• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    四配位鉑磷光發(fā)射體結(jié)構(gòu)與光物理性質(zhì)關(guān)系的理論研究

    2021-07-11 16:26:18張紅星
    關(guān)鍵詞:磷光物理性質(zhì)吉林大學(xué)

    王 建,張紅星

    (吉林大學(xué)理論化學(xué)研究所,長春130021)

    Phosphorescent materials based on transition metal complexes,particularly Pt(Ⅱ)complexes,have attracted both academic and industrial attentions due to their low-cost fabrication and highly efficient electron luminescent emitters in organic light emitting diodes(OLED)[1,2].Professor Che has developed a novel type of Pt(Ⅱ)complexes with O?N?C?N ligand and has successfully assembled a series of highly efficient OLEDs[3—7].With the help of transient state spectroscopy technics,a fundamental understanding of the excited state properties is established and the photo-deactivation pathway is identified.But the investigation on the structural-photophysical relationship at the level of modern quantum mechanics is quite limited and a detailed description of the competing mechanisms of radiative and non-radiative nature has therefore remained elusive[8—11].It is generally believed that spin-orbit coupling(SOC)induces fast intersystem crossing(ISC)and phosphorescent decay in organometallic complexes[12].The recent improvements in theoretical approaches have extended the applications from a qualitative assignment of the absorption and emission color and corresponding transition character to a quantitative interpretation of both emission spectroscopy and excited state decay pathway by including calculations of the SOC integral,radiative lifetime and rate constants with the scalar relativistic or pseudo-relativistic corrections of heavy element relativistic effects[13—17].With the aim of gaining depth-insight into the basic rules in the material chemistry,in current contribution,we try to evaluate the possible ISC channels by calculating the SOC integral for three Pt(Ⅱ)complexes supported by O?N?C?N tetradentate ligands,as shown in Fig.1.Through rigorous density functional theory calculations,not only the radiative decay rate constant and non-radiative decay rate are well reproduced,but also a good interpretation of the difference in quantum efficiency among these three Pt(Ⅱ)complexes is provided based on the analysis and discussion of excited state geometry and energy levels,as well as ISC channels.

    Fig.1 Chemical structures of tetra-Pt complexes

    1 Computational Details and Theoretical Background

    We perform geometry optimizations for ground(S0)and excited states(T1),followed by harmonic vibrational frequencies calculation at PBE0/LanL2TZ(f);6-311G(d,p)/PCM-CH2Cl2level of theory.TheS0andT1states are respectively described at the restricted and unrestricted density functional theory(DFT)levels[18—20].The energy levels and the transition properties of the singlet and triplet excited state were calculated with TD-DFT[21—23]approach at TD-BMK/LanL2TZ(f);6-311(d,p)/PCM-CH2Cl2level of theory.All the above calculations were completed with Gaussian16 program[24].

    The spin-orbit-coupling(SOC)effect splits theT1state into three sub-states that are separated in energy in the absence of an applied field.This splitting is referred as the zero-field splitting.The radiative ratekiand the radiative lifetimeτifrom the sub-statei(i=1,2,3)of theT1state to the singlet ground state can be evaluated from the transition energyΔE S0-T i1and the spin-orbit coupledS0→T i1transition dipole moment(M iα):

    which is calculated by including spin-orbit coupling perturbatively in Amsterdam Density Functional package(ADF 2016)[25].An all-electron TZP basis set applied for Pt,while DZP was selected for all other atoms.No core electrons were frozen during the SCF calculation.The B1LYP hybrid exchange-correlation functional with HF value 0.3 is selected to perform the DFT calculations.With the already convergedT1geometry from G16,under one-component zero order regular approximation(ZORA)[26],perturbative spin-orbit coupling(pSOC)[27]calculation including at least 10 lowest scalar relativistic singlet and triplet excitations is performed to obtain the spin-orbit coupling matrix elements,emission energy and the associated radiative decay rate.The following technical configurations were employed:Becke numerical integration grids of“Good”quality,Exact Density,SCF converge tolerance 1×10-6,gradients convergence of 1×10-5for geometry optimization.The experimental electronic properties are dependent upon the environment.Therefore,we included salvation effects by implicitly modeling solvent CH2Cl2according to the conductor-like screening model(COSMO)[28].For pSOC TDDFT calculations,the effect of the excitations on the COSMO surface charges of the excitations were not taken into account.

    Note that individual phosphorescence rates for the three spin sub-states can only be observed experimentally in the limit of large fine-structure splitting and at low temperatures.In the higher temperature limit,spin relaxation is usually fast and the triplet levels are almost equally populated,and only the weighted phosphorescence rates can be measured.Therefore,phosphorescence rates are calculated according to

    In current contribution,the final data are corrected for the refractive indexn(n=1.4241 for CH2Cl2)according to the Strickler-Berg relationship[29].

    Each individual inter-system crossing(ISC)channel is treated as a non-radiative transition betweenSnandTmexpressed by Fermi Golden rule[30,31],

    ρFCis the Franck-Condon weighted density of states,which can be evaluated in the framework of Marcus-Levich-Jortner theory:

    Here,λ0,Lis the Marcus reorganization energy associated with geometric relaxation energy(λ0)and intramolecular low-frequency vibrations(λL);kB,the Boltzmann constant;T,temperature;?ωeff,the effective energy of a non-classic vibrational mode involved in the transition;andSeffis the corresponding Huang-Rhys factor.In Marcus-Levich-Jortner model,in order to simplify the calculations of the Franck-Condon-weighted density of state,the effect of all contributing modes is approximatedviaan effective mode with an effective frequency,ωeffand effective Huang-Rhys factor,Seff,as defined bellow:

    where the summation only runs over the interested high-frequency vibrations modes.A vibrational mode is determined to be a low-frequency one if its energy is smaller than 1000 cm-1,or a high-frequency one if 1000 cm-1≤?ω<1800 cm-1,as suggested by Tonget al.[32]for transition metal complex within two-mode approximation.For transition from singlet stateS nto triplet excited stateT m,intersystem crossing rateand the reverse intersystem crossing ratecan evaluated by the above equations.In current contribution,all higher energy singlet excited state geometries are approximated byS0geometry,similarly,all higher triplet excited state geometries are approximated byT1geometry.Therefore,the geometrical relaxation energy caused by intersystem crossing and reverse intersystem crossing is ignored andλ0,Lis simplified asλ0,L=λL,only contributed by lower-frequency vibrational normal modes.The low-frequency vibration relaxation energy and the associated Huang-Rhys factor were calculated by using the DUSHIN code developed by Reimers[33].

    Classifying all vibration modes into three active modes,one of low frequency(ωs<1000 cm-1),a second of intermediate frequency(1000 cm-1≤ω0<1800 cm-1),and a third of high frequency(ωf≥1800 cm-1),under threemode approximation,the non-radiative decay rate fromcan be written as

    Where,Eemis the emission energy.λ0,Lis the reorganization energy contributed by low-frequency vibrational modes(λs)and geometric relaxation energy(λ0)caused by the change of electronic states fromT1toS0.

    2 Results and Discussion

    2.1 Molecular Geometric and Electronic Property

    The coordination center around Pt metal exhibits a planar geometry.For tetra-Pt-1,tetraPt-2,and tetra-Pt-3,the phenol ligand and Pt?O?N?C?N center are not co-planar,in fact a slight upward tilt,as shown in Fig.2.The interaction between metal and ligand is sensitive to the change of charge population on Pt?O?N?C?N framework.Though the highest occupied molecular orbital(HOMO)is mainly delocalized on the two adjacent benzene rings along the O—Pt—C direction,removing the electron donating groups tert-butyl and 3,5-di-tertbutyl-phenyl out of the Pt?O?N?C?N framework leads to the electronic rearrangement,which causes the change of metal-ligand interaction,evidenced by change of Pt—C and Pt—O bond length as reported in Table 1.For tetra-Pt-2 and tetra-Pt-3,there’s no electron donating modification to phenol group.Therefore,almost similar Pt—C bond length,but both a bit longer than Pt—C bond length in tetra-Pt-1.From tetra-Pt-1 to tetra-Pt-3,the interaction between Pt and phenol ligand is strengthened.And this interaction is further enhanced in tetra-Pt-3 when promoted into the triplet exited state geometry(Pt—O,0.20587vs.0.20447 nm).

    Fig.2 Optimized ground state geometry,PBE0/LanL2TZ(f);6-311G(d,p)level of theory

    Table 1 Metal bond length(nm)and dihedral angles(°)between aromatic groups and ligand in ground state and the lowest triplet excited state

    The subtle differences reflected in the ground state structure are amplified in the excited state structure,resulting in a significant conformational change,leading to remarkable differences in the observed emission color and efficiency.With the optimized triplet structure,the emission maximum was well reproduced by ADF2016,as reported in Table 2.TD-DFT calculation reveals the observed emission is mainly contributed by electronic transition between HOMO and the lowest unoccupied molecular orbital(LUMO).As illustrated in Fig.3,the HOMO mainly populates on phenol ligand,and with little contribution from metal as well as phenyl ligand.Nevertheless,the LUMO in triplet excited state is delocalized on both pyridine fragments,and phenyl fragment,even extends to 3,5-di-tert-butyl-phenyl electron donating group in tetra-Pt-1 and tetra-Pt-2,but not that much in 2,6-di-methly-phenyl fragment in tetra-Pt-3,since the two methyl groups hold phenyl vertically to pyridine,which therefore reduces the orbital overlap between the two planes obviously.Based on the above HOMO and LUMO characteristics,the observed emission is assigned as3LLCT with litter metal participation.The energy levels of low-lying singlet excited state can be effectively tuned by modifying theσbonded phenol ligand.In tetra-Pt-3,no modification to phenol,but the 2,6-di-methlyphenyl group constrains the charges populated on the backbone of Pt?O?N?C?N,which stabilizes theS1andS2states,resulting in the degeneratedS1andS2states.While in tetra-Pt-2,this constrain is less active since the reduced dihedral angle between 3,5-di-tert-butyl-phenyl and pyridine,indicating more stronger orbital overlap,giving out a smaller energy barrier betweenT2andT1,as compared with the energy barrier betweenT2andT1in tetra-Pt-3.Whenstrong electron donating group tert-butyl group is introduced to phenol,low-lying singlet state was destabilized,evidenced by the relatively largerS1andS2energy barrier in tetra-Pt-1,as shown in Fig.4.

    Table 2 Calculated emission values(E em),radiative and non-radiative decay rate constants from T1 to S0 state(1×104 s-1),together with available experimental values[34,35]

    Fig.3 Molecular orbitals contributing to the observed emission

    Fig.4 Excited state energy(eV)levels

    2.2 Emission Characteristics

    With the calculated radiative and non-radiative decay rate constant,tetra-Pt-2 and tetra-Pt-3 are expected to be highly emissive in green and light blue color,respectively.Both the emission energy and rate constant agree well with the experimental values.The comparable emission efficiencies for tetra-Pt-2 and tetra-Pt-3 can be explained by their similar electronic structure.In chemical formula,the only difference is to replace 3,5-di-tert-butyl-phenyl group in tetra-Pt-2 with 2,6-di-methyl-phenyl group to configure tetra-Pt-3.Both 3,5-ditert-butyl-phenyl and 2,6-di-methyl-phenyl are electron donating groups,together with 2,6-dimethly-4-tert-butyl-phenyl group,they act like a charge firewall,holding the excited charges within Pt?O?N?C?N framework.Because 3,5-di-tert-butyl-phenyl group is not perpendicular to Pt?O?N?C?N plane,the charge firewall is not that strict in tetra-Pt-2 as compared with tetra-Pt-3,thus part of the excited charges may escape from the Pt?O?N?C?N center and diffuse to the 3,5-di-tert-butyl-phenyl group,relatively reducing the charge density within metal center,finally giving out the slightly lower excited state energy levels as compared with tetra-Pt-3.Putting all the above together,it can be easily speculated that tetra-Pt-3 will be emissive in higher energy due to its relatively higher excited state energy levels,which is consistent with TD-DFT calculation and experimental values.

    Though distinguishable in emission character,tetra-Pt-1 and tetra-Pt-2 are quite different in excited state energy levels and emission color.With four tert-butyl electron donating groups attached O?N?C?N scaffold in tetra-Pt-1,charge density is greatly enhanced on Pt?O?N?C?N center as compared with tetra-Pt-2.There is only one possible vulnerability on the charge firewall,that is the possible charge conjugation between 3,5-di-tertbutyl-phenyl group and pyridine ligand.On the one hand,the difference in the dihedral angle between the ground state and the excited state shows that the 3,5-di-tert-butyl-phenyl group and pyridine ligand tend to be coplanar in the excited state,which greatly enhances the conjugation between the two and further relaxes the limitations of the charge firewall,so that in the excited state more charges diffuse through this pathway to the 3,5-di-tert-butyl-phenyl group,and finally the charge density on the Pt?O?N?C?N center is significantly reduced.In other words,this kind of electronic configuration gives out a more discrete wave function in triplet excited state,resulting in a bit smaller wave function overlap in tetra-Pt-1 as compared with tetra-Pt-2.On the other hand,without the extra tert-butyl groups,charge density is a bit lower in tetra-Pt-2,the dihedral angle between 3,5-di-tert-butyl-phenyl group and pyridine ligand is a bit larger(21.8°vs.18.7°,see Table 1),indicating a less conjugation between 3,5-di-tert-butyl-phenyl group and pyridine ligand.Therefore,the excited charges are more localized within Pt?O?N?C?N center,as compared with tetra-Pt-3,which intensifies the wave function overlap,therefore gives out the larger energy gap between singlet and triplet state.As illustrated in Fig.4,the average energy gap between singlet and triplet excited state tetra-Pt-2 is a bit larger than in tetra-Pt-1.

    2.3 Intersystem Crossing(ISC)Channels

    Phosphorescence is based on fast intersystem crossing(ISC)from singlet to triplet excited state and relatively slower reverse intersystem crossing(RISC)channel.The Franck-Condon weighted density of states is actually a Gaussian type function,therefore,in the case where the SOCME values are comparable with each other,the magnitude of the singlet and triplet energy split determines the final rate constant.All possible ISC channels and the corresponding rate constants are tabulated in Table S1(see the Supporting Information of this paper).For tetra-Pt-1,the fastest ISC channel isS1→T2,withkISC=2.74×1011s-1.The most possible decay pathway would be the following,starts from high-lying singlet excited state,decays to the lowest-lying singlet excited stateS1viainternal conversion,which would be ultrafast,then converts to triplet excited stateT2viaspin flip,after another internal conversion,decays toT1,finally emits out a photon and relaxes to ground state.It should be noted that large energy gap exists in triplet excited states(ΔET2-T1=0.36 eV)betweenT2andT1,which may slow down the internal conversion and provide extra opportunity for other nonradiative decay channel.This may be the reason why tetra-Pt-1 has the relatively largeknrvalue and smallerkrvalue.

    For tetra-Pt-2,due to the comparableΔESTvalues,SOCME values are the only factor that really determines the rate constants.With the largest SOCME value(Table S1),S1→S4is calculated to be the fastest ISC channel.For tetra-Pt-3,the fastest ISC channel happens betweenS1andT3.Both internal conversion pathways cover a little energy barrier,0.22 eV in tetra-Pt-2vs.0.23 eV in tetra-Pt-3,which are both smaller than the energy gap in tetra-Pt-1 and Pt-3,therefore smallerknrvalues.

    Based on the above analysis possible ISC channel and decay pathways,it is the lowest3LLCT excited state that contributes to the observed emission,not3MLCT,indicating even if with little participation of metal content,highly emissive excited state is possible.

    2.4 Non-radiative Decay

    Table 2 presents the radiative and non-radiative decay rate constants calculated for each of the lowest triplet excited states of these tetra-Pt complexes.Although thekrvalues are well reproduced,theknrvalues are only consistent with the experimental values in relative order and magnitude.Theknrvalues for tetra-Pt-2 and tetra-Pt-3 are slightly underestimated by a factor of 10.This deviation may be raised from the approximation that all vibrational normal modes are harmonic oscillators.It goes even worse when high frequency vibration modes provide non-negligible contributions toT1→S0non-radiative decay.

    Huang-Rhys factor serves to quantify the structural distortion between the emitting triplet excited state and the ground state.As reported in Table S2(see the Supporting Information of this paper),relatively largeSeffvalues indicate obvious structural distortion are induced by low frequency vibration normal modes.The low frequency vibrational modes can be roughly assigned as Pt—O and Pt—N stretching vibration and C—H rotation from CH3groups.In tetra-Pt-1,three tert-butyl groups are attached to phenol and phenyl ligands,which both interact with metal centerviaσbond and therefore both sensitive to the extra vibration introduced by C—H rotation.If the amplitude of C—H rotation can be lowered,some of the possible non-radiative decay channel could be turned off,resulting a smallerknrand finally a larger overall quantum efficiency,which is consistent with the experimental observation that quantum yield increased when detected in PMMA.For tetra-Pt-2 and tetra-Pt-3,although C—H rotation from CH3groups contributes to low frequency vibration modes,less CH3groups and a bit far away from theσ-bonded sensitive phenol and phenyl ligands,some non-radiative decay channels triggered by C—H low frequency vibrations are no longer present,therefore,knrvalues drops dramatically.It should be noted that without steric hindrance 3,5-di-tert-butyl-phenyl can rotate to new conformation which is co-planar with Pt?O?N?C?N,therefore expands the molecular plane and frees up more space.As a result,it is possible for two tetra-Pt-2 molecules accumulated in the staggered conformation,corresponding to the observed excimer emission for tetra-Pt-2 in 5%PMMA.

    3 Conclusions

    We have carried out a detailed theoretical study to investigate the structural-photophysical relationships of tetra-Pt emitters.It is generally believed that increasing the rigidity of the ligand in a transition metal complex can minimize structural distortion between the emitting triplet excited state and the ground state,thereby decreasing the non-radiative decay rate.Along the O-Pt-C axis,phenol and phenyl ligands are connected to Pt metal centerviaσbond.Within the N-Pt-N axis,the pyridine ligands are linked with Pt metal centerviacoordination bond.Detailed analysis on molecular orbital and exited state energy levels reveal that the electronic structure and wave function overlap between the emitting excited state and ground state are very sensitive if any modifications present on theσbonded phenol and phenyl ligands.We found that for this particular molecular system,if the ligand modification is carried out along the O-Pt-C axis,the photophysical properties,ISC channel,and non-radiation process will change dramatically.However,the effect of ligand decoration along the N-Pt-C axis is not very obvious.In the O-Pt-C axis direction,the elimination of tert-butyl group,can effectively reduce the low frequency C—H vibration on the ligand,thereby significantly reducing the non-radiation transition process.In addition,the reasonable regulation of the charge density and the charge distribution form on the Pt?O?N?C?N plane can effectively control the nonradiative process.For example,in tetra-Pt-2,with the controllable rotation of tert-butylbenzene group,the wave function overlap between the triplet excited state and the ground state can be effectively controlled,resulting in a high emission efficiency for single molecule(the quantum yield is up to 0.90 in diluted CH2Cl2solution).In PMMA,due to molecular aggregation 3,5-di-tertbutyl-phenyl group may adapt a new conformation which is more co-planar with Pt?O?N?C?N,the LUMO would be more delocalized,and the charge density lowered thereby,resulting in the sharp drop in quantum efficiency for tetra-Pt-2 in PMMA.In contrast,the electron donating groups in tetra-Pt-3 cannot rotate due to the steric hindrance of methyl groups,therefore the quantum yield is not significantly changed in PMMA.The calculated and experimentalknrvalues are in quantitative agreement.The strong vibration coupling between triplet excited state and ground state in low frequency region is the main channel for non-radiation decay.Our present contribution highlights the importance of the relative order of singlet and triplet excited state and proper control of charge distribution in multi-chromophoric transition metal complexes in designing strongly luminescent transition metal complexes.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20210175.

    This paper is supported by the Natural Science Foundation of China(No.21873038).

    猜你喜歡
    磷光物理性質(zhì)吉林大學(xué)
    吉林大學(xué)學(xué)報(地球科學(xué)版)
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    SiO2包覆對SrAl2O4:Eu2+,Dy3+及其復(fù)合涂層發(fā)光性能影響*
    ICl分子在外電場中的物理性質(zhì)研究
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    《吉林大學(xué)學(xué)報( 理學(xué)版) 》征稿簡則
    金融系統(tǒng)中的早期預(yù)警信號及其統(tǒng)計物理性質(zhì)
    基于Mn摻雜ZnS量子點磷光內(nèi)濾效應(yīng)檢測β—葡萄糖醛酸酶
    基于Mn摻雜ZnS量子點的室溫磷光傳感應(yīng)用的研究進展
    金屬的物理性質(zhì)和化學(xué)性質(zhì)
    自线自在国产av| 少妇人妻一区二区三区视频| 多毛熟女@视频| 国模一区二区三区四区视频| 国产日韩欧美亚洲二区| 国产男女超爽视频在线观看| 久久久午夜欧美精品| 爱豆传媒免费全集在线观看| 18禁在线无遮挡免费观看视频| 国产一级毛片在线| 国产在线视频一区二区| 亚洲精品视频女| 少妇的逼好多水| 日韩免费高清中文字幕av| 免费黄网站久久成人精品| 国产探花极品一区二区| 亚洲av中文av极速乱| 又粗又硬又长又爽又黄的视频| 欧美日韩国产mv在线观看视频| 国产日韩欧美视频二区| 夜夜爽夜夜爽视频| 久久久久久久久久久久大奶| 2018国产大陆天天弄谢| 少妇 在线观看| 免费少妇av软件| 高清午夜精品一区二区三区| 亚洲国产av新网站| 99久久综合免费| 中文字幕免费在线视频6| 不卡视频在线观看欧美| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| videos熟女内射| 成人亚洲精品一区在线观看| 国产成人免费观看mmmm| 最近手机中文字幕大全| 精品一区二区三卡| 91午夜精品亚洲一区二区三区| 大片电影免费在线观看免费| 最近的中文字幕免费完整| 免费人成在线观看视频色| 欧美xxⅹ黑人| 国产男女内射视频| 国产视频内射| 黄色配什么色好看| 日本vs欧美在线观看视频 | 永久网站在线| 2018国产大陆天天弄谢| 男人爽女人下面视频在线观看| 一级爰片在线观看| 男女啪啪激烈高潮av片| 男女国产视频网站| 丝袜在线中文字幕| 免费av不卡在线播放| 日韩不卡一区二区三区视频在线| 欧美 亚洲 国产 日韩一| 免费黄频网站在线观看国产| 人体艺术视频欧美日本| 国产成人精品婷婷| 日韩一区二区三区影片| 免费大片黄手机在线观看| 美女主播在线视频| 亚洲国产最新在线播放| 精品人妻一区二区三区麻豆| 国产男女超爽视频在线观看| 久久久国产一区二区| 五月天丁香电影| 久久精品熟女亚洲av麻豆精品| 国产女主播在线喷水免费视频网站| 777米奇影视久久| av不卡在线播放| 亚洲第一av免费看| av网站免费在线观看视频| 一级片'在线观看视频| 热99国产精品久久久久久7| 国产一区有黄有色的免费视频| 天堂中文最新版在线下载| 爱豆传媒免费全集在线观看| 简卡轻食公司| 久久av网站| 成人黄色视频免费在线看| 日本爱情动作片www.在线观看| 国产精品蜜桃在线观看| 全区人妻精品视频| 97在线视频观看| 97精品久久久久久久久久精品| 国产午夜精品一二区理论片| 国产黄频视频在线观看| 国产精品久久久久久av不卡| 免费人成在线观看视频色| 国产永久视频网站| 国产高清有码在线观看视频| 又爽又黄a免费视频| 免费观看在线日韩| 色哟哟·www| 少妇 在线观看| 尾随美女入室| 国产伦精品一区二区三区视频9| av国产久精品久网站免费入址| av在线app专区| 国产精品久久久久久久电影| 亚洲av福利一区| 亚洲欧美中文字幕日韩二区| 人人妻人人爽人人添夜夜欢视频 | 97精品久久久久久久久久精品| 日韩成人伦理影院| 国产伦精品一区二区三区视频9| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 久久久久久久久久久久大奶| 久久综合国产亚洲精品| 中文字幕人妻熟人妻熟丝袜美| 肉色欧美久久久久久久蜜桃| 免费久久久久久久精品成人欧美视频 | 精品人妻熟女毛片av久久网站| 26uuu在线亚洲综合色| 国产免费一区二区三区四区乱码| 国产日韩欧美在线精品| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| 97在线人人人人妻| 在线观看av片永久免费下载| 视频中文字幕在线观看| 国产一区有黄有色的免费视频| 国产永久视频网站| 国产免费视频播放在线视频| 老女人水多毛片| 纵有疾风起免费观看全集完整版| 视频中文字幕在线观看| 久久久久久久久久久丰满| 中文字幕人妻丝袜制服| 观看美女的网站| 亚洲人成网站在线播| 99视频精品全部免费 在线| 国产男人的电影天堂91| 亚洲精品456在线播放app| 亚洲经典国产精华液单| 97在线视频观看| 婷婷色av中文字幕| 欧美xxⅹ黑人| 久久精品久久精品一区二区三区| 国产免费又黄又爽又色| 日本色播在线视频| 老司机亚洲免费影院| 国产亚洲av片在线观看秒播厂| 永久免费av网站大全| 国产高清国产精品国产三级| 特大巨黑吊av在线直播| 在线看a的网站| 在线观看国产h片| 国产欧美日韩一区二区三区在线 | 十分钟在线观看高清视频www | 免费观看av网站的网址| 丰满乱子伦码专区| 国产乱人偷精品视频| 免费观看在线日韩| 成人18禁高潮啪啪吃奶动态图 | 精品视频人人做人人爽| 少妇被粗大猛烈的视频| 亚洲欧美中文字幕日韩二区| 久久久国产精品麻豆| 精品午夜福利在线看| 久久精品夜色国产| 久久久久久久久久人人人人人人| 一级a做视频免费观看| 超碰97精品在线观看| 欧美最新免费一区二区三区| 久久人人爽人人爽人人片va| 晚上一个人看的免费电影| 欧美日韩综合久久久久久| 午夜久久久在线观看| 免费看av在线观看网站| 在线看a的网站| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 久久99精品国语久久久| 夜夜骑夜夜射夜夜干| 两个人免费观看高清视频 | 日本欧美视频一区| 3wmmmm亚洲av在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区免费观看| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花| 国产精品免费大片| 三上悠亚av全集在线观看 | 国产精品伦人一区二区| 国产av码专区亚洲av| 久久ye,这里只有精品| 亚洲国产成人一精品久久久| 国产免费一级a男人的天堂| 99九九线精品视频在线观看视频| 亚洲国产毛片av蜜桃av| 久久久久精品久久久久真实原创| 一级黄片播放器| 看十八女毛片水多多多| 久久影院123| 精品亚洲乱码少妇综合久久| 欧美精品一区二区免费开放| 热99国产精品久久久久久7| 亚洲久久久国产精品| 色吧在线观看| 在线观看www视频免费| 欧美区成人在线视频| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 天天操日日干夜夜撸| 91在线精品国自产拍蜜月| 在线观看一区二区三区激情| 一区二区av电影网| 婷婷色av中文字幕| 男人舔奶头视频| 精品国产国语对白av| 赤兔流量卡办理| 视频区图区小说| 人妻少妇偷人精品九色| 亚洲成人av在线免费| 日韩强制内射视频| 久久久久久久久久久丰满| 日日啪夜夜撸| 插阴视频在线观看视频| 九草在线视频观看| 成人18禁高潮啪啪吃奶动态图 | 国产又色又爽无遮挡免| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲自偷自拍三级| 伊人久久国产一区二区| 婷婷色综合大香蕉| 日韩一区二区三区影片| 国产永久视频网站| 国产精品熟女久久久久浪| 国产探花极品一区二区| 色哟哟·www| av线在线观看网站| 深夜a级毛片| 国产精品嫩草影院av在线观看| 国产欧美亚洲国产| 人人澡人人妻人| 日韩视频在线欧美| 久久久久久伊人网av| 妹子高潮喷水视频| 两个人的视频大全免费| 亚洲国产最新在线播放| 性高湖久久久久久久久免费观看| 色哟哟·www| 十八禁高潮呻吟视频 | 国产日韩欧美亚洲二区| 视频区图区小说| 国产乱来视频区| 国产免费福利视频在线观看| 午夜老司机福利剧场| 久久av网站| 国产成人精品婷婷| 国产色爽女视频免费观看| 国产真实伦视频高清在线观看| 女性被躁到高潮视频| 久久女婷五月综合色啪小说| 日本爱情动作片www.在线观看| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久| 国产乱来视频区| 大话2 男鬼变身卡| 午夜福利影视在线免费观看| www.av在线官网国产| 激情五月婷婷亚洲| 精品一品国产午夜福利视频| 日本vs欧美在线观看视频 | 爱豆传媒免费全集在线观看| 亚洲图色成人| 中文欧美无线码| 水蜜桃什么品种好| 天天操日日干夜夜撸| 欧美日韩国产mv在线观看视频| 久久精品国产亚洲av涩爱| 有码 亚洲区| 精品亚洲成a人片在线观看| 欧美精品一区二区免费开放| 国产视频内射| 国产极品天堂在线| 99久国产av精品国产电影| 精品人妻熟女毛片av久久网站| 欧美少妇被猛烈插入视频| 99久久人妻综合| av播播在线观看一区| 亚洲国产精品成人久久小说| 日本黄大片高清| videossex国产| 在线精品无人区一区二区三| 午夜久久久在线观看| 国产乱人偷精品视频| 五月伊人婷婷丁香| 欧美 亚洲 国产 日韩一| 赤兔流量卡办理| 五月玫瑰六月丁香| 另类精品久久| 最近中文字幕2019免费版| 最近中文字幕高清免费大全6| 午夜免费男女啪啪视频观看| 多毛熟女@视频| 久久久久久久亚洲中文字幕| 中国三级夫妇交换| av在线app专区| 国产精品久久久久久精品古装| 国内少妇人妻偷人精品xxx网站| 国产在视频线精品| 国产有黄有色有爽视频| 最后的刺客免费高清国语| av有码第一页| 美女福利国产在线| 黄色一级大片看看| 日日爽夜夜爽网站| 人妻制服诱惑在线中文字幕| 久久青草综合色| 日韩成人伦理影院| 美女xxoo啪啪120秒动态图| 久久精品熟女亚洲av麻豆精品| 亚洲一级一片aⅴ在线观看| 亚洲精品乱码久久久v下载方式| 国产熟女午夜一区二区三区 | 99re6热这里在线精品视频| 夫妻午夜视频| 80岁老熟妇乱子伦牲交| 国产精品三级大全| 久久这里有精品视频免费| 日韩精品有码人妻一区| 纯流量卡能插随身wifi吗| av在线观看视频网站免费| 下体分泌物呈黄色| 久久久亚洲精品成人影院| 国产精品嫩草影院av在线观看| 国产精品久久久久久久电影| 大香蕉97超碰在线| 久久99一区二区三区| 插阴视频在线观看视频| 中文字幕人妻丝袜制服| 国内精品宾馆在线| 天堂中文最新版在线下载| 一区二区三区乱码不卡18| 人人妻人人澡人人爽人人夜夜| 国产av国产精品国产| 内射极品少妇av片p| 偷拍熟女少妇极品色| 另类亚洲欧美激情| 搡老乐熟女国产| 久久这里有精品视频免费| 少妇的逼好多水| 成人综合一区亚洲| 国产亚洲午夜精品一区二区久久| 欧美97在线视频| 国产男人的电影天堂91| 成年女人在线观看亚洲视频| √禁漫天堂资源中文www| 国产淫语在线视频| 男女边吃奶边做爰视频| 久久毛片免费看一区二区三区| 精品久久国产蜜桃| 少妇被粗大的猛进出69影院 | 亚洲精品视频女| 日韩 亚洲 欧美在线| 伊人亚洲综合成人网| 欧美日韩av久久| 两个人的视频大全免费| 少妇 在线观看| 亚洲精品日韩在线中文字幕| 性色av一级| 国产午夜精品久久久久久一区二区三区| 国产日韩欧美视频二区| 国产 一区精品| 成人二区视频| 又大又黄又爽视频免费| 国产乱人偷精品视频| 少妇人妻久久综合中文| 涩涩av久久男人的天堂| 国产男人的电影天堂91| 成人午夜精彩视频在线观看| 久久午夜综合久久蜜桃| 亚洲,欧美,日韩| 免费大片18禁| 欧美激情极品国产一区二区三区 | 美女xxoo啪啪120秒动态图| 午夜福利,免费看| 免费大片18禁| 大香蕉久久网| 一区二区三区免费毛片| 肉色欧美久久久久久久蜜桃| 下体分泌物呈黄色| 欧美亚洲 丝袜 人妻 在线| 韩国高清视频一区二区三区| av免费观看日本| 国产欧美日韩一区二区三区在线 | 一区二区三区免费毛片| 永久网站在线| 欧美xxxx性猛交bbbb| 日韩人妻高清精品专区| 久久99热6这里只有精品| 亚洲精品,欧美精品| 婷婷色av中文字幕| 精品国产一区二区久久| 一个人免费看片子| 久久人人爽人人爽人人片va| 蜜桃在线观看..| 青春草亚洲视频在线观看| 午夜福利,免费看| 日本av手机在线免费观看| 国产成人freesex在线| 一区二区三区四区激情视频| 成人亚洲欧美一区二区av| 午夜福利影视在线免费观看| 成人毛片a级毛片在线播放| 欧美精品亚洲一区二区| 国产黄频视频在线观看| 成年av动漫网址| 日日撸夜夜添| 久久狼人影院| 中国国产av一级| 国产成人freesex在线| 91精品伊人久久大香线蕉| .国产精品久久| 人妻人人澡人人爽人人| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 亚洲av在线观看美女高潮| 免费不卡的大黄色大毛片视频在线观看| 成人综合一区亚洲| 成人18禁高潮啪啪吃奶动态图 | 亚洲欧美成人精品一区二区| 一级二级三级毛片免费看| 日日摸夜夜添夜夜添av毛片| 在线观看美女被高潮喷水网站| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| 精品少妇黑人巨大在线播放| 久久韩国三级中文字幕| 亚洲av二区三区四区| 六月丁香七月| 精品熟女少妇av免费看| 欧美日韩av久久| 精品人妻偷拍中文字幕| 亚洲欧美日韩另类电影网站| 在线观看免费日韩欧美大片 | 亚洲国产毛片av蜜桃av| 2018国产大陆天天弄谢| 少妇被粗大的猛进出69影院 | tube8黄色片| 国产欧美另类精品又又久久亚洲欧美| 久久狼人影院| 日韩强制内射视频| 内射极品少妇av片p| av在线播放精品| 黄色一级大片看看| 亚洲精品国产av成人精品| 成年美女黄网站色视频大全免费 | 国产日韩欧美视频二区| 久久99蜜桃精品久久| 亚洲国产色片| 男人舔奶头视频| 亚洲欧美一区二区三区国产| 在线观看免费日韩欧美大片 | 日本欧美视频一区| 一级毛片电影观看| 欧美人与善性xxx| 亚洲,一卡二卡三卡| av有码第一页| 一本久久精品| 91久久精品电影网| 国产精品国产三级国产专区5o| 一本久久精品| 人妻夜夜爽99麻豆av| 欧美精品亚洲一区二区| 亚洲精品,欧美精品| 国产一级毛片在线| 桃花免费在线播放| 亚洲人成网站在线观看播放| av国产精品久久久久影院| 欧美激情极品国产一区二区三区 | 久久人人爽av亚洲精品天堂| av福利片在线观看| 亚洲欧美中文字幕日韩二区| 日本午夜av视频| 国产一区二区三区综合在线观看 | 天堂8中文在线网| 久久国产精品大桥未久av | 日韩中字成人| 国产色婷婷99| 综合色丁香网| 免费观看在线日韩| 麻豆精品久久久久久蜜桃| 久久精品久久久久久噜噜老黄| 国产日韩欧美在线精品| 在线观看美女被高潮喷水网站| 亚洲成人av在线免费| 乱系列少妇在线播放| 午夜日本视频在线| 内地一区二区视频在线| 有码 亚洲区| 欧美日本中文国产一区发布| 99久久精品国产国产毛片| 欧美亚洲 丝袜 人妻 在线| 丝瓜视频免费看黄片| av又黄又爽大尺度在线免费看| 国产又色又爽无遮挡免| 精品卡一卡二卡四卡免费| 在线观看av片永久免费下载| 精品99又大又爽又粗少妇毛片| av又黄又爽大尺度在线免费看| 尾随美女入室| 亚洲精品国产av成人精品| 2022亚洲国产成人精品| 国产精品蜜桃在线观看| 欧美精品国产亚洲| 国产成人freesex在线| 欧美 亚洲 国产 日韩一| 亚洲精品,欧美精品| 高清在线视频一区二区三区| av一本久久久久| 亚洲成色77777| 熟女人妻精品中文字幕| 久久精品久久久久久噜噜老黄| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| 亚洲av日韩在线播放| 免费看日本二区| 亚洲自偷自拍三级| 国产在线视频一区二区| 精品一区二区三区视频在线| 精品久久久久久久久亚洲| 在线观看一区二区三区激情| 日本av手机在线免费观看| 亚洲欧美精品自产自拍| 久久精品久久久久久久性| 亚洲一级一片aⅴ在线观看| 亚洲国产精品999| 一区二区三区乱码不卡18| 久久99精品国语久久久| 免费黄频网站在线观看国产| 欧美日韩视频高清一区二区三区二| 免费观看av网站的网址| 美女视频免费永久观看网站| 亚洲精品色激情综合| 亚洲在久久综合| 色婷婷久久久亚洲欧美| 亚洲综合精品二区| 欧美最新免费一区二区三区| 国产日韩欧美视频二区| 国产精品国产三级国产av玫瑰| 高清视频免费观看一区二区| 国产精品熟女久久久久浪| 69精品国产乱码久久久| 日韩精品免费视频一区二区三区 | 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看 | 国产成人精品无人区| 美女视频免费永久观看网站| 少妇的逼好多水| 女性生殖器流出的白浆| 亚洲欧美日韩另类电影网站| av免费在线看不卡| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 精品久久久久久久久亚洲| 久久这里有精品视频免费| 美女内射精品一级片tv| 汤姆久久久久久久影院中文字幕| 日本91视频免费播放| 少妇裸体淫交视频免费看高清| 永久网站在线| 三上悠亚av全集在线观看 | 女性生殖器流出的白浆| 国产中年淑女户外野战色| 色吧在线观看| 国产一区二区三区综合在线观看 | 国产在视频线精品| 哪个播放器可以免费观看大片| 精品一品国产午夜福利视频| 精品卡一卡二卡四卡免费| 亚洲精品,欧美精品| 免费少妇av软件| 黄色毛片三级朝国网站 | 亚洲精品乱码久久久v下载方式| 狂野欧美激情性xxxx在线观看| 夜夜看夜夜爽夜夜摸| 国产精品蜜桃在线观看| 久久久精品94久久精品| 插逼视频在线观看| 如何舔出高潮| 男女国产视频网站| 日本免费在线观看一区| 中文字幕亚洲精品专区| 97在线视频观看| 高清午夜精品一区二区三区| 如何舔出高潮| av一本久久久久| 免费观看在线日韩| 国产91av在线免费观看| 我要看日韩黄色一级片| 永久网站在线| 高清毛片免费看| 国产精品女同一区二区软件| 久久99一区二区三区| 久久精品国产亚洲av天美| 欧美性感艳星| 国产精品一区二区性色av| 亚洲不卡免费看| 偷拍熟女少妇极品色| 纵有疾风起免费观看全集完整版| 99久久人妻综合| 午夜免费鲁丝| 男女边摸边吃奶| 丝袜喷水一区| 91精品国产国语对白视频| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品古装| 菩萨蛮人人尽说江南好唐韦庄|