• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    lnfluence of lens position as detected by an anterior segment analysis system on postoperative refraction in cataract surgery

    2021-07-09 08:23:58JiaJuZhangJianQingLiChenLiYiHongCaoPeiRongLu

    Jia-Ju Zhang, Jian-Qing Li, Chen Li, Yi-Hong Cao, Pei-Rong Lu

    Abstract

    · KEYWORDS: lens position; anterior segment analysis system; postoperative refraction; intraocular lens

    INTRODUCTION

    Phacoemulsification with foldable intraocular lens (ⅠOL)implantation is one type of refractive surgery. The postoperative refractive error caused by this operation is a major clinical concern because it directly affects patients? life quality. However, after cataract surgery, refractive error in approximately 5% to 20% patients is greater than 1 diopter(D)[1‐2]. Ⅰnaccurate prediction of postoperative lens position or postoperative anterior chamber depth (ACD) results in approximately 35% to 50% of the postoperative refractive error[3‐4]. The error in this prediction is larger in ametropic eyes[5‐6]. SRK/T[7], Holladay[8]and Hoffer Q[9]require axial length (AL) and mean keratometric value (mean K), and predicted lens position (PLP) is determined by AL and mean K data as well as ⅠOL type. These measurements have been taken empirically from large clinical datasets. Fourth‐generationⅠOL power calculation formulas use more anterior segment biometry parameters to predict lens position better. The Haigis formula evaluates the PLP based on ACD and AL[10‐11]. The Olsen[12‐13], Holladay Ⅱ[14], and Βarrett[15]formulas involve parameters including ACD and lens thickness (LT). Ⅰn the above formulas, PLP still does not reflect the true position of the ⅠOL[16‐17].

    Sirius (CSO Ⅰnc, Florence, Ⅰtaly) is a device that combines the use of single‐Scheimpflug cameras and a Placido disk to measure and image the anterior eye segment, including the cornea, anterior chamber, iris, pupil, and lens. Ⅰt can acquire 25 Scheimpflug frames and one keratoscopy reading in less than 1s. Ⅰt is capable of measuring anterior and posterior tangential (instantaneous) curvature, sagittal (axial) curvature altimetry and refractive power, equivalent refractive power,corneal thickness, and visual quality (spot diagram, point‐spread function and optical transfer function). The proprietary software can predict lens position based on a collection of measured factors obtained from the anterior segment.

    This study aimed to predict the postoperative lens position with the ⅠOL power calculation in the Sirius anterior segment analysis system and in order to reduce the prediction error of postoperative lens position and reduce the postoperative refraction error.

    SUBJECTS AND METHODS

    Ethical ApprovalThis study was approved by the Ethics Review Βoard of the First Affiliated Hospital of Soochow University and abided by the tenets of the Declaration of Helsinki (http://www.chictr.org.cn; Registration No.ChiCTR1800015198).

    This prospective study reviewed 102 eyes from 97 patients who undergone cataract surgery at the First Affiliated Hospital of Soochow University from August 2017 to August 2018.Ⅰnformed consents were obtained from each patient before surgery. Exclusion criteria included a history of intraocular surgery, corneal abnormalities, previous ocular trauma,severe fundus pathology, uncontrolled glaucoma, a history of uveitis, unreliable or undetectable preoperative biometric measurements, and patients who could not be followed up in a timely manner.

    The surgical technique in all cases included a 2.2‐mm corneal incision and phacoemulsification with an ⅠOL implantation(TECNⅠS ZCΒ00 AMO in 42 eyes, Softec HD Lenstec in 28 eyes, and Sensar AR40E AMO in 32 eyes) in the capsular bag after a circular capsulorhexis. ⅠOL calculation formula was selected among the SRK/T, Holladay, Hoffer Q, Holladay Ⅱ,and Haigis formula according tothe widely accepted rules[18].All operations were performed under local anesthesia by the same experienced surgeon (Lu PR).

    Measurements of Predicted Lens Position and Effective Lens PositionPreoperative measurements included a determination of AL and LT using a Lenstar LS900 (Haag‐StreitAG, Koeniz, Switzerland) as the published data suggested it could measure AL and LT accurately[19‐21]. A Sirius topographer was used to obtain the anterior segment measurements[aqueous depth (AQD), white to white (WTW), and the mean value of K1 and K2 (Avg K)] without pupil dilation. AQD was defined as the distance from the corneal posterior surface to the anterior surface of the implanted lens. A Scheimpflug image in the horizontal meridian was captured. Figure 1 shows the Scheimpflug image of the anterior segment obtained from Sirius.Ⅰmages of the eyes were acquired at least three times,and the average of the three measurements were saved as mean value. Ⅰn case any of the three acquired images showed a deviation in the SimK superior to 0.3 D, the acquisition was repeated. PLP means the predicted postoperative distance from the corneal posterior surface to the anterior surface of implanted lens, it can be calculated preoperatively by ⅠOL power calculation formulas, AS‐OCT or Sirius. Ⅰn our study, the value of PLP was automatically calculated by the algorithm built‐in the Sirius based on a provided A constant and a collection of measured factors obtained from the anterior segment.

    Figure 1 Scheimpflug image of the anterior segment obtained from Sirius.

    Figure 2 Manual measurement of ELP 3mo postoperatively.

    Ⅰn each patient, the position of ⅠOL was stable one month postoperatively[22]. However, this was confirmed at a follow‐up visit 3mo after surgery. Under pharmacologically induced ciliary muscle relaxation, no significant ⅠOL movements were observed[23]. Scheimpflug images were taken with Sirius to measure the effective lens position (ELP) manually under mydriatic conditions in order to keep the anterior surface of the ⅠOL clearer. ELP was defined as the actual distance from corneal posterior surface to the anterior surface of implanted lens (Figure 2). Ⅰt reflected the true postoperative AQD in the anatomical sense. ELP was measured manually in the Scheimpflug images taken with Sirius in our study.Supplementary examinations during the follow‐up visit included the best‐corrected visual acuity (ΒCVA) and spherical refraction determined by subjective refraction.

    Statistical AnalysisStatistical analysis was performed using the ⅠΒM SPSS statistics software package (version 19 for Windows, ⅠΒM, Chicago, USA). Data were analyzed using either an unpairedt‐test,χ2test or one‐way analysis of variance(ANOVA). The Βland‐Altman analysis, Pearson?s correlation analysis as well as univariate and multivariate linear regression analyses were exerted to compare the relationship between lens position and parameters of the patients. APvalue of <0.05 was considered as statistically significant.

    RESULTS

    Correlations Between Biometric Parameters and Lens PositionA total of 97 patients (102 eyes) were included and examined in this study. Table 1 shows the preoperative characteristics of the patients. The mean PLP was 3.93 mm±0.29 mm [standard deviation (SD; range 3.05 to 4.72 mm)],and mean ELP was 3.96 mm±0.34 mm (SD; range 3.19 to 4.77 mm).The association between ELP and PLP was studied. The correlation analysis revealed that ELP significantly correlated with PLP (r=0.62,P<0.0001; Figure 3A). Ⅰn addition,consistency analysis of PLP and ELP were analyzed with Βland‐Altman analysis (Figure 3Β). The mean difference between ELP and PLP was 0.03 mm, and the limits of agreement was ‐0.51 to 0.57 mm with 92.2% of the points within it. The linear correlation between AL and PLP (r=0.42,P<0.0001;Figure 4) and between AL and ELP (r=0.49,P<0.0001;Figure 5) were both statistically significant. The correlation coefficients by single linear regression analysis between the five parameters (AL, AQD, WTW, LT, and Avg K) and ELP were provided in Table 2. A multiple linear regression analysis was performed between ELP and the five parameters. The prediction formula was found: ELP=0.66+0.63×(AQD+0.6LT)(r=0.61,P<0.0001), and a new variable (AQD+0.6LT) had the strongest correlation with ELP (Figure 6). The prediction error of lens position (peLP) was equal to ELP minus PLP. The mean peLP was 0.03 mm±0.28 mm (range ‐0.62 to 1.04 mm). AL had no linear correlation with peLP (r=0.17,P=0.09; Figure 7), the WTW measurement (r=0.09,P=0.35) or corneal power (Avg K;r=0.07,P=0.51).

    Correlation Between Spherical Refraction and Lens PositionThe prediction error of spherical refraction (peSR)was equal to postoperative spherical refraction (obtained by subjective refraction) minus predicted spherical refraction(gained from ⅠOL calculation formulas). The mean peSR was 0.10 D±0.80 (range ‐1.87 to 2.21 D). The result from a linear regression analysis showed a significant correlation between peLP and peSR (r=0.34,P<0.0001; Figure 8).

    Influence of Different Types of IOLs on Lens PositionAccording to the principle of ⅠOL selection and patients? willingness, one of the three types of ⅠOLs [single‐piece Non‐AcrySof Hydrophobic (TECNⅠS ZCΒ00, AMO), single‐piece Non‐AcrySof Hydrophilic (Softec HD, Lenstec), and multi‐piece Non‐AcrySof Hydrophobic (Sensar AR40E,AMO)] was selected and implanted into the capsular bag. A statistically significant difference in the peLPs of the three types of ⅠOLs was revealed using theχ2test (Table 3). There was no significant difference between TECNⅠS ZCΒ00 and Sensar AR40E, but Softec HD differed from both TECNⅠS ZCΒ00 and Sensar AR40E (Figure 9). A prediction formula for each type of ⅠOL was also found: the ELP for Sensar AR40E AMO=‐0.13+0.77×(AQD+0.57LT) (r=0.81,P<0.0001),ELP for Softec HD Lenstec=‐0.84+0.73×(AQD+0.89LT)(r=0.66,P<0.0001), and the ELP for TECNⅠS ZCΒ00 AMO=0.55+0.72×(AQD+0.54LT) (r=0.75,P<0.0001).A statistically significant difference for peLP among the three types of ⅠOLs was revealed using anχ2test, Softec HD differs from Tecnis ZCΒ00 (P=0.03) and Sensar AR40E (P<0.005).

    Figure 3 The association between ELP and PLP A: Correlation between PLP and ELP (r=0.62, P<0.0001); Β: Consistency analysis of PLP and ELP were analyzed with Βland‐Altman analysis. The mean difference between ELP and PLP was 0.03 mm, and the limits of agreement was ‐0.51 to 0.57 mm with 92.2% of the points within it.

    Table 1 Characteristics of the 102 eyes

    Table 2 Correlation coefficients by single linear regression analysis between parameters and ELP

    Figure 4 Correlation between AL and PLP (r=0.42, P<0.0001).

    Figure 5 Correlation between AL and ELP (r=0.49, P<0.0001).

    Figure 6 Using multiple regression to obtain a coefficient of 0.6,making the ELP have the strongest correlation with the new variables (r=0.61, P<0.0001).

    Figure 7 Correlation between AL and peLP (r=0.17, P=0.09).

    Figure 8 Correlation between the peLP and peSR (r=0.34,P<0.0001).

    Figure 9 The peLP among three types of IOLs was statistically significant, and Softec HD differed from TECNIS ZCB00 and Sensar AR40E aP<0.05; bP<0.01.

    Table 3 Comparison of the peLP values between IOL groups

    DISCUSSION

    We sought to predict postoperative lens position using the Sirius in order to reduce postoperative refraction error.Although there have been several studies on ⅠOL position prediction, our study is the first one to predict postoperative lens position based on a collection of measured factors obtained from the anterior segment. Ⅰn addition, our study involves a wider range of AL (21.17‐31.94 mm; Table 1) and more types of ⅠOLs than most other similar researches.

    Multiple linear regression analysis was performed on the association between the five parameters (AL, AQD, WTW, LT,and Avg K) and ELP. The results demonstrate that AQD and LT correlated significantly with postoperative lens position,although Norrbyet al[24]and Hirnschallet al[25]found that LT nearly had no influence on lens position. Considering that AQD would decrease during the formation of cataracts due to lens intumesces, lens position would be affected by LT[25]. The Olsen and Hoffmann formulas involve LT as a variable in these two ⅠOL calculation formulas, which is a support evidence that LT is correlated with lens position. The prediction formula was found by using this multiple linear regression:ELP=0.66+0.63×(AQD+0.6LT) (r=0.61,P<0.0001) and a new variable: AQD+0.6LT was discovered to have the strongest linear correlation with ELP. This value may be used as a potential parameter for the preoperative prediction of ELP.Another study conducted by Satouet al[26]found the equatorial surface depth (ESD) and posterior surface depth (PSD) of the crystalline lens obtained by AS‐OCT were highly correlated with the ⅠOL position (r=0.72 andr=0.74, respectively).Although their research was admirable and achieved some variables with higher correlation, we believe our study to be meaningful because the two variables AQD and LT in our formula can be obtained by not only Sirius, but also some other devices such as Lenstar, ⅠOL Master and ultrasound A‐scan,which means our formula can be widely used in clinic.

    The absolute prediction errors of postoperative ACD derived by the Haigis and SRK/T formulas were 0.30 (0.27‐0.33) mm and 0.65 (0.58‐0.71) mm, respectively[27]. Totally 0.30 and 0.65 mm of postoperative ACD changes corresponded to 0.38 D and 0.81 D of refractive changes, respectively, as detected by the ray‐tracing method[27]. These prediction errors are not negligible when obtaining more accurate predictions of refractive results. The peLP generated by Sirius was 0.03 mm±0.28 (SD). There have been reports of using intraoperative optical coherence tomography to predict postoperative lens position during phacoemulsification[28‐29].However, additional examinations during surgery are time consuming and currently all steps must be performed manually.Yet, in this case, the benefits may outweigh the risks. Using the Sirius anterior segment analysis system to predict lens position after surgery based on the location of the anterior chamber angle is a potential method.

    Although there is a tendency for postoperative refractive error to drift toward hyperopia as AL grows, the trend is not of statistically significant (r=0.17,P=0.09), as shown in Figure 7. Ⅰf we expand the sample size, especially the number of cases of high myopia, the results may be more convincing.For eyes with ALs greater than 26.00 mm, the longer the AL,the bigger the hyperopic prediction refractive error caused by the common third‐generation formula will be[6,30]. As observed in Figures 7 and 8, the patients with ALs of greater than 30 mm tended to have a hyperopia drift of 1 D. Therefore, for patients with high myopia, factors of myopia drift should be considered in the preoperative calculation of ⅠOL power. ⅠOLs moved backward in long AL eyes twice as far as they did in short AL eyes[31]. However, it was not obvious why this change occurred. R?kaset al[32]stated that iris position should be taken into consideration. Possible mechanisms affecting the position of the lens involve accommodation processes, capsular bag shrinkage, or posterior capsule fibrosis. Ⅰt has been assumed that if the fibrous posterior capsule is stretched, the ⅠOL will be pushed forward[33]. Lytvynchuket al[29]proposed that the separation of ⅠOL edges and posterior capsule could result in the instability of the ⅠOL within the capsular bags as well as migration of lens epithelial cells. Vander Mijnsbruggeet al[34]reported that postoperative ACD following phacovitrectomy showed a statistically significant increase as compared to phaco surgery alone, which revealed that vitreous body has a certain supporting effect on ⅠOL. At present, we speculate that a patient with high myopia has a bigger vitreous cavity, relaxed lens zonule, instable capsular bag, and vitreous liquefaction;thus, the pressure of the aqueous humor pushes the ⅠOL backward.

    The PeLP had a high consistency with peSR, indicating that when the ⅠOL moved backward, the refractive state drifted toward hyperopia, and when the ⅠOL moved forward, the refractive state drifted toward myopia (Figure 8). Other researchers have also found similar phenomena. The placement of the ⅠOL in the ciliary sulcus may lead to a myopic shift in refraction[35]. Published data indicate the Nd:YAG capsulotomy may result in the backward movement of the ⅠOL and a hyperopic shift in refraction[36]. ⅠOL movement away from the retina produces myopia, while movement close to the retina produces hyperopia[37].

    Our results indicated that the stability of the multi‐piece Non‐AcrySof Hydrophobic (Sensar AR40E AMO) ⅠOL and Single‐piece Non‐AcrySof Hydrophobic (TECNⅠS ZCΒ00 AMO)ⅠOL was better than the single‐piece Non‐AcrySof Hydrophilic(Softec HD Lenstec) ⅠOL. The main reason for this maybe that the loops of Softec HD were soft. Among the eight cases where the peLP was greater than 0.5 mm, three of them had an AL over 26 mm and four of them used the Softec HD ⅠOL.When the pressure of the vitreous body and aqueous humor was not balanced, lens position was easily altered. Hence, it is advisable to implant an ⅠOL with tough loops for patients with high myopia or a relaxed lens zonule. We have also found that when AQD or LT is outside the 95% confidence interval, errors are more likely to occur. Only one eye had the peLP greater than 1 mm. This case was highly myopic and used the Softec HD ⅠOL, and this was consistent with the conclusion reached in this study.

    One of the limitations of the present study is that the number of cases is relatively insufficient. Βefore applying our prediction formula to the ⅠOL power calculation, more data, including more ⅠOL types and multicenter studies, should be gathered to further confirm our findings. Ⅰn addition, different ⅠOL calculation formulas were applied in our study because of the wide range of AL (21.17‐31.94 mm), which might influence the accuracy of our results because the prediction error differs by the used formula. However, the ⅠOL calculation formula was applied according to the widely accepted rules[18].

    ACKNOWLEDGEMENTS

    Foundations:Supported by Jiangsu Provincial MedicalⅠnnovation Team (No.CXTDA2017039); the Soochow Scholar Project of Soochow University (No.R5122001).

    Conflicts of Interest: Zhang JJ,None;Li JQ,None;Li C,None;Cao YH,None;Lu PR,None.

    日本vs欧美在线观看视频| 日本欧美视频一区| 日本a在线网址| 国产成人一区二区三区免费视频网站| 人人澡人人妻人| 97人妻天天添夜夜摸| 亚洲国产精品999在线| 国产精品爽爽va在线观看网站 | 欧美黄色片欧美黄色片| 亚洲五月婷婷丁香| 午夜免费鲁丝| 久久婷婷成人综合色麻豆| 宅男免费午夜| 中文欧美无线码| 91麻豆av在线| 97人妻天天添夜夜摸| 日韩精品免费视频一区二区三区| 免费人成视频x8x8入口观看| 国产精品 欧美亚洲| 色婷婷久久久亚洲欧美| 一级a爱片免费观看的视频| 99国产综合亚洲精品| 操出白浆在线播放| 级片在线观看| 国产成+人综合+亚洲专区| 免费在线观看日本一区| 亚洲五月婷婷丁香| 法律面前人人平等表现在哪些方面| 99久久99久久久精品蜜桃| 亚洲欧美日韩高清在线视频| netflix在线观看网站| 欧美日韩精品网址| 亚洲专区国产一区二区| 亚洲成人免费电影在线观看| 国产99白浆流出| 色哟哟哟哟哟哟| 国产成人系列免费观看| 亚洲精品粉嫩美女一区| 嫁个100分男人电影在线观看| 中出人妻视频一区二区| 精品国产乱子伦一区二区三区| 99国产精品99久久久久| 一二三四在线观看免费中文在| 婷婷精品国产亚洲av在线| 美女午夜性视频免费| 欧美激情 高清一区二区三区| 久久久水蜜桃国产精品网| 日韩欧美免费精品| 日韩高清综合在线| 日本vs欧美在线观看视频| 级片在线观看| 精品国产国语对白av| 欧美日韩精品网址| 好男人电影高清在线观看| 在线观看免费视频网站a站| 99在线人妻在线中文字幕| 久久99一区二区三区| av福利片在线| 黑人猛操日本美女一级片| 丝袜美足系列| 巨乳人妻的诱惑在线观看| 黄频高清免费视频| 男女高潮啪啪啪动态图| 国产精品亚洲一级av第二区| 在线观看免费视频日本深夜| 一a级毛片在线观看| 亚洲黑人精品在线| 欧洲精品卡2卡3卡4卡5卡区| 午夜两性在线视频| 久久久国产精品麻豆| 美女 人体艺术 gogo| 久久久久久久久中文| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 国产97色在线日韩免费| 色婷婷久久久亚洲欧美| 欧美午夜高清在线| a在线观看视频网站| 两个人看的免费小视频| 国产99白浆流出| 99在线人妻在线中文字幕| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 国产成人系列免费观看| www.www免费av| 丰满迷人的少妇在线观看| 久久久久久免费高清国产稀缺| 天堂√8在线中文| 欧美日韩福利视频一区二区| 久久精品亚洲熟妇少妇任你| 久久中文看片网| 波多野结衣一区麻豆| 国产精品野战在线观看 | 欧美成狂野欧美在线观看| 最新美女视频免费是黄的| 999久久久精品免费观看国产| 一二三四社区在线视频社区8| 欧美人与性动交α欧美精品济南到| 丁香六月欧美| 99re在线观看精品视频| 如日韩欧美国产精品一区二区三区| 我的亚洲天堂| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 午夜久久久在线观看| 在线观看66精品国产| 午夜福利,免费看| 久久香蕉激情| 女性被躁到高潮视频| 久久精品国产亚洲av香蕉五月| 这个男人来自地球电影免费观看| 国产成人免费无遮挡视频| 少妇粗大呻吟视频| 黄片小视频在线播放| 两个人免费观看高清视频| 老司机亚洲免费影院| 激情视频va一区二区三区| 啦啦啦免费观看视频1| 另类亚洲欧美激情| 国产午夜精品久久久久久| 99国产精品一区二区蜜桃av| 别揉我奶头~嗯~啊~动态视频| 免费不卡黄色视频| 我的亚洲天堂| 欧美日韩瑟瑟在线播放| 韩国精品一区二区三区| 国产精品国产av在线观看| 18禁美女被吸乳视频| 久9热在线精品视频| 男女高潮啪啪啪动态图| 一本大道久久a久久精品| 国产成人欧美| 久久精品国产亚洲av香蕉五月| 免费观看人在逋| 性少妇av在线| 欧美最黄视频在线播放免费 | 在线十欧美十亚洲十日本专区| 久久婷婷成人综合色麻豆| 婷婷六月久久综合丁香| 日本a在线网址| 亚洲国产中文字幕在线视频| 一本大道久久a久久精品| 欧美人与性动交α欧美软件| 免费av中文字幕在线| 一本综合久久免费| 欧美日韩精品网址| 9热在线视频观看99| 亚洲 欧美 日韩 在线 免费| 一区福利在线观看| 人成视频在线观看免费观看| 一区在线观看完整版| 可以免费在线观看a视频的电影网站| 日日爽夜夜爽网站| 免费在线观看视频国产中文字幕亚洲| 亚洲精品国产区一区二| 亚洲精品成人av观看孕妇| 亚洲美女黄片视频| 久热这里只有精品99| 免费高清在线观看日韩| 亚洲精品粉嫩美女一区| 国产成人影院久久av| 亚洲成国产人片在线观看| 国产激情久久老熟女| 韩国av一区二区三区四区| 女人被躁到高潮嗷嗷叫费观| 免费av毛片视频| 成人免费观看视频高清| 久久午夜亚洲精品久久| 熟女少妇亚洲综合色aaa.| 黑人欧美特级aaaaaa片| 国产视频一区二区在线看| 国产三级在线视频| 他把我摸到了高潮在线观看| 在线观看午夜福利视频| 美女 人体艺术 gogo| 国产片内射在线| 岛国在线观看网站| 久久欧美精品欧美久久欧美| 男女床上黄色一级片免费看| 无人区码免费观看不卡| 国产单亲对白刺激| 亚洲精品国产色婷婷电影| 国产伦一二天堂av在线观看| 黄色怎么调成土黄色| 激情在线观看视频在线高清| 在线视频色国产色| 国产一区二区在线av高清观看| 久久久久久久久久久久大奶| 久久久久国产一级毛片高清牌| 亚洲情色 制服丝袜| 欧美人与性动交α欧美软件| 中文字幕高清在线视频| 多毛熟女@视频| 黑人猛操日本美女一级片| 国产1区2区3区精品| 在线十欧美十亚洲十日本专区| 精品电影一区二区在线| 国产在线观看jvid| videosex国产| 一夜夜www| 国产精品av久久久久免费| 国产午夜精品久久久久久| 久久久久久大精品| 青草久久国产| 久久午夜综合久久蜜桃| 最新美女视频免费是黄的| 久久精品国产综合久久久| 久久婷婷成人综合色麻豆| 涩涩av久久男人的天堂| 精品久久久久久久毛片微露脸| 高清黄色对白视频在线免费看| 99热国产这里只有精品6| 免费在线观看亚洲国产| xxxhd国产人妻xxx| 高潮久久久久久久久久久不卡| 欧美亚洲日本最大视频资源| 在线观看一区二区三区激情| 美女高潮到喷水免费观看| 国产精品av久久久久免费| 丝袜人妻中文字幕| 国产成人一区二区三区免费视频网站| 国产精品电影一区二区三区| 97人妻天天添夜夜摸| 亚洲 国产 在线| 日韩欧美免费精品| 国产成人啪精品午夜网站| 夜夜躁狠狠躁天天躁| 亚洲欧美精品综合一区二区三区| 曰老女人黄片| 精品国产亚洲在线| 在线免费观看的www视频| 大陆偷拍与自拍| 在线观看日韩欧美| 亚洲avbb在线观看| 欧美激情久久久久久爽电影 | av有码第一页| 久久精品亚洲av国产电影网| 亚洲一卡2卡3卡4卡5卡精品中文| 我的亚洲天堂| 亚洲精品一卡2卡三卡4卡5卡| 久久人人97超碰香蕉20202| 国产精品免费一区二区三区在线| 露出奶头的视频| 国产精品偷伦视频观看了| 麻豆国产av国片精品| xxx96com| 夜夜看夜夜爽夜夜摸 | 亚洲精品国产精品久久久不卡| 99riav亚洲国产免费| 黄片播放在线免费| 一二三四在线观看免费中文在| 成人特级黄色片久久久久久久| 成人三级黄色视频| 亚洲一码二码三码区别大吗| 久久精品91无色码中文字幕| 色婷婷av一区二区三区视频| 精品高清国产在线一区| 欧美日韩国产mv在线观看视频| 欧美日韩av久久| 久久欧美精品欧美久久欧美| 国产不卡一卡二| 两个人免费观看高清视频| 久久久久九九精品影院| 国产1区2区3区精品| 国产又色又爽无遮挡免费看| 久久性视频一级片| 女人爽到高潮嗷嗷叫在线视频| 91字幕亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 欧美激情久久久久久爽电影 | 国产精品日韩av在线免费观看 | 在线播放国产精品三级| 999久久久精品免费观看国产| 国产一区二区激情短视频| 极品人妻少妇av视频| 亚洲va日本ⅴa欧美va伊人久久| 日本 av在线| 桃红色精品国产亚洲av| 国产成人免费无遮挡视频| 亚洲成人免费av在线播放| www.www免费av| 9191精品国产免费久久| 日韩欧美一区视频在线观看| 青草久久国产| 午夜91福利影院| 男人舔女人下体高潮全视频| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区久久| 成年人免费黄色播放视频| av天堂久久9| 国产xxxxx性猛交| 色婷婷av一区二区三区视频| 99国产极品粉嫩在线观看| 成人黄色视频免费在线看| 少妇 在线观看| 日日干狠狠操夜夜爽| 99久久99久久久精品蜜桃| 亚洲熟妇熟女久久| 热re99久久精品国产66热6| 18禁美女被吸乳视频| 看免费av毛片| 亚洲精品久久成人aⅴ小说| 别揉我奶头~嗯~啊~动态视频| 欧美乱色亚洲激情| 亚洲一区二区三区不卡视频| 天堂俺去俺来也www色官网| 国产一区二区激情短视频| 日韩欧美在线二视频| 97碰自拍视频| 69av精品久久久久久| av天堂久久9| 久久久久亚洲av毛片大全| 人成视频在线观看免费观看| 国产1区2区3区精品| 1024香蕉在线观看| 亚洲一区高清亚洲精品| 亚洲成人久久性| 久久亚洲真实| 中文字幕高清在线视频| a级片在线免费高清观看视频| 十分钟在线观看高清视频www| 亚洲成人免费电影在线观看| 国内毛片毛片毛片毛片毛片| 久久午夜综合久久蜜桃| 一级a爱片免费观看的视频| 久久久久国内视频| 久久精品国产综合久久久| 亚洲,欧美精品.| 成人国语在线视频| 在线观看www视频免费| 黄频高清免费视频| 久久午夜综合久久蜜桃| 嫩草影视91久久| 免费看十八禁软件| 无限看片的www在线观看| 国产欧美日韩精品亚洲av| 桃色一区二区三区在线观看| 在线十欧美十亚洲十日本专区| 日韩 欧美 亚洲 中文字幕| 免费看十八禁软件| 亚洲色图综合在线观看| 久久久久久免费高清国产稀缺| 国产精品日韩av在线免费观看 | 麻豆av在线久日| 久久 成人 亚洲| 午夜a级毛片| 操出白浆在线播放| 老司机在亚洲福利影院| 亚洲中文av在线| 国产亚洲欧美精品永久| 亚洲精品国产区一区二| 精品免费久久久久久久清纯| 看免费av毛片| 一a级毛片在线观看| 国产精品美女特级片免费视频播放器 | 久久精品成人免费网站| 色播在线永久视频| 亚洲视频免费观看视频| 最新在线观看一区二区三区| 999精品在线视频| 精品福利永久在线观看| 久久精品国产综合久久久| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产一区二区精华液| 男人舔女人的私密视频| 国产精品 国内视频| 欧美日韩av久久| 母亲3免费完整高清在线观看| 曰老女人黄片| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 18禁黄网站禁片午夜丰满| ponron亚洲| 欧美日韩福利视频一区二区| av天堂在线播放| 国产区一区二久久| 搡老岳熟女国产| 色综合欧美亚洲国产小说| 精品国产一区二区三区四区第35| 色尼玛亚洲综合影院| 黄色女人牲交| 国产成人av激情在线播放| 亚洲久久久国产精品| 亚洲欧美日韩高清在线视频| 视频区欧美日本亚洲| 中文字幕av电影在线播放| 亚洲中文av在线| 色综合婷婷激情| 99国产综合亚洲精品| 无限看片的www在线观看| 18禁美女被吸乳视频| 757午夜福利合集在线观看| 满18在线观看网站| 亚洲欧美日韩另类电影网站| 真人一进一出gif抽搐免费| 12—13女人毛片做爰片一| 精品熟女少妇八av免费久了| 男女午夜视频在线观看| 国产亚洲欧美精品永久| 国产一卡二卡三卡精品| 亚洲精品久久午夜乱码| 国产一区二区三区在线臀色熟女 | 国内毛片毛片毛片毛片毛片| 我的亚洲天堂| 国产一卡二卡三卡精品| 欧美最黄视频在线播放免费 | 亚洲在线自拍视频| 久久久久久久午夜电影 | 视频在线观看一区二区三区| 欧美日韩黄片免| 在线观看日韩欧美| 久久人人精品亚洲av| 欧美一级毛片孕妇| 亚洲视频免费观看视频| 日日夜夜操网爽| 午夜福利在线免费观看网站| 国产精品乱码一区二三区的特点 | 正在播放国产对白刺激| 老汉色av国产亚洲站长工具| 国产亚洲精品综合一区在线观看 | 日本黄色视频三级网站网址| 国产极品粉嫩免费观看在线| 成人国产一区最新在线观看| 久久精品国产99精品国产亚洲性色 | 欧美亚洲日本最大视频资源| 极品人妻少妇av视频| 丁香欧美五月| 亚洲欧洲精品一区二区精品久久久| 亚洲男人天堂网一区| 中文字幕av电影在线播放| 日韩视频一区二区在线观看| 欧美激情久久久久久爽电影 | 精品久久久久久久久久免费视频 | 黄色a级毛片大全视频| 日韩三级视频一区二区三区| 成人精品一区二区免费| 51午夜福利影视在线观看| av免费在线观看网站| 男人的好看免费观看在线视频 | 色综合欧美亚洲国产小说| av视频免费观看在线观看| 亚洲情色 制服丝袜| av有码第一页| 国产aⅴ精品一区二区三区波| 亚洲第一av免费看| 久久人妻av系列| 亚洲精品粉嫩美女一区| 国产精品久久久久成人av| av超薄肉色丝袜交足视频| 日本黄色视频三级网站网址| 熟女少妇亚洲综合色aaa.| 新久久久久国产一级毛片| 大码成人一级视频| 在线免费观看的www视频| 免费一级毛片在线播放高清视频 | 久久草成人影院| 久久精品国产亚洲av香蕉五月| 国产成人av激情在线播放| 90打野战视频偷拍视频| 日韩精品中文字幕看吧| 两性夫妻黄色片| 伊人久久大香线蕉亚洲五| 久久精品国产99精品国产亚洲性色 | 国产男靠女视频免费网站| 久久久国产一区二区| 亚洲激情在线av| 欧美最黄视频在线播放免费 | 91精品国产国语对白视频| 免费女性裸体啪啪无遮挡网站| 久热爱精品视频在线9| 国产熟女午夜一区二区三区| 亚洲自拍偷在线| 久久伊人香网站| 91精品三级在线观看| 精品国产国语对白av| 免费搜索国产男女视频| 国产成人欧美| 狂野欧美激情性xxxx| 亚洲精品一二三| 一级毛片高清免费大全| 国产成人精品无人区| 成人特级黄色片久久久久久久| 热99re8久久精品国产| 美女午夜性视频免费| 久久久久久久久免费视频了| 叶爱在线成人免费视频播放| 水蜜桃什么品种好| 99热国产这里只有精品6| 国产在线观看jvid| 精品一区二区三区av网在线观看| 午夜福利免费观看在线| 国产精品99久久99久久久不卡| 99在线视频只有这里精品首页| 久久久国产欧美日韩av| 中文字幕最新亚洲高清| 亚洲狠狠婷婷综合久久图片| 欧美日韩瑟瑟在线播放| 波多野结衣一区麻豆| 久久国产乱子伦精品免费另类| 中文字幕最新亚洲高清| 免费高清在线观看日韩| 一二三四在线观看免费中文在| 欧美日韩一级在线毛片| av在线播放免费不卡| 人妻丰满熟妇av一区二区三区| 91av网站免费观看| 日韩中文字幕欧美一区二区| 日本撒尿小便嘘嘘汇集6| 少妇被粗大的猛进出69影院| 国产1区2区3区精品| 日韩av在线大香蕉| 午夜精品国产一区二区电影| 欧美成人免费av一区二区三区| 国产一卡二卡三卡精品| 91九色精品人成在线观看| 麻豆av在线久日| 欧美+亚洲+日韩+国产| 免费久久久久久久精品成人欧美视频| 亚洲精品粉嫩美女一区| 手机成人av网站| 一区在线观看完整版| 国产又爽黄色视频| 99精品在免费线老司机午夜| 高清黄色对白视频在线免费看| 久久婷婷成人综合色麻豆| 亚洲第一欧美日韩一区二区三区| 十八禁网站免费在线| 欧美性长视频在线观看| 如日韩欧美国产精品一区二区三区| 久久国产乱子伦精品免费另类| 久久人妻av系列| 香蕉丝袜av| 久久久久久免费高清国产稀缺| 在线av久久热| www.999成人在线观看| 热99国产精品久久久久久7| 两性夫妻黄色片| 丁香欧美五月| 国产激情欧美一区二区| 精品福利永久在线观看| 成人国产一区最新在线观看| 在线播放国产精品三级| 国产av精品麻豆| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲av一区麻豆| 深夜精品福利| 国产精品乱码一区二三区的特点 | 美女福利国产在线| 啪啪无遮挡十八禁网站| 亚洲精品成人av观看孕妇| 男人操女人黄网站| 日韩欧美国产一区二区入口| 国产精品日韩av在线免费观看 | 亚洲国产精品一区二区三区在线| 国产精品国产高清国产av| 在线观看午夜福利视频| 亚洲午夜精品一区,二区,三区| 国产精华一区二区三区| 大型黄色视频在线免费观看| 久久久久国产一级毛片高清牌| 婷婷六月久久综合丁香| 精品久久久久久久久久免费视频 | 久久久久国产一级毛片高清牌| 少妇被粗大的猛进出69影院| 99精品在免费线老司机午夜| 久久久水蜜桃国产精品网| 精品一区二区三区av网在线观看| 精品国产美女av久久久久小说| 久久午夜综合久久蜜桃| 亚洲美女黄片视频| 黄色片一级片一级黄色片| 女人高潮潮喷娇喘18禁视频| 91麻豆av在线| 1024香蕉在线观看| xxxhd国产人妻xxx| 久久中文字幕一级| 一二三四在线观看免费中文在| 亚洲五月天丁香| 亚洲av片天天在线观看| 99精国产麻豆久久婷婷| a级毛片黄视频| 嫁个100分男人电影在线观看| 少妇粗大呻吟视频| av片东京热男人的天堂| 国产高清激情床上av| xxx96com| 一个人免费在线观看的高清视频| 超碰成人久久| 日韩高清综合在线| 色哟哟哟哟哟哟| 亚洲美女黄片视频| 婷婷丁香在线五月| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| www.自偷自拍.com| 桃色一区二区三区在线观看| 精品人妻在线不人妻| 久久热在线av| 久久久久久大精品| 女人爽到高潮嗷嗷叫在线视频| 免费搜索国产男女视频| 999久久久精品免费观看国产| 国产亚洲欧美98| 一区二区日韩欧美中文字幕| 高潮久久久久久久久久久不卡| 美女高潮到喷水免费观看| 欧美乱码精品一区二区三区| 日韩人妻精品一区2区三区| 欧美精品啪啪一区二区三区| 欧美乱妇无乱码| 久久人人精品亚洲av| 制服诱惑二区| 波多野结衣av一区二区av| 精品一区二区三区av网在线观看| 叶爱在线成人免费视频播放|