• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Glomerular podocyte dysfunction in inherited renal tubular disease

    2021-07-15 01:41:22LiMinHuangJianHuaMao
    World Journal of Pediatrics 2021年3期

    Li-Min Huang· Jian-Hua Mao

    Abstract Background Hereditary renal tubular disease can cause hypercalciuria, acid-base imbalance, hypokalemia, hypomagnesemia, rickets, kidney stones, etc.If these diseases are not diagnosed or treated in time, they can cause kidney damage and electrolyte disturbances, which can be detrimental to the maturation and development of the child.Glomerular involvement in renal tubular disease patients has only been considered recently.Methods We screened 71 papers (including experimental research, clinical research, etc.) about Dent's disease, Gitelman syndrome, and cystinosis from PubMed, and made reference.Results Glomerular disease was initially underestimated among the clinical signs of renal tubular disease or was treated merely as a consequence of the tubular damage.Renal tubular diseases affect glomerular podocytes through certain mechanisms resulting in functional damage, morphological changes, and glomerular lesions.Conclusions This article focuses on the progress of changes in glomerular podocyte function in Dent disease, Gitelman syndrome, and cystinosis for the purposes of facilitating clinically accurate diagnosis and scientific treatment and improving prognosis.

    Keywords Cystinosis · Dent disease · Gitelman syndrome · Podocyte · Renal tubule disease

    Introduction

    The renal tubule is an important part of the kidney that determines the body's water-electrolyte and acid-base balance, reabsorbs nutrients, and concentrates or dilutes the urine.Renal tubular disease can cause hypercalciuria, acid-base imbalance, hypokalemia, hypomagnesemia, rickets, kidney stones, etc.If these diseases are not diagnosed and treated in time, they can hinder the maturation and development of the child and cause long-term recurrent kidney stones or electrolyte imbalances, exacerbating kidney impairment.Kidney tubular diseases in children are typically genetic, including Gitelman syndrome, Dent disease, and cystinosis (CTNS).

    Podocytes are important intrinsic cells of the glomerulus that receive various pathological stimuli.Architecturally, the glomerulus or renal corpuscle consists of aglomerular tuft and Bowman's capsule.The basic unit of the glomerular tuft is a single capillary.The glomerular basement membrane (GBM) provides the primary structural scaffold for the glomerular tuft.Endothelial and smooth muscle-like mesangial cells providing capillary support are located inside the GBM, whereas podocytes are attached to the outer part of the GBM [1].Podocytes constitute the molecular and charge barrier of the glomerular filtration membrane, withstanding the force per unit area in the glomeruli.Podocyte foot processes elaborate into a highly branched interdigitating network with foot processes of neighboring podocytes.The slit diaphragm bridges the filtration slits between opposing podocyte foot processes [2], thereby establishing the final barrier to urinary protein loss [3].The podocyte adjusts and maintains homeostasis, although excessive stress can lead to maladjustment, accompanied by complex biological changes, including loss of integrity and abnormal metabolism (the results are foot processes effacement refl ected by the simplification of the foot processes structure and loss of the normal interdigitating pattern and proteinuria [4]).The latest developments in the interaction between the renal tubule and podocytes and the functional changes of podocytes in renal tubular diseases are summarized below.

    Podocyte changes in Dent disease

    Dent disease is a rare X-linked recessive renal disorder that is found almost exclusively in males, manifested as renal tubular disease, hypercalciuria, and renal tubular proteinuria.Dent disease is characterized by low-molecular-weight (LMW) proteinuria, hypercalciuria, kidney stones, variable manifestations of proximal tubular dysfunction, and progressive renal failure, which ultimately leads to chronic kidney disease in adulthood [5, 6].Dent disease may vary in clinical presentation with proteinuria alone or in combination with nephrocalcinosis or nephrolithiasis, with or without chronic kidney disease [7].Dent disease can start in early childhood, usually before the age of ten [8, 9].Asymptomatic cases are occasionally diagnosed in adult age, while 30-80% of patients aged between 30 and 50 years old will progress to end-stage renal disease [10- 12].In approximately 65% of patients, mutations of chloride voltage-gated channel 5 gene (CLCN5) are responsible for Dent disease type 1 [13, 14], while in 10-15% of patients, mutations in the oculocerebrorenal syndrome of Lowe gene (OCRL) cause Dent disease type 2 [15].The remaining 25% of patients have a Dent disease phenotype, but specific genetic mutations have not been described [9, 16].

    In recent years, glomerular involvement in Dent disease has been considered.Since the discovery ofCLCN5andOCRLexpression in the glomerular compartment, a new theory has emerged according to which these two proteins' loss of function lead to primary glomerular cell damage [17, 18].Glomerular damage accounted for the nephroticrange proteinuria observed in more than 30% of patients with Dent disease [19].CLCN5encodes for electrogenic chloride channel Cl - /H + antiporter ClC-5 that is primarily expressed in proximal tubular cells, but it is also expressed in epithelial cells of ascending limb of loop of Henle and alpha intercalated cells of collecting duct [20].Proximal tubular cells also reportedly expressCLCN5in the brush border plasma membrane, where it is needed for LMW protein reabsorption [20].There is increasing evidence of glomerular protein handling by podocytes [21- 23].CLCN5encoded protein ClC-5, plays a role in the uptake of LMW proteins through receptor-mediated proximal tubule endocytosis.Human podocytes were also demonstrated to be capable of internalizing albumin predominantly through a cubilin-amnionless mediated mechanism.Furthermore, the excess albumin environment induced an increase inCLCN5expression in these cells [21].Overexpression ofCLCN5found in biopsies of patients with proteinuria suggests that this condition may play a role in its expression, and podocytes may play a key role in albumin processing therein [17].Similar to proximal tubular cells, the endocytosis mechanism plays a role in podocytes and in maintaining the glomerular filtration barrier [24].The importance of endocytosis in podocyte homeostasis is confirmed [21, 25, 26].

    Gianesello et al.demonstrated that human podocytes were able to internalize albumin under normal condition, suggesting that these cells are committed to protein uptake [21].At the proximal renal tubular level, ClC-5 (encoded byCLCN5) and Megalin (encoded byLRP2) are part of a molecular complex involved in the endocytosis and reuptake of LMW proteins and albumin.Piwon et al.showed that disruption of the mouseCLCN5gene causes proteinuria by strongly reducing apical proximal tubular endocytosis.Both receptor-mediated and fl uid phase endocytosis are affected [27].In addition to renal tubular dysfunction,CLCN5mutations may also cause podocyte dysfunction, leading to histological manifestations of focal segmental glomerulosclerosis [28- 30].Compared with the control group,CLCN5knock down human podocytes have a reduced proliferation rate, increased cell migration rate as assessed by the scratch test, and a defect in the endocytosis of transferrin [28].It is reported that the increased cell migration rate is abnormal and is a sign of podocyte damage [31- 34].Glomerulosclerosis was a common finding in kidney biopsies from patients with Dent disease type 1 [35].Bignon et al.[6] provided some evidence that focal segmental glomerulosclerosis or focal global glomerulosclerosis observed in Dent disease might be the result of primary podocyte injury independent of tubular injury.

    Mutations in theOCRLgene cause both Dent disease type 2 and Lowe syndrome [36], suggesting a genotypephenotype correlation [37].The condition of patients with Dent disease type 2 is mild, and renal impairment is milder than in patients with Lowe syndrome [12].Renal calculi in patients with Dent disease type 2 are considerably less than in patients with Dent disease type 1 [38].TheOCRLgene is expressed in all human cells except cells of hematopoietic origin, it is widely expressed in the kidney, including the glomerulus and most tubular segments [39, 40].TheOCRLgene was very recently reported to be more widely expressed in human glomeruli thanCLCN5-the former in podocytes, mesangial cells and endothelial cells, the latter in podocytes and parietal epithelial cell (PECs) [18].Whereas theOCRLis expressed in podocytes, mesangial cells and endothelial cells,CLCN5is expressed in podocytes and PECs [18].OCRLis primarily expressed in the trans-Golgi network, early endosomes, and lysosomes (in HeLa, normal rat kidney NRK, and COS-7 cells, fibroblasts, zebrafish embryos) [41- 43].It was suggested that OCRL is involved in regulating endocytic trafficking, actin cytoskeleton dynamics, and slit diaphragm maintenance.Mutations of theOCRLgene could disrupt these mechanisms, thereby inducing glomerular damage [18].Given that mutations inCLCN5andOCRLproduce very similar kidney defects in human patients [44], one might expect that CLC-5 and OCRL cooperate in a similar or shared cellular process.OCRLis located at various positions in the sequence encoding the endocytosis pathway and is thought to play a role by coupling the endocytotic membrane with dephosphorylation of inositol 5-phosphatase [41, 45].Preston et al.[18] showed thatOCRLis expressed in podocytes in vivo and is able to interact withCD2AP, an important protein whose function is to maintain the slit dia-phragm between adjacent podocyte foot processes.Their results raise the possibility that defectiveOCRLcan directly cause a glomerulopathy.The functions ofOCRLand protonchloride ion-exchange transporter 5 are concentrated on a shared mechanism, and their damage has a significant effect on proximal tubule endocytosis [46].Podocyte foot process effacement was discovered in patients with Dent disease, which suggested that glomerulosclerosis in these patients might be the result of a combination of primary podocyte injury and a reaction secondary to tubulointerstitial lesions (tubulointerstitial injury was commonly present and associated with the proportion of globally sclerotic glomeruli) [35].

    Podocyte changes in Gitelman syndrome

    Gitelman syndrome, also known as familial hypokalemiahypomagnesemia, is an autosomal recessive salt loss renal tubular disease characterized by hypomagnesemia, hypocalciuria, and hyperaldosteronism, the cause of hypokalemia and metabolic alkalosis [47].Gitelman syndrome is typically caused by mutations in theSLC12A3gene encoding the thiazide-sensitive NaCl cotransporter or theCLCNKBgene encoding the chloride channel ClC-Kb [48].Most cases are caused by mutations in theSLC12A3gene, and more than 140 differentSLC12A3mutations have been identified in patients with Gitelman syndrome.In most cases, symptoms do not appear before the age of six, and the disease is usually diagnosed during adolescence or adulthood.

    According to reports, renal biopsy in patients with Gitelman syndrome showed an enlarged proximal tubule and thickened mesangium under a light microscope [49].Similar observations were made in renal biopsies fromSLC12A3knockout mice, showing thickened GBM in a wide range of segments, with the thickness of these irregular GBMs accompanied by podocyte foot processes.The disappearance and occasional formation of pseudocysts in podocytes confirm the potential association of glomerular defects with Gitelman syndrome [49].The lesions observed in this case and the mouse model suggest that there may be a link between the loss of NaCl cotransporter function and podocyte dysfunction.One hypothesis is that the chronic activation of the renin-angiotensin-aldosterone pathway leads to increased systemic and local levels of angiotensin II (Ang II) and renin, which may in turn cause podocyte damage.

    Mechanical stress of podocytes stimulates local Ang II synthesis by non-angiotension converting enzyme pathways that presumably involve chymase [50].Ang II induces transforming growth factor-β1 (TGF-β1) in the various renal cells [51, 52].TGF-β is well-known among growth factors for its potent and widespread actions.Almost every cell in the body has been shown to make some form of TGF-β, and almost every cell expresses receptors for TGF-β.TGF-β plays an important role in podocyte isolation [53- 55].One paper showed that TGF-β1 reduced nephrin expression in conditionally immortalized human podocytes [56].Ang II has a direct effect on the integrity of the ultrafiltration barrier and reduces the cell surface and extracellular matrix of podocytes.Ang II reduces the synthesis of negatively charged proteoglycans [57, 58].Complete nephrin (nephropathy protein)-nephrin signaling is important for podocyte survival; thus, Ang II-mediated nephrin inhibition leads to podocyte apoptosis [58].Ang II stimulates albumin endocytosis in proximal tubule cells via Ang II type 2 receptor-mediated protein kinase B activation.However, an increase in tubular albumin reabsorption activates the tubular renin-angiotensin-aldosterone system, leading to a vicious circle [59].In another report of Gitelman syndrome, renal biopsy showed severe non-apoptotic podocyte detachment in the glomeruli and thickening of the intimal fibers of the small arteries [60].

    Podocyte changes in cystinosis

    CTNS is an autosomally recessive lysosomal storage disease caused by a deficiency of cystinosin (a lysosomal membrane cystine transporter).This defect causes cystine to crystallize in the lysosomes of many tissues, particularly in the kidneys and cornea.Renal manifestations of CTNS include Fanconi syndrome, mild proteinuria, and progressive renal failure.CTNS is caused by a pathogenic mutation in the humanCTNSgene encoding cystinosin [61].The kidney is initially affected by widespread proximal tubular dysfunction, which rapidly affects the glomeruli and progresses into end-stage renal failure and multiple organ dysfunction.The accumulation of cystine may involve abnormal nuclear division, with a lack of cytokinesis in the injured podocytes resulting in the appearance of multinucleation [62].This provides further evidence for the diagnosis of cystine disease.Sharma et al.found that a patient had extensive giant cell transformation of glomerular podocytes, accompanied by focal atrophy and expansion of renal tubules [63].

    Studies have shown that theCTNSgene is essential for the function of zebrafish anterior renal podocytes and proximal renal tubules.Anterior kidneys ofCTNS-knockout zebrafish show enlarged lysosomes in proximal renal tubular cells, part of podocytes disappear, and slit membrane stenosis [64].Podocytes can move in the glomerulus and break through the Bowman's capsule and be, rapidly replaced by a stellate cell.This change in podocyte movement is considered to be the basis of the disappearance of the foot process and proteinuria [65].The number of podocytes in the urine of patients with cystine disease is considerably greater than in the urine of normal subjects.The impaired ability of cells to adhere to substrates may be the cause of mass loss of glomerular podocytes, resulting in damage in this region.Increased movement of podocytes lacking cystinosin is associated with increased phosphorylation of protein kinases [66].Protein kinase 1 is predominantly expressed in the proximal tubules of the kidney, while protein kinase 2 is mainly expressed in the glomeruli, which protects the glomeruli and prevents podocyte dedifferentiation and death [67].

    Podocyte injury mechanism in renal tubular diseases

    Mechanical injury

    Podocyte detachment in Gitelman syndrome may be related to obstruction of the nephron and decreased protein expression.Mechanical stretching and TGF-β stress may induce podocyte apoptosis or separation from the GBM [68].In cystine disease, cystine crystals are deposited in podocyte lysosomes, resulting in the appearance of multinucleation, changes in the cytoskeleton, and enhanced podocyte motility, etc.

    Gene defects cause podocyte damage

    SLC12A3gene mutation can cause podocyte non-apoptotic detachment.CLCN5-mutated podocytes undergo endocytosis and reduced proliferative ability, accompanied by enhanced migration ability [28].Furthermore, these mutations cause changes in the podocyte cytoskeleton, damage podocyte adhesion sites, and enhance the mobility of individual podocytes, causing detachment and death.

    Pro-infl ammatory factors and cytokines

    Ang II can induce proteinuria through hemodynamic and non-hemodynamic mechanisms involving vascular endothelial growth factor and TGF-β1 [69].Contrary to physiological conditions, the pathophysiology of podocyte injury is generally related to increased expression of TGF-β, which plays an important role in podocyte isolation [70].In response to TGF-β and other TGF-dependent stimuli, mature podocytes undergo dedifferentiation, resulting in the disappearance of foot processes.

    Epigenetics

    A decrease in sirtuin 1 (Sirt1) expression in the renal tubules causes a decrease in Sirt1 levels in the glomeruli, suggesting that molecular changes in the renal tubules induce phenotypic changes in the glomeruli and podocytes, with the disappearance of more podocytes.Additionally, this reveals the role of nicotinamide mononucleotide as a mediator of interaction between renal tubular cells and podocytes, as nicotinamide mononucleotide derived from renal tubular cells is absorbed by podocytes [71] (Fig.1).

    Fig.1 Podocyte injury mechanism in renal tubular diseases.FSGS focal segmental glomerulosclerosis, FGGS focal global glomerulosclerosis, LMW low-molecular-weight, CLCN5 chloride voltage-gated channel 5 gene, CD2AP CD2-associated protein, GBM glomerular basement membrane, RAAS renin-angiotensin-aldosterone system, CTNS cystinosis, CKD chronic kidney disease, TGF-? transforming growth factor-β, PF podocyte foot, SD slit diaphragm, Ang II angiotensin II

    Conclusions

    To study podocyte damage and its mechanism in inherited renal tubular disease, from a clinical perspective, it is useful to explain the phenotype of glomerular lesions in patients with renal tubular disease, to guide clinical treatment and prognosis.Research into the glomerulus-tubule dialogue and mutual feedback pathways should be further investigated.Moreover, further research on the specific roles and molecular mechanisms involved in functioning of glomerulus, renal tubules, etc., should be expanded.

    This article reviewed the glomerular podocyte damage caused by the three inherited renal tubular diseases, Gitelman syndrome, Dent disease, and cystine disease.However, other renal tubular diseases may affect glomerular podocyte morphology, abnormal function, and quantity, and affect the phenotype and prognosis of patients.From this perspective, actively exploring podocyte lesions of the renal tubular disease may have important clinical significance.

    Author contributionsHLM wrote the initial draft.MJH reviewed and revised the manuscript.All authors approved the final version.

    FundingNo financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

    Compliance with ethical standards

    Ethical approvalNot needed.

    Conflict of interestAll authors disclosed no confl ict of interest.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material.If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.To view a copy of this licence, visit http://creat iveco mmons.org/licen ses/by/4.0/.

    色综合婷婷激情| 久久久成人免费电影| 国产私拍福利视频在线观看| 免费大片18禁| 日韩欧美 国产精品| 黄色日韩在线| 国产三级在线视频| 哪里可以看免费的av片| 日韩 欧美 亚洲 中文字幕| 亚洲18禁久久av| 两个人视频免费观看高清| 别揉我奶头~嗯~啊~动态视频| 欧美成人免费av一区二区三区| 高潮久久久久久久久久久不卡| 免费在线观看视频国产中文字幕亚洲| 久久久久久人人人人人| 精品国产美女av久久久久小说| 成人特级av手机在线观看| 久久久久久久精品吃奶| 国产成人欧美在线观看| 成人欧美大片| 一区二区三区激情视频| 最新中文字幕久久久久 | 操出白浆在线播放| av黄色大香蕉| 欧美日韩国产亚洲二区| 日韩欧美国产一区二区入口| АⅤ资源中文在线天堂| 成人无遮挡网站| 国产日本99.免费观看| 国产在线精品亚洲第一网站| 成年版毛片免费区| 村上凉子中文字幕在线| 一个人免费在线观看的高清视频| 国产淫片久久久久久久久 | 久久人人精品亚洲av| 久久中文看片网| 亚洲欧美一区二区三区黑人| 成人鲁丝片一二三区免费| 高潮久久久久久久久久久不卡| 国产乱人伦免费视频| 久久人人精品亚洲av| 1024香蕉在线观看| 免费搜索国产男女视频| aaaaa片日本免费| 久久久久国产一级毛片高清牌| 亚洲 欧美一区二区三区| 岛国在线观看网站| 久久人人精品亚洲av| 19禁男女啪啪无遮挡网站| 噜噜噜噜噜久久久久久91| 国产精华一区二区三区| 久久久久精品国产欧美久久久| 无限看片的www在线观看| 久久国产精品影院| 身体一侧抽搐| 18禁国产床啪视频网站| 99国产精品一区二区蜜桃av| 亚洲第一欧美日韩一区二区三区| 麻豆一二三区av精品| 日本黄色视频三级网站网址| 婷婷六月久久综合丁香| 男女视频在线观看网站免费| 日韩有码中文字幕| 男女那种视频在线观看| 成人国产综合亚洲| 两个人视频免费观看高清| 在线免费观看不下载黄p国产 | 99热这里只有是精品50| 变态另类成人亚洲欧美熟女| 在线永久观看黄色视频| 亚洲av熟女| 两性夫妻黄色片| 久久精品国产99精品国产亚洲性色| 99精品在免费线老司机午夜| 亚洲中文字幕日韩| 国产成年人精品一区二区| 免费搜索国产男女视频| 久久伊人香网站| 超碰成人久久| 在线视频色国产色| 日日干狠狠操夜夜爽| av片东京热男人的天堂| 欧美乱码精品一区二区三区| 最好的美女福利视频网| 午夜福利免费观看在线| 日本撒尿小便嘘嘘汇集6| 啦啦啦观看免费观看视频高清| 搡老熟女国产l中国老女人| 1000部很黄的大片| 久久香蕉国产精品| 黄色片一级片一级黄色片| 国产在线精品亚洲第一网站| 亚洲精品在线美女| 国产欧美日韩精品亚洲av| 欧美xxxx黑人xx丫x性爽| 久久久国产成人精品二区| 精品久久久久久久人妻蜜臀av| 999精品在线视频| 久久久久久久久久黄片| 欧美色视频一区免费| 中文在线观看免费www的网站| 老司机在亚洲福利影院| 久久婷婷人人爽人人干人人爱| 欧美激情在线99| 成人鲁丝片一二三区免费| 亚洲成av人片在线播放无| 嫩草影视91久久| 国产午夜精品久久久久久| 亚洲色图 男人天堂 中文字幕| 国产av一区在线观看免费| 欧美日韩国产亚洲二区| 亚洲成人中文字幕在线播放| 精品国产乱码久久久久久男人| 一进一出抽搐动态| 日韩欧美在线乱码| 亚洲真实伦在线观看| 亚洲精品粉嫩美女一区| 精品欧美国产一区二区三| 伦理电影免费视频| 动漫黄色视频在线观看| 天堂动漫精品| 给我免费播放毛片高清在线观看| 精品日产1卡2卡| 久久精品亚洲精品国产色婷小说| 久久久国产欧美日韩av| 精品免费久久久久久久清纯| 中文字幕久久专区| 国产三级在线视频| 男女视频在线观看网站免费| 久久人妻av系列| 九九在线视频观看精品| 亚洲熟妇中文字幕五十中出| 一进一出抽搐动态| 无限看片的www在线观看| 亚洲成人精品中文字幕电影| 国产成人精品无人区| 99久久综合精品五月天人人| 日韩精品中文字幕看吧| 国产私拍福利视频在线观看| 精品熟女少妇八av免费久了| 中文资源天堂在线| 91av网一区二区| 日韩欧美免费精品| 色综合欧美亚洲国产小说| 国产伦一二天堂av在线观看| 精品久久久久久,| 久久久久久久久久黄片| 中国美女看黄片| 亚洲av电影不卡..在线观看| 可以在线观看毛片的网站| 欧美三级亚洲精品| 国产精品日韩av在线免费观看| 亚洲人成电影免费在线| 黑人操中国人逼视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美一区二区综合| 久久久久精品国产欧美久久久| 日本成人三级电影网站| 97超视频在线观看视频| 欧美乱妇无乱码| 淫妇啪啪啪对白视频| 三级国产精品欧美在线观看 | 在线播放国产精品三级| 日本黄色视频三级网站网址| 久久香蕉国产精品| 国产69精品久久久久777片 | 中文字幕熟女人妻在线| x7x7x7水蜜桃| 成人国产综合亚洲| 岛国视频午夜一区免费看| 在线观看日韩欧美| 亚洲午夜理论影院| 久久亚洲精品不卡| 两性夫妻黄色片| 日韩大尺度精品在线看网址| 两个人的视频大全免费| 日韩成人在线观看一区二区三区| 午夜免费观看网址| 精品欧美国产一区二区三| 美女高潮的动态| 91九色精品人成在线观看| 国产精品影院久久| 免费看美女性在线毛片视频| 法律面前人人平等表现在哪些方面| 精品福利观看| 亚洲av成人av| 欧美丝袜亚洲另类 | 我的老师免费观看完整版| 丰满人妻一区二区三区视频av | 九色成人免费人妻av| 亚洲欧美日韩高清专用| 欧美乱码精品一区二区三区| 国产高清激情床上av| 性色avwww在线观看| 黄色丝袜av网址大全| 麻豆成人av在线观看| 久久精品国产清高在天天线| av女优亚洲男人天堂 | 九九久久精品国产亚洲av麻豆 | 怎么达到女性高潮| 人人妻,人人澡人人爽秒播| 在线观看美女被高潮喷水网站 | 99久久久亚洲精品蜜臀av| 麻豆国产97在线/欧美| 美女 人体艺术 gogo| 国产亚洲精品一区二区www| 亚洲国产看品久久| 麻豆国产av国片精品| 国产激情偷乱视频一区二区| 巨乳人妻的诱惑在线观看| 欧美激情在线99| 亚洲第一电影网av| 老汉色∧v一级毛片| 琪琪午夜伦伦电影理论片6080| 日本黄色片子视频| 全区人妻精品视频| 亚洲无线在线观看| 亚洲欧美激情综合另类| 变态另类成人亚洲欧美熟女| 九九热线精品视视频播放| 桃色一区二区三区在线观看| 国产视频一区二区在线看| 天堂√8在线中文| x7x7x7水蜜桃| 又紧又爽又黄一区二区| 视频区欧美日本亚洲| 精品久久蜜臀av无| 在线观看免费视频日本深夜| 天天添夜夜摸| 色综合欧美亚洲国产小说| 日本成人三级电影网站| 综合色av麻豆| 国产精品 欧美亚洲| 日本黄色视频三级网站网址| 嫩草影院精品99| 久久草成人影院| 亚洲精品一卡2卡三卡4卡5卡| 一进一出好大好爽视频| 国产精品美女特级片免费视频播放器 | 国产成人av激情在线播放| 老熟妇仑乱视频hdxx| 成在线人永久免费视频| 中文字幕最新亚洲高清| 亚洲精品在线观看二区| 亚洲精品久久国产高清桃花| 一级毛片女人18水好多| 亚洲乱码一区二区免费版| 欧美激情在线99| xxx96com| av天堂在线播放| 欧美zozozo另类| 男女那种视频在线观看| 女人高潮潮喷娇喘18禁视频| 久久久久九九精品影院| 可以在线观看毛片的网站| 少妇人妻一区二区三区视频| 欧美日韩乱码在线| 国内精品久久久久精免费| 国模一区二区三区四区视频 | 久久中文看片网| 一进一出抽搐动态| 亚洲欧美日韩东京热| 亚洲激情在线av| 精品欧美国产一区二区三| 真实男女啪啪啪动态图| 人人妻人人澡欧美一区二区| 亚洲精品久久国产高清桃花| 特级一级黄色大片| 老汉色av国产亚洲站长工具| 97超级碰碰碰精品色视频在线观看| 国产乱人伦免费视频| 女生性感内裤真人,穿戴方法视频| 国产单亲对白刺激| 动漫黄色视频在线观看| а√天堂www在线а√下载| 午夜久久久久精精品| 99视频精品全部免费 在线 | 麻豆一二三区av精品| 五月伊人婷婷丁香| 麻豆成人午夜福利视频| 亚洲国产精品合色在线| 变态另类丝袜制服| 桃色一区二区三区在线观看| 亚洲熟女毛片儿| 国产精品爽爽va在线观看网站| 精品午夜福利视频在线观看一区| 看黄色毛片网站| 国产真人三级小视频在线观看| 俺也久久电影网| 99久久成人亚洲精品观看| 国产精品亚洲一级av第二区| a级毛片a级免费在线| 成年免费大片在线观看| 搞女人的毛片| 天堂√8在线中文| 精品午夜福利视频在线观看一区| 伊人久久大香线蕉亚洲五| 岛国在线免费视频观看| 脱女人内裤的视频| 中文字幕人成人乱码亚洲影| 欧美日韩福利视频一区二区| 免费av不卡在线播放| or卡值多少钱| 99久久成人亚洲精品观看| 夜夜看夜夜爽夜夜摸| 国产精品av久久久久免费| 成人18禁在线播放| 男人舔奶头视频| 国模一区二区三区四区视频 | 18禁黄网站禁片免费观看直播| 日本一二三区视频观看| 一个人看视频在线观看www免费 | 日韩欧美三级三区| 人妻久久中文字幕网| 日韩欧美 国产精品| av视频在线观看入口| 精品一区二区三区av网在线观看| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线 | 免费在线观看亚洲国产| 欧美日韩国产亚洲二区| 精品国产三级普通话版| 18禁黄网站禁片午夜丰满| 精品福利观看| 日韩欧美免费精品| 国产av麻豆久久久久久久| 久久久成人免费电影| 欧美乱妇无乱码| 成人高潮视频无遮挡免费网站| 99精品欧美一区二区三区四区| 成人三级做爰电影| 日韩人妻高清精品专区| www.www免费av| 亚洲无线观看免费| 国产精品一区二区三区四区久久| 亚洲男人的天堂狠狠| 久久久久久人人人人人| av在线天堂中文字幕| 欧美日韩亚洲国产一区二区在线观看| 精品人妻1区二区| 亚洲色图 男人天堂 中文字幕| 免费无遮挡裸体视频| 久久精品aⅴ一区二区三区四区| 精品熟女少妇八av免费久了| 三级男女做爰猛烈吃奶摸视频| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 男女做爰动态图高潮gif福利片| 国产成人aa在线观看| 黄色 视频免费看| 日本一二三区视频观看| 色哟哟哟哟哟哟| 亚洲成av人片免费观看| 我的老师免费观看完整版| tocl精华| 国产高潮美女av| 国产真实乱freesex| 悠悠久久av| 国产淫片久久久久久久久 | 99国产精品一区二区蜜桃av| 亚洲av片天天在线观看| 国产黄a三级三级三级人| xxxwww97欧美| 国产精品综合久久久久久久免费| 给我免费播放毛片高清在线观看| 一二三四在线观看免费中文在| 亚洲九九香蕉| 黑人操中国人逼视频| 国产精品一区二区三区四区久久| 午夜成年电影在线免费观看| 村上凉子中文字幕在线| 一进一出抽搐动态| 国产99白浆流出| 18美女黄网站色大片免费观看| 好看av亚洲va欧美ⅴa在| 99久久精品热视频| 老司机午夜福利在线观看视频| 12—13女人毛片做爰片一| 嫩草影院入口| 一本综合久久免费| 中文字幕熟女人妻在线| 中文字幕av在线有码专区| 精品久久久久久,| 久99久视频精品免费| 黄色成人免费大全| 黄频高清免费视频| 欧美日本视频| 亚洲精品美女久久久久99蜜臀| 久久伊人香网站| 日韩成人在线观看一区二区三区| 香蕉国产在线看| 国语自产精品视频在线第100页| 九九热线精品视视频播放| 国产在线精品亚洲第一网站| 在线永久观看黄色视频| 97超视频在线观看视频| 亚洲avbb在线观看| 成年女人看的毛片在线观看| 国产成人精品久久二区二区91| 亚洲av片天天在线观看| 99在线人妻在线中文字幕| 亚洲天堂国产精品一区在线| 在线观看一区二区三区| 中文字幕精品亚洲无线码一区| 在线a可以看的网站| 亚洲九九香蕉| 亚洲av成人一区二区三| 久久久国产精品麻豆| 怎么达到女性高潮| 精华霜和精华液先用哪个| 欧美黄色淫秽网站| 亚洲国产精品sss在线观看| 欧美色欧美亚洲另类二区| 亚洲自拍偷在线| 人妻久久中文字幕网| 91av网一区二区| 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费| 国产午夜精品久久久久久| 最近最新中文字幕大全电影3| 美女午夜性视频免费| 久久久久性生活片| 午夜福利高清视频| 国产成人精品久久二区二区91| 在线观看舔阴道视频| 丰满人妻一区二区三区视频av | 精品熟女少妇八av免费久了| 小说图片视频综合网站| 日本 欧美在线| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 中文资源天堂在线| av在线天堂中文字幕| 国产亚洲精品综合一区在线观看| 欧美性猛交黑人性爽| 免费在线观看日本一区| 88av欧美| 亚洲欧美日韩高清在线视频| 亚洲激情在线av| 日本在线视频免费播放| 美女午夜性视频免费| 99久久综合精品五月天人人| 精品国产亚洲在线| 十八禁人妻一区二区| av福利片在线观看| 18禁美女被吸乳视频| 99久久99久久久精品蜜桃| 麻豆国产97在线/欧美| 日日夜夜操网爽| 色吧在线观看| 精品久久蜜臀av无| 美女免费视频网站| 成年女人毛片免费观看观看9| 免费在线观看影片大全网站| а√天堂www在线а√下载| 精品国内亚洲2022精品成人| 久久香蕉精品热| www.999成人在线观看| 日本黄色片子视频| 在线观看66精品国产| 亚洲精品国产精品久久久不卡| 成年免费大片在线观看| 亚洲成人免费电影在线观看| 久久精品aⅴ一区二区三区四区| av女优亚洲男人天堂 | 国产av麻豆久久久久久久| 亚洲,欧美精品.| 亚洲国产精品久久男人天堂| 全区人妻精品视频| 国产精品久久久久久人妻精品电影| 日本在线视频免费播放| 精品电影一区二区在线| 欧美成人性av电影在线观看| 国产高清三级在线| 少妇人妻一区二区三区视频| 成年人黄色毛片网站| 日本熟妇午夜| 五月玫瑰六月丁香| 久久久久国产一级毛片高清牌| 国产精品久久久久久久电影 | 亚洲专区字幕在线| 亚洲激情在线av| 18禁黄网站禁片午夜丰满| 国产精品98久久久久久宅男小说| 亚洲精品美女久久av网站| 亚洲av电影不卡..在线观看| 一进一出抽搐gif免费好疼| 精品免费久久久久久久清纯| 天堂网av新在线| 国产成人系列免费观看| 后天国语完整版免费观看| 搞女人的毛片| 天堂动漫精品| 99久国产av精品| 日韩免费av在线播放| 日韩欧美免费精品| 国产探花在线观看一区二区| 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 久久久久免费精品人妻一区二区| 久久久久久国产a免费观看| 免费观看精品视频网站| www.999成人在线观看| 午夜精品一区二区三区免费看| 88av欧美| 国内精品久久久久精免费| 99在线人妻在线中文字幕| 日日夜夜操网爽| 国产一区二区激情短视频| 看免费av毛片| АⅤ资源中文在线天堂| 免费在线观看日本一区| 国产午夜精品久久久久久| 日日摸夜夜添夜夜添小说| 国产午夜精品久久久久久| 人妻丰满熟妇av一区二区三区| 岛国视频午夜一区免费看| 亚洲欧美日韩高清在线视频| 长腿黑丝高跟| 啦啦啦韩国在线观看视频| 国产一区二区激情短视频| 国产激情偷乱视频一区二区| 国产精品日韩av在线免费观看| 精品久久久久久久人妻蜜臀av| a级毛片a级免费在线| 欧美乱码精品一区二区三区| 免费大片18禁| 亚洲最大成人中文| 免费搜索国产男女视频| 在线观看66精品国产| 嫁个100分男人电影在线观看| 黄色成人免费大全| 国产成人影院久久av| 午夜福利在线观看免费完整高清在 | 可以在线观看的亚洲视频| 国内少妇人妻偷人精品xxx网站 | 亚洲 国产 在线| 热99re8久久精品国产| 国产精品影院久久| 性欧美人与动物交配| 美女免费视频网站| 午夜成年电影在线免费观看| 他把我摸到了高潮在线观看| 亚洲av成人精品一区久久| 变态另类丝袜制服| 99国产精品99久久久久| 一个人免费在线观看的高清视频| 91在线观看av| 香蕉丝袜av| 国产精品一区二区三区四区免费观看 | 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 国产淫片久久久久久久久 | 男人和女人高潮做爰伦理| 精品电影一区二区在线| 成年免费大片在线观看| 国产一区在线观看成人免费| 美女扒开内裤让男人捅视频| 男女做爰动态图高潮gif福利片| 国产高清三级在线| 麻豆国产97在线/欧美| 亚洲国产日韩欧美精品在线观看 | 美女cb高潮喷水在线观看 | 熟女人妻精品中文字幕| 制服人妻中文乱码| 在线免费观看的www视频| 成人一区二区视频在线观看| 久久久久久大精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲aⅴ乱码一区二区在线播放| 一级黄色大片毛片| 国产欧美日韩一区二区精品| 伊人久久大香线蕉亚洲五| www国产在线视频色| 国产伦精品一区二区三区视频9 | 精品无人区乱码1区二区| 美女大奶头视频| 国产精品永久免费网站| 天堂动漫精品| 亚洲午夜理论影院| 亚洲黑人精品在线| 亚洲熟女毛片儿| 亚洲人与动物交配视频| av中文乱码字幕在线| 精品日产1卡2卡| 宅男免费午夜| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| 亚洲最大成人中文| 亚洲精品久久国产高清桃花| 12—13女人毛片做爰片一| 最新在线观看一区二区三区| 精品国产三级普通话版| 99热这里只有是精品50| 90打野战视频偷拍视频| 亚洲欧美日韩东京热| 性色avwww在线观看| 久久久久久九九精品二区国产| 亚洲成a人片在线一区二区| 亚洲片人在线观看| 免费在线观看日本一区| 国产精品av久久久久免费| 精品福利观看| 国产欧美日韩一区二区精品| 日韩精品青青久久久久久| 少妇的丰满在线观看| 国产免费av片在线观看野外av| 久久久久久久久免费视频了| 成年女人永久免费观看视频| 搞女人的毛片| 麻豆av在线久日| 麻豆久久精品国产亚洲av| 很黄的视频免费|