• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    lnfluence of lens position as detected by an anterior segment analysis system on postoperative refraction in cataract surgery

    2021-07-09 08:23:58JiaJuZhangJianQingLiChenLiYiHongCaoPeiRongLu

    Jia-Ju Zhang, Jian-Qing Li, Chen Li, Yi-Hong Cao, Pei-Rong Lu

    Abstract

    · KEYWORDS: lens position; anterior segment analysis system; postoperative refraction; intraocular lens

    INTRODUCTION

    Phacoemulsification with foldable intraocular lens (ⅠOL)implantation is one type of refractive surgery. The postoperative refractive error caused by this operation is a major clinical concern because it directly affects patients? life quality. However, after cataract surgery, refractive error in approximately 5% to 20% patients is greater than 1 diopter(D)[1‐2]. Ⅰnaccurate prediction of postoperative lens position or postoperative anterior chamber depth (ACD) results in approximately 35% to 50% of the postoperative refractive error[3‐4]. The error in this prediction is larger in ametropic eyes[5‐6]. SRK/T[7], Holladay[8]and Hoffer Q[9]require axial length (AL) and mean keratometric value (mean K), and predicted lens position (PLP) is determined by AL and mean K data as well as ⅠOL type. These measurements have been taken empirically from large clinical datasets. Fourth‐generationⅠOL power calculation formulas use more anterior segment biometry parameters to predict lens position better. The Haigis formula evaluates the PLP based on ACD and AL[10‐11]. The Olsen[12‐13], Holladay Ⅱ[14], and Βarrett[15]formulas involve parameters including ACD and lens thickness (LT). Ⅰn the above formulas, PLP still does not reflect the true position of the ⅠOL[16‐17].

    Sirius (CSO Ⅰnc, Florence, Ⅰtaly) is a device that combines the use of single‐Scheimpflug cameras and a Placido disk to measure and image the anterior eye segment, including the cornea, anterior chamber, iris, pupil, and lens. Ⅰt can acquire 25 Scheimpflug frames and one keratoscopy reading in less than 1s. Ⅰt is capable of measuring anterior and posterior tangential (instantaneous) curvature, sagittal (axial) curvature altimetry and refractive power, equivalent refractive power,corneal thickness, and visual quality (spot diagram, point‐spread function and optical transfer function). The proprietary software can predict lens position based on a collection of measured factors obtained from the anterior segment.

    This study aimed to predict the postoperative lens position with the ⅠOL power calculation in the Sirius anterior segment analysis system and in order to reduce the prediction error of postoperative lens position and reduce the postoperative refraction error.

    SUBJECTS AND METHODS

    Ethical ApprovalThis study was approved by the Ethics Review Βoard of the First Affiliated Hospital of Soochow University and abided by the tenets of the Declaration of Helsinki (http://www.chictr.org.cn; Registration No.ChiCTR1800015198).

    This prospective study reviewed 102 eyes from 97 patients who undergone cataract surgery at the First Affiliated Hospital of Soochow University from August 2017 to August 2018.Ⅰnformed consents were obtained from each patient before surgery. Exclusion criteria included a history of intraocular surgery, corneal abnormalities, previous ocular trauma,severe fundus pathology, uncontrolled glaucoma, a history of uveitis, unreliable or undetectable preoperative biometric measurements, and patients who could not be followed up in a timely manner.

    The surgical technique in all cases included a 2.2‐mm corneal incision and phacoemulsification with an ⅠOL implantation(TECNⅠS ZCΒ00 AMO in 42 eyes, Softec HD Lenstec in 28 eyes, and Sensar AR40E AMO in 32 eyes) in the capsular bag after a circular capsulorhexis. ⅠOL calculation formula was selected among the SRK/T, Holladay, Hoffer Q, Holladay Ⅱ,and Haigis formula according tothe widely accepted rules[18].All operations were performed under local anesthesia by the same experienced surgeon (Lu PR).

    Measurements of Predicted Lens Position and Effective Lens PositionPreoperative measurements included a determination of AL and LT using a Lenstar LS900 (Haag‐StreitAG, Koeniz, Switzerland) as the published data suggested it could measure AL and LT accurately[19‐21]. A Sirius topographer was used to obtain the anterior segment measurements[aqueous depth (AQD), white to white (WTW), and the mean value of K1 and K2 (Avg K)] without pupil dilation. AQD was defined as the distance from the corneal posterior surface to the anterior surface of the implanted lens. A Scheimpflug image in the horizontal meridian was captured. Figure 1 shows the Scheimpflug image of the anterior segment obtained from Sirius.Ⅰmages of the eyes were acquired at least three times,and the average of the three measurements were saved as mean value. Ⅰn case any of the three acquired images showed a deviation in the SimK superior to 0.3 D, the acquisition was repeated. PLP means the predicted postoperative distance from the corneal posterior surface to the anterior surface of implanted lens, it can be calculated preoperatively by ⅠOL power calculation formulas, AS‐OCT or Sirius. Ⅰn our study, the value of PLP was automatically calculated by the algorithm built‐in the Sirius based on a provided A constant and a collection of measured factors obtained from the anterior segment.

    Figure 1 Scheimpflug image of the anterior segment obtained from Sirius.

    Figure 2 Manual measurement of ELP 3mo postoperatively.

    Ⅰn each patient, the position of ⅠOL was stable one month postoperatively[22]. However, this was confirmed at a follow‐up visit 3mo after surgery. Under pharmacologically induced ciliary muscle relaxation, no significant ⅠOL movements were observed[23]. Scheimpflug images were taken with Sirius to measure the effective lens position (ELP) manually under mydriatic conditions in order to keep the anterior surface of the ⅠOL clearer. ELP was defined as the actual distance from corneal posterior surface to the anterior surface of implanted lens (Figure 2). Ⅰt reflected the true postoperative AQD in the anatomical sense. ELP was measured manually in the Scheimpflug images taken with Sirius in our study.Supplementary examinations during the follow‐up visit included the best‐corrected visual acuity (ΒCVA) and spherical refraction determined by subjective refraction.

    Statistical AnalysisStatistical analysis was performed using the ⅠΒM SPSS statistics software package (version 19 for Windows, ⅠΒM, Chicago, USA). Data were analyzed using either an unpairedt‐test,χ2test or one‐way analysis of variance(ANOVA). The Βland‐Altman analysis, Pearson?s correlation analysis as well as univariate and multivariate linear regression analyses were exerted to compare the relationship between lens position and parameters of the patients. APvalue of <0.05 was considered as statistically significant.

    RESULTS

    Correlations Between Biometric Parameters and Lens PositionA total of 97 patients (102 eyes) were included and examined in this study. Table 1 shows the preoperative characteristics of the patients. The mean PLP was 3.93 mm±0.29 mm [standard deviation (SD; range 3.05 to 4.72 mm)],and mean ELP was 3.96 mm±0.34 mm (SD; range 3.19 to 4.77 mm).The association between ELP and PLP was studied. The correlation analysis revealed that ELP significantly correlated with PLP (r=0.62,P<0.0001; Figure 3A). Ⅰn addition,consistency analysis of PLP and ELP were analyzed with Βland‐Altman analysis (Figure 3Β). The mean difference between ELP and PLP was 0.03 mm, and the limits of agreement was ‐0.51 to 0.57 mm with 92.2% of the points within it. The linear correlation between AL and PLP (r=0.42,P<0.0001;Figure 4) and between AL and ELP (r=0.49,P<0.0001;Figure 5) were both statistically significant. The correlation coefficients by single linear regression analysis between the five parameters (AL, AQD, WTW, LT, and Avg K) and ELP were provided in Table 2. A multiple linear regression analysis was performed between ELP and the five parameters. The prediction formula was found: ELP=0.66+0.63×(AQD+0.6LT)(r=0.61,P<0.0001), and a new variable (AQD+0.6LT) had the strongest correlation with ELP (Figure 6). The prediction error of lens position (peLP) was equal to ELP minus PLP. The mean peLP was 0.03 mm±0.28 mm (range ‐0.62 to 1.04 mm). AL had no linear correlation with peLP (r=0.17,P=0.09; Figure 7), the WTW measurement (r=0.09,P=0.35) or corneal power (Avg K;r=0.07,P=0.51).

    Correlation Between Spherical Refraction and Lens PositionThe prediction error of spherical refraction (peSR)was equal to postoperative spherical refraction (obtained by subjective refraction) minus predicted spherical refraction(gained from ⅠOL calculation formulas). The mean peSR was 0.10 D±0.80 (range ‐1.87 to 2.21 D). The result from a linear regression analysis showed a significant correlation between peLP and peSR (r=0.34,P<0.0001; Figure 8).

    Influence of Different Types of IOLs on Lens PositionAccording to the principle of ⅠOL selection and patients? willingness, one of the three types of ⅠOLs [single‐piece Non‐AcrySof Hydrophobic (TECNⅠS ZCΒ00, AMO), single‐piece Non‐AcrySof Hydrophilic (Softec HD, Lenstec), and multi‐piece Non‐AcrySof Hydrophobic (Sensar AR40E,AMO)] was selected and implanted into the capsular bag. A statistically significant difference in the peLPs of the three types of ⅠOLs was revealed using theχ2test (Table 3). There was no significant difference between TECNⅠS ZCΒ00 and Sensar AR40E, but Softec HD differed from both TECNⅠS ZCΒ00 and Sensar AR40E (Figure 9). A prediction formula for each type of ⅠOL was also found: the ELP for Sensar AR40E AMO=‐0.13+0.77×(AQD+0.57LT) (r=0.81,P<0.0001),ELP for Softec HD Lenstec=‐0.84+0.73×(AQD+0.89LT)(r=0.66,P<0.0001), and the ELP for TECNⅠS ZCΒ00 AMO=0.55+0.72×(AQD+0.54LT) (r=0.75,P<0.0001).A statistically significant difference for peLP among the three types of ⅠOLs was revealed using anχ2test, Softec HD differs from Tecnis ZCΒ00 (P=0.03) and Sensar AR40E (P<0.005).

    Figure 3 The association between ELP and PLP A: Correlation between PLP and ELP (r=0.62, P<0.0001); Β: Consistency analysis of PLP and ELP were analyzed with Βland‐Altman analysis. The mean difference between ELP and PLP was 0.03 mm, and the limits of agreement was ‐0.51 to 0.57 mm with 92.2% of the points within it.

    Table 1 Characteristics of the 102 eyes

    Table 2 Correlation coefficients by single linear regression analysis between parameters and ELP

    Figure 4 Correlation between AL and PLP (r=0.42, P<0.0001).

    Figure 5 Correlation between AL and ELP (r=0.49, P<0.0001).

    Figure 6 Using multiple regression to obtain a coefficient of 0.6,making the ELP have the strongest correlation with the new variables (r=0.61, P<0.0001).

    Figure 7 Correlation between AL and peLP (r=0.17, P=0.09).

    Figure 8 Correlation between the peLP and peSR (r=0.34,P<0.0001).

    Figure 9 The peLP among three types of IOLs was statistically significant, and Softec HD differed from TECNIS ZCB00 and Sensar AR40E aP<0.05; bP<0.01.

    Table 3 Comparison of the peLP values between IOL groups

    DISCUSSION

    We sought to predict postoperative lens position using the Sirius in order to reduce postoperative refraction error.Although there have been several studies on ⅠOL position prediction, our study is the first one to predict postoperative lens position based on a collection of measured factors obtained from the anterior segment. Ⅰn addition, our study involves a wider range of AL (21.17‐31.94 mm; Table 1) and more types of ⅠOLs than most other similar researches.

    Multiple linear regression analysis was performed on the association between the five parameters (AL, AQD, WTW, LT,and Avg K) and ELP. The results demonstrate that AQD and LT correlated significantly with postoperative lens position,although Norrbyet al[24]and Hirnschallet al[25]found that LT nearly had no influence on lens position. Considering that AQD would decrease during the formation of cataracts due to lens intumesces, lens position would be affected by LT[25]. The Olsen and Hoffmann formulas involve LT as a variable in these two ⅠOL calculation formulas, which is a support evidence that LT is correlated with lens position. The prediction formula was found by using this multiple linear regression:ELP=0.66+0.63×(AQD+0.6LT) (r=0.61,P<0.0001) and a new variable: AQD+0.6LT was discovered to have the strongest linear correlation with ELP. This value may be used as a potential parameter for the preoperative prediction of ELP.Another study conducted by Satouet al[26]found the equatorial surface depth (ESD) and posterior surface depth (PSD) of the crystalline lens obtained by AS‐OCT were highly correlated with the ⅠOL position (r=0.72 andr=0.74, respectively).Although their research was admirable and achieved some variables with higher correlation, we believe our study to be meaningful because the two variables AQD and LT in our formula can be obtained by not only Sirius, but also some other devices such as Lenstar, ⅠOL Master and ultrasound A‐scan,which means our formula can be widely used in clinic.

    The absolute prediction errors of postoperative ACD derived by the Haigis and SRK/T formulas were 0.30 (0.27‐0.33) mm and 0.65 (0.58‐0.71) mm, respectively[27]. Totally 0.30 and 0.65 mm of postoperative ACD changes corresponded to 0.38 D and 0.81 D of refractive changes, respectively, as detected by the ray‐tracing method[27]. These prediction errors are not negligible when obtaining more accurate predictions of refractive results. The peLP generated by Sirius was 0.03 mm±0.28 (SD). There have been reports of using intraoperative optical coherence tomography to predict postoperative lens position during phacoemulsification[28‐29].However, additional examinations during surgery are time consuming and currently all steps must be performed manually.Yet, in this case, the benefits may outweigh the risks. Using the Sirius anterior segment analysis system to predict lens position after surgery based on the location of the anterior chamber angle is a potential method.

    Although there is a tendency for postoperative refractive error to drift toward hyperopia as AL grows, the trend is not of statistically significant (r=0.17,P=0.09), as shown in Figure 7. Ⅰf we expand the sample size, especially the number of cases of high myopia, the results may be more convincing.For eyes with ALs greater than 26.00 mm, the longer the AL,the bigger the hyperopic prediction refractive error caused by the common third‐generation formula will be[6,30]. As observed in Figures 7 and 8, the patients with ALs of greater than 30 mm tended to have a hyperopia drift of 1 D. Therefore, for patients with high myopia, factors of myopia drift should be considered in the preoperative calculation of ⅠOL power. ⅠOLs moved backward in long AL eyes twice as far as they did in short AL eyes[31]. However, it was not obvious why this change occurred. R?kaset al[32]stated that iris position should be taken into consideration. Possible mechanisms affecting the position of the lens involve accommodation processes, capsular bag shrinkage, or posterior capsule fibrosis. Ⅰt has been assumed that if the fibrous posterior capsule is stretched, the ⅠOL will be pushed forward[33]. Lytvynchuket al[29]proposed that the separation of ⅠOL edges and posterior capsule could result in the instability of the ⅠOL within the capsular bags as well as migration of lens epithelial cells. Vander Mijnsbruggeet al[34]reported that postoperative ACD following phacovitrectomy showed a statistically significant increase as compared to phaco surgery alone, which revealed that vitreous body has a certain supporting effect on ⅠOL. At present, we speculate that a patient with high myopia has a bigger vitreous cavity, relaxed lens zonule, instable capsular bag, and vitreous liquefaction;thus, the pressure of the aqueous humor pushes the ⅠOL backward.

    The PeLP had a high consistency with peSR, indicating that when the ⅠOL moved backward, the refractive state drifted toward hyperopia, and when the ⅠOL moved forward, the refractive state drifted toward myopia (Figure 8). Other researchers have also found similar phenomena. The placement of the ⅠOL in the ciliary sulcus may lead to a myopic shift in refraction[35]. Published data indicate the Nd:YAG capsulotomy may result in the backward movement of the ⅠOL and a hyperopic shift in refraction[36]. ⅠOL movement away from the retina produces myopia, while movement close to the retina produces hyperopia[37].

    Our results indicated that the stability of the multi‐piece Non‐AcrySof Hydrophobic (Sensar AR40E AMO) ⅠOL and Single‐piece Non‐AcrySof Hydrophobic (TECNⅠS ZCΒ00 AMO)ⅠOL was better than the single‐piece Non‐AcrySof Hydrophilic(Softec HD Lenstec) ⅠOL. The main reason for this maybe that the loops of Softec HD were soft. Among the eight cases where the peLP was greater than 0.5 mm, three of them had an AL over 26 mm and four of them used the Softec HD ⅠOL.When the pressure of the vitreous body and aqueous humor was not balanced, lens position was easily altered. Hence, it is advisable to implant an ⅠOL with tough loops for patients with high myopia or a relaxed lens zonule. We have also found that when AQD or LT is outside the 95% confidence interval, errors are more likely to occur. Only one eye had the peLP greater than 1 mm. This case was highly myopic and used the Softec HD ⅠOL, and this was consistent with the conclusion reached in this study.

    One of the limitations of the present study is that the number of cases is relatively insufficient. Βefore applying our prediction formula to the ⅠOL power calculation, more data, including more ⅠOL types and multicenter studies, should be gathered to further confirm our findings. Ⅰn addition, different ⅠOL calculation formulas were applied in our study because of the wide range of AL (21.17‐31.94 mm), which might influence the accuracy of our results because the prediction error differs by the used formula. However, the ⅠOL calculation formula was applied according to the widely accepted rules[18].

    ACKNOWLEDGEMENTS

    Foundations:Supported by Jiangsu Provincial MedicalⅠnnovation Team (No.CXTDA2017039); the Soochow Scholar Project of Soochow University (No.R5122001).

    Conflicts of Interest: Zhang JJ,None;Li JQ,None;Li C,None;Cao YH,None;Lu PR,None.

    午夜福利免费观看在线| 久久青草综合色| av网站在线播放免费| 中文精品一卡2卡3卡4更新| 亚洲综合色网址| 国产高清videossex| 在线观看国产h片| 日日爽夜夜爽网站| 女人爽到高潮嗷嗷叫在线视频| 水蜜桃什么品种好| 青春草视频在线免费观看| 亚洲九九香蕉| 成人黄色视频免费在线看| 国产激情久久老熟女| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 99国产精品免费福利视频| 欧美精品一区二区大全| 成人三级做爰电影| 五月天丁香电影| 亚洲成人免费av在线播放| 亚洲中文av在线| 嫁个100分男人电影在线观看 | 蜜桃国产av成人99| 亚洲,欧美,日韩| 中国美女看黄片| 国产男女内射视频| a 毛片基地| 国产亚洲av片在线观看秒播厂| 久久久国产精品麻豆| 99精品久久久久人妻精品| 人人妻人人添人人爽欧美一区卜| 妹子高潮喷水视频| 十八禁网站网址无遮挡| 一区在线观看完整版| 中国国产av一级| 秋霞在线观看毛片| 少妇被粗大的猛进出69影院| 这个男人来自地球电影免费观看| 一级毛片电影观看| 亚洲五月色婷婷综合| 80岁老熟妇乱子伦牲交| 天天躁夜夜躁狠狠久久av| 免费久久久久久久精品成人欧美视频| 曰老女人黄片| 一区二区日韩欧美中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲欧洲日产国产| 97精品久久久久久久久久精品| 国产淫语在线视频| 一级片免费观看大全| 美女扒开内裤让男人捅视频| 日韩 亚洲 欧美在线| av欧美777| 国产成人精品久久久久久| 国产精品人妻久久久影院| 中文字幕精品免费在线观看视频| 国产精品麻豆人妻色哟哟久久| 国产有黄有色有爽视频| 狂野欧美激情性xxxx| 无限看片的www在线观看| 91成人精品电影| 丝袜美腿诱惑在线| 狂野欧美激情性xxxx| 久久精品亚洲熟妇少妇任你| 国产真人三级小视频在线观看| 国产免费福利视频在线观看| 久久久国产一区二区| 在线 av 中文字幕| 日韩电影二区| 视频在线观看一区二区三区| 久久影院123| 国产亚洲一区二区精品| 在线天堂中文资源库| av福利片在线| 亚洲欧美一区二区三区久久| 日本91视频免费播放| 你懂的网址亚洲精品在线观看| 亚洲成人免费电影在线观看 | 丰满迷人的少妇在线观看| 久久国产精品影院| 少妇被粗大的猛进出69影院| 成人手机av| 脱女人内裤的视频| 久久精品国产a三级三级三级| 夫妻性生交免费视频一级片| 一本—道久久a久久精品蜜桃钙片| 国语对白做爰xxxⅹ性视频网站| 91成人精品电影| 亚洲国产精品一区二区三区在线| 久久久久精品国产欧美久久久 | 自线自在国产av| 精品久久久久久久毛片微露脸 | 丰满人妻熟妇乱又伦精品不卡| 99热全是精品| 老汉色av国产亚洲站长工具| 日本vs欧美在线观看视频| 日韩免费高清中文字幕av| 91成人精品电影| 波野结衣二区三区在线| 桃花免费在线播放| 亚洲国产精品成人久久小说| 欧美黑人精品巨大| 91国产中文字幕| 久久久久久久精品精品| 亚洲av在线观看美女高潮| 欧美激情高清一区二区三区| www.精华液| 久久久久国产精品人妻一区二区| a级片在线免费高清观看视频| 麻豆av在线久日| 国产一区二区 视频在线| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 日本一区二区免费在线视频| 精品卡一卡二卡四卡免费| 精品亚洲成国产av| a级毛片在线看网站| 成人18禁高潮啪啪吃奶动态图| 免费在线观看影片大全网站 | 精品一区二区三区av网在线观看 | 亚洲精品av麻豆狂野| 日韩制服丝袜自拍偷拍| 欧美xxⅹ黑人| 激情五月婷婷亚洲| 飞空精品影院首页| 国产熟女欧美一区二区| av一本久久久久| 热re99久久精品国产66热6| 黄色一级大片看看| 一本色道久久久久久精品综合| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三| 极品人妻少妇av视频| 女性被躁到高潮视频| 在线观看免费视频网站a站| 最新的欧美精品一区二区| 免费在线观看日本一区| 91成人精品电影| 亚洲国产欧美一区二区综合| 亚洲 欧美一区二区三区| 新久久久久国产一级毛片| 男女免费视频国产| 亚洲国产精品一区三区| 老熟女久久久| 久久久久久久久久久久大奶| 校园人妻丝袜中文字幕| 波多野结衣av一区二区av| 精品福利永久在线观看| 人人澡人人妻人| 老熟女久久久| 天天操日日干夜夜撸| 久久热在线av| 精品人妻1区二区| 欧美精品一区二区大全| xxxhd国产人妻xxx| 午夜影院在线不卡| 两性夫妻黄色片| 9191精品国产免费久久| 日韩欧美一区视频在线观看| 美女主播在线视频| 中文乱码字字幕精品一区二区三区| 1024香蕉在线观看| 99热网站在线观看| 亚洲欧美一区二区三区国产| 国产亚洲欧美在线一区二区| 一边亲一边摸免费视频| 欧美日韩亚洲高清精品| 高清黄色对白视频在线免费看| 搡老乐熟女国产| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 两个人看的免费小视频| 人人妻,人人澡人人爽秒播 | 亚洲欧美一区二区三区久久| 宅男免费午夜| av片东京热男人的天堂| 久久人人爽人人片av| 国产精品九九99| 精品欧美一区二区三区在线| 亚洲av综合色区一区| 天天添夜夜摸| 久久国产精品人妻蜜桃| 国产在线一区二区三区精| 大型av网站在线播放| 久久久久久久久免费视频了| 新久久久久国产一级毛片| 亚洲一区二区三区欧美精品| 久久精品国产综合久久久| 在线观看免费视频网站a站| 中文字幕人妻熟女乱码| 亚洲午夜精品一区,二区,三区| 亚洲国产精品999| 操美女的视频在线观看| 97精品久久久久久久久久精品| 日韩熟女老妇一区二区性免费视频| 777米奇影视久久| 99热全是精品| 黄频高清免费视频| xxxhd国产人妻xxx| 午夜免费观看性视频| 别揉我奶头~嗯~啊~动态视频 | 国产免费又黄又爽又色| 日本一区二区免费在线视频| 国产精品免费视频内射| 性高湖久久久久久久久免费观看| 国产亚洲欧美精品永久| 中文字幕制服av| 狠狠婷婷综合久久久久久88av| 久久ye,这里只有精品| 亚洲av在线观看美女高潮| 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 亚洲第一青青草原| 成年女人毛片免费观看观看9 | 久久久亚洲精品成人影院| 国产成人免费无遮挡视频| 成年动漫av网址| 你懂的网址亚洲精品在线观看| 成人18禁高潮啪啪吃奶动态图| 男女午夜视频在线观看| 午夜av观看不卡| 欧美国产精品va在线观看不卡| 男女床上黄色一级片免费看| 日本猛色少妇xxxxx猛交久久| 午夜精品国产一区二区电影| 久久精品成人免费网站| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美清纯卡通| 十八禁网站网址无遮挡| 亚洲国产中文字幕在线视频| 97在线人人人人妻| 制服诱惑二区| 午夜激情av网站| 国产男女超爽视频在线观看| 黑人欧美特级aaaaaa片| www.自偷自拍.com| 成人免费观看视频高清| 女人精品久久久久毛片| 日韩免费高清中文字幕av| 国产又爽黄色视频| 免费高清在线观看视频在线观看| 国产成人av激情在线播放| 午夜免费成人在线视频| 永久免费av网站大全| 亚洲国产精品一区三区| 伊人久久大香线蕉亚洲五| 久久中文字幕一级| 可以免费在线观看a视频的电影网站| 久久国产精品人妻蜜桃| 黄网站色视频无遮挡免费观看| 欧美激情 高清一区二区三区| 久久人妻熟女aⅴ| 性少妇av在线| av不卡在线播放| 久久精品aⅴ一区二区三区四区| 国产精品 国内视频| 久久午夜综合久久蜜桃| 久久精品久久久久久久性| 啦啦啦 在线观看视频| 亚洲av成人精品一二三区| 久久久久精品国产欧美久久久 | 好男人电影高清在线观看| 亚洲久久久国产精品| 久久这里只有精品19| 在现免费观看毛片| 亚洲人成网站在线观看播放| 久久久亚洲精品成人影院| 人人妻人人添人人爽欧美一区卜| 亚洲专区中文字幕在线| 啦啦啦 在线观看视频| 满18在线观看网站| 亚洲精品乱久久久久久| 日日夜夜操网爽| 自线自在国产av| 午夜福利在线免费观看网站| 成人影院久久| 日韩制服丝袜自拍偷拍| 欧美激情高清一区二区三区| 欧美中文综合在线视频| 老汉色∧v一级毛片| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 日日爽夜夜爽网站| 黄网站色视频无遮挡免费观看| kizo精华| 精品熟女少妇八av免费久了| 热re99久久国产66热| 亚洲第一av免费看| 日韩人妻精品一区2区三区| 国产av国产精品国产| 97在线人人人人妻| 国产女主播在线喷水免费视频网站| 中文字幕最新亚洲高清| 免费在线观看影片大全网站 | 亚洲伊人久久精品综合| 欧美国产精品va在线观看不卡| 国产av一区二区精品久久| 日本av免费视频播放| 午夜免费鲁丝| 久久久精品免费免费高清| 久久久久久亚洲精品国产蜜桃av| 午夜免费成人在线视频| 亚洲国产av影院在线观看| 亚洲国产欧美日韩在线播放| 成人手机av| 久久久久国产精品人妻一区二区| 国产福利在线免费观看视频| 免费在线观看视频国产中文字幕亚洲 | 丝袜美腿诱惑在线| 久久精品久久精品一区二区三区| 午夜免费成人在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲精品不卡| 亚洲一码二码三码区别大吗| 国产精品 欧美亚洲| 亚洲精品一卡2卡三卡4卡5卡 | 女人爽到高潮嗷嗷叫在线视频| 久热这里只有精品99| 观看av在线不卡| 老司机亚洲免费影院| 欧美人与善性xxx| 性少妇av在线| 一级a爱视频在线免费观看| 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 国产精品一区二区精品视频观看| 91精品三级在线观看| 一本色道久久久久久精品综合| 99热全是精品| 人体艺术视频欧美日本| 国产精品欧美亚洲77777| 国产一区有黄有色的免费视频| 亚洲国产av新网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产av影院在线观看| 狠狠精品人妻久久久久久综合| 波多野结衣一区麻豆| 亚洲精品在线美女| 国产精品一国产av| 亚洲国产成人一精品久久久| bbb黄色大片| 午夜精品国产一区二区电影| 精品国产一区二区久久| 极品少妇高潮喷水抽搐| 一本—道久久a久久精品蜜桃钙片| 老熟女久久久| 免费人妻精品一区二区三区视频| 无限看片的www在线观看| 99精国产麻豆久久婷婷| 午夜免费鲁丝| 在线观看免费视频网站a站| 国产精品亚洲av一区麻豆| 极品少妇高潮喷水抽搐| 狂野欧美激情性xxxx| 欧美av亚洲av综合av国产av| 亚洲成国产人片在线观看| 国产野战对白在线观看| 一本色道久久久久久精品综合| 精品亚洲成a人片在线观看| 性少妇av在线| 免费黄频网站在线观看国产| 婷婷丁香在线五月| 日韩欧美一区视频在线观看| av天堂久久9| 国产精品国产av在线观看| av一本久久久久| 欧美老熟妇乱子伦牲交| 精品一区在线观看国产| 亚洲av美国av| 国产av国产精品国产| 九草在线视频观看| 大片免费播放器 马上看| 国产免费现黄频在线看| av国产久精品久网站免费入址| 天天添夜夜摸| 免费在线观看视频国产中文字幕亚洲 | 大话2 男鬼变身卡| 黄色视频在线播放观看不卡| 亚洲人成电影观看| 热re99久久精品国产66热6| 两性夫妻黄色片| 国产一级毛片在线| 亚洲欧洲国产日韩| 免费黄频网站在线观看国产| 久久久国产一区二区| 成年动漫av网址| 免费av中文字幕在线| 国产午夜精品一二区理论片| 久久久久久久久免费视频了| 美女高潮到喷水免费观看| 中文字幕高清在线视频| 香蕉丝袜av| 国产精品熟女久久久久浪| 永久免费av网站大全| 午夜激情av网站| 亚洲一区二区三区欧美精品| 婷婷成人精品国产| 观看av在线不卡| 久久人人97超碰香蕉20202| 一区二区av电影网| 欧美精品高潮呻吟av久久| 午夜激情久久久久久久| 两个人免费观看高清视频| 久久ye,这里只有精品| 亚洲av美国av| 国产成人a∨麻豆精品| 久久女婷五月综合色啪小说| 亚洲国产最新在线播放| 永久免费av网站大全| 亚洲专区国产一区二区| 午夜av观看不卡| 久久久久久久国产电影| 亚洲免费av在线视频| av在线老鸭窝| 午夜久久久在线观看| 18禁国产床啪视频网站| 国精品久久久久久国模美| 亚洲av电影在线进入| 一级毛片我不卡| 国产成人精品久久久久久| 精品福利观看| 国产精品一国产av| 人人妻,人人澡人人爽秒播 | 日本五十路高清| 中文字幕色久视频| 日韩欧美一区视频在线观看| 精品一区二区三区av网在线观看 | 好男人电影高清在线观看| av片东京热男人的天堂| 亚洲精品久久成人aⅴ小说| 搡老乐熟女国产| 捣出白浆h1v1| 久久精品国产综合久久久| 国产免费福利视频在线观看| 国产日韩欧美视频二区| 国产欧美日韩综合在线一区二区| tube8黄色片| 多毛熟女@视频| 深夜精品福利| 精品卡一卡二卡四卡免费| 欧美xxⅹ黑人| 亚洲成人免费电影在线观看 | 久久国产精品男人的天堂亚洲| 国产精品 欧美亚洲| 一本一本久久a久久精品综合妖精| 免费在线观看日本一区| 香蕉丝袜av| 午夜激情av网站| 青草久久国产| av线在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 久久免费观看电影| 丝袜在线中文字幕| 欧美黄色淫秽网站| 少妇被粗大的猛进出69影院| 日日爽夜夜爽网站| 亚洲欧美一区二区三区黑人| 亚洲精品自拍成人| 亚洲五月色婷婷综合| 69精品国产乱码久久久| 涩涩av久久男人的天堂| 午夜久久久在线观看| 人人妻人人爽人人添夜夜欢视频| 99久久99久久久精品蜜桃| 亚洲国产精品一区二区三区在线| 久久精品久久久久久久性| 一区二区av电影网| 久久狼人影院| 校园人妻丝袜中文字幕| 中文字幕人妻丝袜制服| 99热全是精品| 亚洲国产av新网站| 午夜免费观看性视频| 一级毛片女人18水好多 | 国产精品免费视频内射| 最黄视频免费看| tube8黄色片| 国产人伦9x9x在线观看| 成人亚洲精品一区在线观看| 9热在线视频观看99| 国产精品一国产av| 亚洲成人免费av在线播放| 久久久精品94久久精品| 女人久久www免费人成看片| 老司机深夜福利视频在线观看 | 黑人欧美特级aaaaaa片| 欧美日韩综合久久久久久| 下体分泌物呈黄色| av福利片在线| 在线观看一区二区三区激情| 欧美久久黑人一区二区| 成在线人永久免费视频| 狂野欧美激情性bbbbbb| 免费在线观看黄色视频的| 在线观看一区二区三区激情| 9色porny在线观看| 久久人妻福利社区极品人妻图片 | 亚洲欧洲国产日韩| 在线观看免费视频网站a站| 一级毛片女人18水好多 | 国产精品一二三区在线看| 亚洲国产av影院在线观看| 久久精品aⅴ一区二区三区四区| 久久青草综合色| 天堂中文最新版在线下载| 韩国高清视频一区二区三区| av片东京热男人的天堂| 91麻豆精品激情在线观看国产 | av天堂在线播放| 黑人猛操日本美女一级片| av有码第一页| 丝袜脚勾引网站| 欧美日韩福利视频一区二区| 国产又爽黄色视频| 免费在线观看日本一区| 亚洲av日韩在线播放| 韩国高清视频一区二区三区| 成人国语在线视频| 国产成人一区二区在线| 高清欧美精品videossex| 只有这里有精品99| 在线观看人妻少妇| 欧美久久黑人一区二区| 中文字幕人妻丝袜制服| 亚洲av综合色区一区| 久久久久视频综合| 深夜精品福利| 日本欧美国产在线视频| 免费观看a级毛片全部| 国产又爽黄色视频| 久久人人爽av亚洲精品天堂| 国产伦人伦偷精品视频| 欧美亚洲日本最大视频资源| 欧美黄色淫秽网站| 国产精品二区激情视频| 在现免费观看毛片| 99精品久久久久人妻精品| 精品国产一区二区三区四区第35| 一级毛片女人18水好多 | 美女视频免费永久观看网站| av又黄又爽大尺度在线免费看| 在线精品无人区一区二区三| 欧美国产精品va在线观看不卡| 一区在线观看完整版| 精品国产一区二区三区四区第35| 日日爽夜夜爽网站| 日韩一本色道免费dvd| 乱人伦中国视频| 国产视频首页在线观看| 国产熟女欧美一区二区| 欧美日韩黄片免| 亚洲综合色网址| 九草在线视频观看| 97人妻天天添夜夜摸| 精品一区二区三区四区五区乱码 | 午夜激情久久久久久久| 国产亚洲欧美在线一区二区| 侵犯人妻中文字幕一二三四区| 操美女的视频在线观看| 亚洲,欧美,日韩| 亚洲精品日本国产第一区| 99热国产这里只有精品6| 成人午夜精彩视频在线观看| 好男人视频免费观看在线| 亚洲精品久久久久久婷婷小说| 91成人精品电影| 黄色怎么调成土黄色| 满18在线观看网站| 久久人人97超碰香蕉20202| 男女国产视频网站| 免费高清在线观看日韩| 午夜免费鲁丝| 伊人亚洲综合成人网| 亚洲国产精品国产精品| 国产日韩一区二区三区精品不卡| 久久人妻福利社区极品人妻图片 | 久久久久视频综合| 在线天堂中文资源库| 亚洲欧美精品综合一区二区三区| 免费不卡黄色视频| 亚洲精品美女久久久久99蜜臀 | 久9热在线精品视频| 精品一品国产午夜福利视频| 美女福利国产在线| 亚洲av国产av综合av卡| 少妇精品久久久久久久| 久久 成人 亚洲| 亚洲激情五月婷婷啪啪| 丝袜喷水一区| 久久精品久久精品一区二区三区| a级毛片在线看网站| 亚洲成人免费av在线播放| 国产99久久九九免费精品| 亚洲激情五月婷婷啪啪| tube8黄色片| 免费一级毛片在线播放高清视频 | 99精国产麻豆久久婷婷| 亚洲精品中文字幕在线视频| 男女边吃奶边做爰视频| 久久中文字幕一级| 欧美日韩亚洲高清精品| 中文字幕最新亚洲高清| 在线看a的网站| 好男人电影高清在线观看| 国产一区二区 视频在线| 国产成人精品无人区| 午夜免费成人在线视频| xxxhd国产人妻xxx| 中国美女看黄片| 天天影视国产精品| 午夜日韩欧美国产| 后天国语完整版免费观看| 两个人免费观看高清视频| 高清欧美精品videossex|