的网址| 大片电影免费在线观看免费| 精品人妻熟女av久视频| 人人妻人人看人人澡| 亚洲精品,欧美精品| 天堂8中文在线网| 老女人水多毛片| 国产精品国产三级专区第一集| 王馨瑶露胸无遮挡在线观看| 蜜桃在线观看..| 欧美bdsm另类| 国产淫片久久久久久久久| 色5月婷婷丁香| 国产成人免费观看mmmm| 欧美日韩av久久| 久久精品国产亚洲av涩爱| 亚洲av.av天堂| 一级黄片播放器| 亚洲经典国产精华液单| 国产男人的电影天堂91| 国产乱来视频区| 插逼视频在线观看| a级毛片免费高清观看在线播放| 国产精品久久久久久精品古装| 亚洲电影在线观看av| 欧美另类一区| 日本91视频免费播放| 精品熟女少妇av免费看| 中国国产av一级| 99热这里只有精品一区| av网站免费在线观看视频| 国产av国产精品国产| 精品久久久噜噜| a级毛片在线看网站| 9色porny在线观看| 香蕉精品网在线| 女性生殖器流出的白浆| 我的女老师完整版在线观看| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 99热国产这里只有精品6| 春色校园在线视频观看| 午夜免费男女啪啪视频观看| 国产一区二区在线观看日韩| 婷婷色综合www| 国产又色又爽无遮挡免| 亚洲av国产av综合av卡| 亚洲国产精品一区三区| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 亚洲国产精品999| 亚洲国产av新网站| 亚洲四区av| 日韩电影二区| 日韩av不卡免费在线播放| 在线观看国产h片| 91精品国产九色| 欧美最新免费一区二区三区| 日韩中文字幕视频在线看片| 国产日韩欧美视频二区| 成年人免费黄色播放视频 | 色婷婷av一区二区三区视频| 热99国产精品久久久久久7| 国产av一区二区精品久久| 国产黄片视频在线免费观看| 亚洲,一卡二卡三卡| 欧美 亚洲 国产 日韩一| 女人久久www免费人成看片| 色视频在线一区二区三区| 国产毛片在线视频| 97在线视频观看| 亚洲丝袜综合中文字幕| 九色成人免费人妻av| 国产免费又黄又爽又色| 高清av免费在线| 精品一品国产午夜福利视频| xxx大片免费视频| 日韩视频在线欧美| 国产男女内射视频| a级一级毛片免费在线观看| 有码 亚洲区| 午夜影院在线不卡| 精品午夜福利在线看| 国产精品麻豆人妻色哟哟久久| 一本色道久久久久久精品综合| 一区二区三区免费毛片| 久久久久久久久久成人| 亚洲精品久久午夜乱码| 黄色一级大片看看| 一区二区三区四区激情视频| 国产在线视频一区二区| 亚洲av电影在线观看一区二区三区| 男女无遮挡免费网站观看| 国产亚洲欧美精品永久| 国产色婷婷99| 日本猛色少妇xxxxx猛交久久| 国产伦精品一区二区三区四那| 免费久久久久久久精品成人欧美视频 | 久久久久久久大尺度免费视频| av播播在线观看一区| 建设人人有责人人尽责人人享有的| 大话2 男鬼变身卡| 在现免费观看毛片| 亚洲国产精品一区二区三区在线| 国产精品久久久久久精品电影小说| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 国产女主播在线喷水免费视频网站| 日韩亚洲欧美综合| 国产精品一区二区性色av| 日本欧美国产在线视频| 亚洲欧美一区二区三区黑人 | 一个人免费看片子| h视频一区二区三区| 最新中文字幕久久久久| 国产无遮挡羞羞视频在线观看| 亚洲av国产av综合av卡| 中文字幕精品免费在线观看视频 | 男女国产视频网站| 国产成人精品一,二区| 菩萨蛮人人尽说江南好唐韦庄| 一级av片app| 日韩一本色道免费dvd| 国产精品久久久久成人av| 久久久久国产网址| 久久午夜综合久久蜜桃| 久久狼人影院| 国产成人免费观看mmmm| 九九爱精品视频在线观看| 欧美日韩在线观看h| 国产 精品1| 午夜福利在线观看免费完整高清在| 卡戴珊不雅视频在线播放| 中国美白少妇内射xxxbb| √禁漫天堂资源中文www| 又黄又爽又刺激的免费视频.| 亚洲欧洲国产日韩| 免费看日本二区| 午夜日本视频在线| 国产片特级美女逼逼视频| 午夜福利在线观看免费完整高清在| 啦啦啦视频在线资源免费观看| 伦精品一区二区三区| 激情五月婷婷亚洲| h视频一区二区三区| 久久久国产一区二区| 成人美女网站在线观看视频| 亚洲av.av天堂| 在线观看人妻少妇| 丰满人妻一区二区三区视频av| 老熟女久久久| 五月伊人婷婷丁香| 啦啦啦啦在线视频资源| 一区二区三区精品91| 亚洲人与动物交配视频| a级毛片在线看网站| 狂野欧美激情性bbbbbb| 日韩av不卡免费在线播放| 简卡轻食公司| 亚洲精品aⅴ在线观看| 老司机亚洲免费影院| 亚洲第一区二区三区不卡| 午夜福利影视在线免费观看| 亚洲经典国产精华液单| 免费观看无遮挡的男女| 日韩在线高清观看一区二区三区| 国产精品欧美亚洲77777| 中文字幕久久专区| 色哟哟·www| av视频免费观看在线观看| √禁漫天堂资源中文www| 久久久a久久爽久久v久久| www.色视频.com| 黑人巨大精品欧美一区二区蜜桃 | 麻豆乱淫一区二区| 日韩av不卡免费在线播放| 国产片特级美女逼逼视频| 熟女电影av网| 一区二区三区免费毛片| www.av在线官网国产| 观看美女的网站| 亚洲精品一二三| 有码 亚洲区| 欧美一级a爱片免费观看看| 亚洲伊人久久精品综合| 午夜精品国产一区二区电影| 深夜a级毛片| 三级国产精品片| 日日啪夜夜撸| 狂野欧美白嫩少妇大欣赏| 天天操日日干夜夜撸| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| av卡一久久| 性高湖久久久久久久久免费观看| 日本av手机在线免费观看| 国产精品人妻久久久久久| 国产男女内射视频| 免费少妇av软件| 久久久久视频综合| 一个人免费看片子| 色婷婷av一区二区三区视频| videos熟女内射| 777米奇影视久久| av视频免费观看在线观看| 日韩大片免费观看网站| 亚洲av成人精品一区久久| 亚洲自偷自拍三级| 久久精品熟女亚洲av麻豆精品| 中文精品一卡2卡3卡4更新| 成人综合一区亚洲| 一边亲一边摸免费视频| 日韩精品免费视频一区二区三区 | 曰老女人黄片| 22中文网久久字幕| 国产中年淑女户外野战色| 一区二区三区精品91| 婷婷色av中文字幕| 少妇被粗大猛烈的视频| 成年av动漫网址| 日韩制服骚丝袜av| 乱码一卡2卡4卡精品| 一本—道久久a久久精品蜜桃钙片| 日本91视频免费播放| 97超视频在线观看视频| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| 日本欧美视频一区| 久久人人爽人人爽人人片va| h视频一区二区三区| 日韩强制内射视频| 欧美+日韩+精品|