• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perspectives of Individual-Worn Sensors Assessing Personal Environmental Exposure

    2021-07-08 03:42:46UweSchlinkMximilinUeerhm
    Engineering 2021年3期

    Uwe Schlink,Mximilin Ueerhm

    a Department of Urban and Environmental Sociology,Helmholtz Centre for Environmental Research(UFZ),Leipzig 04318,Germany

    b Centre for Environmental Biotechnology(UBZ),Helmholtz Centre for Environmental Research(UFZ),Leipzig 04318,Germany

    1.Introduction

    In recent years we have witnessed a rapid surge of interest in novel person-based sensing devices,for example,for wellbeing,sports,safety,childcare,healthcare,and bio-surveillance[1].In parallel,an additional aspect increasingly moving into the forefront is the mobile environmental monitoring by individual-worn sensors combined with a smartphone[2].Intelligent sensors(called smart sensors)accomplish the acquisition of an electric signal from a physical property as well as the processing(and storage or communication)of measured signals,an amenity that makes them excellent personal exposure recorders.The wearable environmental sensors approach pools the recordings of environmental data(air quality,temperature,humidity,radiation,noise,etc.)together with recordings of human activity spaces[3].The latter represent the urban areas within which people move during the course of their daily activities and that can be tracked by Global Positioning System(GPS)-devices[4].

    The role of personal exposure in the etiology of environmental(and often chronic)health problems was emphasized by the exposome concept[5]that attributes high importance to an individual’s exposure compared to their genetic make-up.Epidemiological studies of environmental health effects often work with data aggregated at regional levels.Statistical associations are studied between disease prevalence or incidence in certain districts and data of environmental parameters gathered at fixed monitoring stations that are‘‘representative’’for each of these districts(often based on administrative boundaries).However,recordings from a sparse station network do not adequately represent the range of exposure experienced by different individuals,especially in diverse indoor and outdoor urban environments[6].

    Moreover,while results from such studies are valid for the given scheme of districts,they change for another arrangement of districts which is known as the modifiable areal unit problem(MAUP)[7,8].Therefore,more advanced approaches focus directly on individuals and work with buffers around the individuals’residences.Applying ecological regressions,these studies analyze the associations between the individuals’health status and the percentages of traffic,green area,industrial area and so on in their buffer as surrogate measures for exposure[9].Evidently,the real personal exposure of each individual is only indirectly measured with this approach and exposure misclassification occurs that can weaken the statistical significance of the results[10,11].

    As a remedy,individual-worn sensors can record environmental parameters directly at a person’s location;some authors call it anthropocentric opportunistic sensing[12].The small size of modern sensors,their smart functionality,and affordable costs make them perfect tools to register exposure data in vivo.Our commentary aims to guide the choice of appropriate sensors,to improve the understanding of obtained results,and to highlight the principal needs of constructive elements of wearable environmental sensors(Fig.1).In particular,we outline standards for application procedures of these sensors.Such standard operating procedures(SOPs)depend on the intended purpose of the study and the research question.The illustration through examples and challenges is an attempt to initiate more interdisciplinary discussions related to constructive elements and diverse use of sensors and wearables in environmental monitoring,public health,and personal exposure assessments.

    2.Utility of person-worn environmental sensors

    Personal exposure is multifactorial,involving,for example,air temperature,air humidity,radiation,air pollutants(gases,particulate matter),and noise.This definition aims to encompass all exogenous exposure factors contributing to the human exposome.

    As the health outcome or discomfort associated with an exposure depends on the vulnerability and the behavior of an individual,additional person-specific variables have to be considered.They comprise fixed values(e.g.,age,sex,and pre-existing health conditions)as well as time-dependent values(e.g.,movement behavior recorded by GPS and breath rate that is related to physical activity recorded by accelerometers[13]).Smartphonebased sensing methods have become a valuable way to simultaneously collect many of these variables[14,15].

    Fig.1.Short facts of environmental sensing by individuals.

    Individual-based environmental measurements are useful for two very different purposes.First,they continuously collect complete exposure data for an individual.This approach results in metrics for cumulative exposure,location and activity-specific exposure increments,frequency distributions of exposure increments[16],mobility habits,and behavior.It can facilitate behavioral changes and adaptation for a sensor wearing individual and being informed about its current exposure status.At the very least this can help to promote individuals’environmental health literacy[17].For example,cyclists can adjust their travel behavior according to information assigned to their geo-position[18,19].Second,individuals can act as urban explorers and,by means of their portable sensors,can capture the variability of atmospheric parameters[20].Combining such crowdsourced measurements from numerous people,or with model simulations,data for all locations/times in the city are estimated within a participatory citizen science approach[21,22].Plotting the spatiotemporal data along the trajectory of each person(according to the concept of time-geography[23])can improve the understanding of disease prevalence,etiology,transmission,and treatment[24];and also help to support sustainable urban planning.

    3.Concepts of personal exposure measurements

    Environmental exposure relevant to a person’s health has to be locally monitored constantly for the individual.The results of such continuous monitoring suggest different levels(and combinations)of exposure depending on the individual’s immediate surroundings[25].Due to this concept,the exposure associated with the daily agenda of a person is a sequence of pollution patterns,each characterizing a specific microenvironment.For example,black carbon exposure was found to be significantly elevated in diesel vehicles,in the subway,or rooms with environmental tobacco smoke[26].

    This microenvironment concept facilitates an approximate exposure estimation based on an individual’s time–activity profile and characteristic pollution levels of the involved microenvironments[25].Typical microenvironments are homes,schools,and vehicles for transit/commuting[27].Exposure to outdoor pollutants occurs not only outdoors,but also indoors in naturally ventilated homes[28].While,in the past,the microenvironment was categorized according to activity logs(diaries)or geographic proximity[29],and the utilization of GPS and accelerometers allows for automated human activity recognition[3,30].

    A weakness of this microenvironment concept is that indoor air pollution varies considerably between different apartments and only very general information is available for selected typical settings.Further,outdoors and especially in urban neighborhoods,the pollution can vary considerably due to many potential sources(e.g.,industry and traffic)and rapidly changing dispersion conditions in street canyons.For example,studying the PM2.5(particulate matter with an aerodynamic diameter no greater than 2.5μm)exposure of schoolchildren,Rabinovitch et al.[31]observed relatively high correlations between the mean concentrations in the microenvironments of home,transit,and school.This raises the question of variability between and within microenvironments.Only very few individual exposure records show clear differences between microenvironments.Much more pronounced are concentration peaks that occur independently of the microenvironment.The authors identify these peaks(exposure events)as an exposure metric that is associated with health effects.

    Another concept of personal exposure is linked with the urban structure.Here the basic assumption is that land use is a proxy for climatic,air quality,and noise conditions.Land use regressions(LURs)are used for modeling[32].The assumption is valid under weak wind conditions(autochthone weather)and also(but weaker)as an average over long periods(in the sense of long-term climate).Mobile personal measurements can provide valuable data for LUR models in high spatial resolution complementing stationary monitoring if appropriate cross-validating schemes are applied to estimate the predictive model performance[33].

    4.Sampling points and sampling rate

    Conventionally,the(urban)atmosphere is monitored by a network of meteorological and air quality stations that are placed at fixed locations with the aim of gathering representative data.For an appropriate selection of these locations,guidelines have been developed[34].However,the urban environment is strongly inhomogeneous and influenced by numerous different processes and the selection of these representative sites is a challenge.One important aspect for the site-selection is the rationale of monitoring:Does it aim to collect climatological data or is it intended to provide data in support of particular needs,such as the prevention of health problems?This determines whether the immediate vicinity(e.g.,a street canyon),the neighborhood,or the entire city is the scale of observation.

    To specify the optimum number and disposition of climatologic monitoring sites in an urban area,information about meteorological scenarios representative of the considered region is usually combined with spatial simulations of pollutant concentration patterns or even composite air quality indices[35].The sum of all these air quality patterns weighted by the probabilities of their occurrence results in the figure-of-merit(FOM).Its maxima help to identify and rank the most desirable monitoring locations.The lowest number of optimal locations are characterized by non-overlapping spheres-of-influence(SOIs),determined by a cut-off value in the spatial autocorrelation between the pollution level at this site and the neighboring monitoring sites[36,37].

    While semi-variances assess the spatial autocorrelation structure of the entire pollution field(and can be useful for the spatial interpolation of pollution data[38]),the SOI concept is based on the calculation of correlograms that are specific for each location.The correlogram cut-off distance(usually after a correlation decay by 1/e(≈36.8%)indicates the size of the region for which the recordings are representative.We suggest the transfer of this concept to mobile measurements and to use it for the sampling rate specification.If the SOIs of a sequence sampled during a walk overlap(see example in Fig.2),the sampled values are correlated because the sampling points are too close together.That means larger time periods between the individual samples can be selected;in other words,sampling rate,which is the number of samples per hour,can be reduced.

    5.Accuracy of sensors—A matter of performance

    An important issue of miniature sensors is their accuracy.While equipment for condition monitoring(e.g.,temperature/humidity control in factories or pollutant monitoring in mines)aims at the detection of extreme values,a sensor that gathers personal environmental burdens has to register very low concentrations with high accuracy[39],which involves①high precision(small random fluctuations and good repeatability),②trueness(no bias from the true value),and③stability(no long-term drift).Trueness can be achieved by regular calibrations,but precision and stability are immanent to the measurement technique.For that reason,not every technique is suitable for application in wearable environmental sensors.

    Regular calibration of the sensors according to the manufacturer guidelines is a must.The field measurement performance can be evaluated by comparison with a standard high-end instrument[40].A set of indices is available for the assessment of the sensors’precision:index of agreement[41,42],Pearson’s correlation coefficient,root mean squared error,mean bias error,mean absolute error,and coefficient of variation.When multiple factors are simultaneously sampled,a similar accuracy of all sensors is desirable.This will guarantee that each factor measurement has the same reliability at a sampling point.In practice,the sensor accuracy can be assessed from a comparison with a precision instrument by means of Bland–Altman and Taylor plots[40].

    6.Time constant of a sensor

    Another important parameter is the time constantτ,characterizing the duration a sensor will need to respond to a step-input(more precisely,1-1/e(≈63.2%)of the step-value).Considering that the sensor might be carried during a walk with a speed of approximately 5 km?h-1(≈1.4 m?s-1)and the environmental conditions markedly vary within a range of 14 m,an adequate sampling rate needs to be 10 s.The sensor has to be compatible with this sampling rate and the time constant has to beτ≤10 s(unfortunately,many of the new smart sensors haveτ≥1 min).The time constant essentially depends on whether or not the sampling is active(that means sensor ventilation by a micro-fan using a standardized flow rate is applied).In contrast,passive sampling is generally not adequate in the context of mobile measurements as to the large time-constant(inertia effect).An example comparing active and passive temperature measurements(Fig.3)demonstrates that considerable mismeasurement can result from an inappropriate combination of sampling rate and time constant.

    Fig.2.Spheres-of-influence(SOIs)calculated from mobile temperature recordings sampled with a ventilated(55 m?s-1 flow rate)and sun-protected sensor(data logger testostor 171 with humidity/temperature probe 0572 6172,Germany;accuracy:±0.2 K,τ≈12 s(τis the time constant characterizing the duration a sensor will need to respond to a step-input))1.5 m above ground during a walk made 22:50–00:00 UTC on Tuesday,18 July 2017,in Leipzig,Germany.The dots mark the sampling sites(coordinates registered by a GPS(Garmin GPSMap 60CSx,USA),which are separated by a time-step of 1 min.The circles around the dots mark the SOI-distance at which the correlation of temperature in the center with the remaining data decays by 1/e(≈36.8%)(exponential function fitted to the correlogram;negative correlations removed).The sampling rate was 5 s,so that for each sampling site 12 recordings(comprising 1 min)were included into the correlation calculation.The daily temperature profile was estimated using a lowpass filter(6 h cut-off period)and then eliminated from the recordings.To improve readability,successive circles were plotted in colors red,blue,and green.The urban structure is visible in the background(coordinate system World Geodetic System 1984(WGS84),Universal Transverse Mercator(UTM)zone 32).

    Fig.3.Contemporaneous recordings of different temperature sensors and sampling modes(outdoor temperatures gathered at time steps of 1 min):Testo Sensor(data logger testostor 171 with humidity/temperature probe 0572 6172,Germany;accuracy:±0.2 K,τ≈12 s)active sampling with sun protection and ventilation;TSI Q-Trak 7565 sensor(USA;accuracy:±0.6 K,τ≈30 s)handheld with natural ventilation and no sun protection;Texas Instruments(TI)SensorTag CC2650STK(USA;accuracy:±0.2 K,τ≈300 s)without any sun protection and ventilation.

    Undoubtedly,in a specific application of a wearable sensor,the sampling rate needs to be adapted to the existing spatial variability of the environmental parameter(see the SOI concept above),the speed of the mobile measurements,and the sensor’s time constant.Possibilities to tune the sampling rate may be limited—not every sensor is useful to every design for personal environmental monitoring.

    7.Implementation of personal monitoring

    The arguments above suggest that the implementation of mobile measurements depends on their purpose and the prevalent environmental conditions.The variability of the environmental parameters can be assessed by point measurements,geostatistical techniques(e.g.,semi-variogram analyses),and micrometeorological modeling.For the measurement task at hand,it will be very helpful to develop an SOP,which is state-of-the-art with pharmaceutical and industrial processes.

    Such an SOP for mobile measurements involves a detailed description of the measurement procedure,including the purpose of the study,materials and devices,details of the sensors(including functionality,energy supply,calibration,accuracy,and time constants),details on the implementation of mobile measurements(flow diagram),a protocol for the mobile measurement campaign(including start date and time,location,preparations required for the measurements,sampling rates,carriers(e.g.,pedestrians,bikers,and cars)),average movement speed,sampling period,method of synchronization between all sensors and GPS,potential sources of errors,data storage details,and data analysis approaches.Such working instructions are useful for researchers that test different sensors and novel devices or explore the environmental conditions near urban hot spots.They are vital for high-quality population studies when laypeople carry wearable sensors during everyday life and record their burden for health studies.Templates,as well as planning tools,are available for support[43].

    A manual acquisition of all the collected data would be tedious and therefore the data stream has to be integrated and rapidly processed within a data acquisition system linking sensors,smartphones,and a database[44].An important task of this data processing is the synchronization of all measurements that is usually based on a timestamp[45].Future developments toward an Internet of Things(IoT,as a global data infrastructure[46])can bring data management to perfection and simultaneously increases data accuracy and coverage[47].For example,shortdistance communication techniques like iBeacon??http://www.ibeacon.com/.can improve the registration of positions in an indoor environment and contribute to a comprehensive assessment of indoor and outdoor environmental burdens.

    8.Upvaluation of sensor records

    All data recorded by wearables are subject to considerable noise[48].Small scale turbulence near the person,nuisance of recordings due to impacts(e.g.,heat,acoustic noise,and trace gases)caused by the moving individual,and other perturbations will generate outliers as well as bias in the measured data.The quality of the recorded data can be enhanced when an urban region is‘‘explored’’by numerous individuals.During their movement,the data collected at nearby points in time and space can be averaged for random noise reduction.A systematic technique that interpolates many such measurements is the so-called data assimilation,which combines measurements with micro-meteorological simulations.This approach is similar to the procedure that is operationally applied to meteorological and climatological measurements on a global scale.

    Because measurements always have uncertainty,the data assimilation procedure needs to take this into account for the calculation of the combined data and their uncertainty.As an adequate solution for this task,we suggest the Bayesian spatiotemporal epistemic knowledge synthesis[49].This approach can combine micro-meteorological simulations(of air pollutants,temperature,etc.)with multiple person-carried measurements resulting in highly resolved data of environmental parameters and their confidence intervals.

    Another perspective of wearable sensors is the association of recordings with the perceptions of the carrier.A novel technique registering a person’s apperceptions during their daily life are walking interviews[50].Being in a certain urban setting,people are more easily able to reflect their own experiences and this mirrors the measured environmental conditions.This technique is derived from ethnographic studies and can bridge between measured exposure data,an individual’s behavior,and their health status.In combination with wearable sensors,the walking interviews can uncover daily habits and the social context as determinants of personal exposure and contributorsto the etiology of chronicdiseases.Smartphone sensing methods are a feasible way to integrate active user feedback(e.g.,exposure perception)on the move[45].

    9.Conclusions

    Novel sensor and information technology developments can contribute considerably to the provision of human exposome data[51]and foster the transition from population-based to individualbased epidemiological studies[52].While some environmental parameters are reflected by human perceptions(such as the thermal comfort and noise),others are basically imperceptible(such as particulate matter and NOxconcentrations).As a corrective,multifactorial exposure measurement can immediately inform a person about prevalent health risks[53].This is especially important for epidemics of non-communicable(e.g.,asthma and diabetes)as well as communicable(e.g.,tuberculosis and coronavirus disease 2019(COVID-19))diseases,that are influenced by people’s everyday lifestyle and surrounding environments.Further,wearables can help overcome the microenvironment and land-use concepts that are not individual-based.However,the application of wearable sensors demands specifications for sampling rate,accuracy,and numerous other conditions,ideally in the frame of an SOP(Fig.1).To avoid spurious and biased recordings,the sensors themselves must actively sample(i.e.,ventilated by a micro-fan)and be protected against the impact of nuisance parameters.Combining individual-based records with environmental modeling as well as novel techniques surveying‘‘on the move”are promising challenges for future research activities.

    Acknowledgements

    The work was partially supported by the German Research Foundation(Deutsche Forschungsgemeinschaft,DFG)under Schwerpunktprogramm(SPP)1894‘‘Volunteered Geographic Information:Interpretation,Visualization and Social Computing”,project‘‘ExpoAware—Environmental volunteered geographic information for personal exposure awareness and healthy mobility behavior”(SCHL 521/8-1).The authors acknowledge the help of Niels Wollschl?ger with the calculation of SOIs(Fig.2).

    成人免费观看视频高清| 亚洲国产欧美日韩在线播放| 国产精品一二三区在线看| 亚洲av在线观看美女高潮| 免费在线观看完整版高清| 国产精品 国内视频| 日韩精品有码人妻一区| 两个人看的免费小视频| 婷婷色av中文字幕| 亚洲欧美成人精品一区二区| 亚洲精品自拍成人| av天堂久久9| 水蜜桃什么品种好| 男女无遮挡免费网站观看| 在线天堂最新版资源| 欧美亚洲 丝袜 人妻 在线| www.精华液| 亚洲四区av| 亚洲国产欧美日韩在线播放| 国产白丝娇喘喷水9色精品| 制服诱惑二区| 91久久精品国产一区二区三区| 国产精品久久久久成人av| 少妇熟女欧美另类| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲一级一片aⅴ在线观看| 一二三四中文在线观看免费高清| 丝瓜视频免费看黄片| 捣出白浆h1v1| 久久久久精品久久久久真实原创| 精品卡一卡二卡四卡免费| 纯流量卡能插随身wifi吗| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 在线观看美女被高潮喷水网站| 97精品久久久久久久久久精品| 日韩一区二区视频免费看| 永久网站在线| 桃花免费在线播放| 老司机亚洲免费影院| 欧美av亚洲av综合av国产av | 亚洲综合色惰| 免费日韩欧美在线观看| 赤兔流量卡办理| 久久久久久久久久久久大奶| 搡老乐熟女国产| 少妇 在线观看| 考比视频在线观看| 亚洲美女黄色视频免费看| 亚洲av电影在线观看一区二区三区| 国产成人aa在线观看| 精品人妻在线不人妻| 制服丝袜香蕉在线| 亚洲国产欧美在线一区| 一级黄片播放器| 两个人免费观看高清视频| 永久免费av网站大全| 久久久国产一区二区| 男人爽女人下面视频在线观看| 在线观看一区二区三区激情| 欧美xxⅹ黑人| 丰满乱子伦码专区| 一区二区三区激情视频| 亚洲中文av在线| 少妇被粗大猛烈的视频| 性色avwww在线观看| 97在线人人人人妻| 久久99一区二区三区| 国产精品人妻久久久影院| 日本欧美国产在线视频| 成年动漫av网址| 欧美精品一区二区大全| 国产精品亚洲av一区麻豆 | 免费少妇av软件| 天堂中文最新版在线下载| 亚洲成国产人片在线观看| 欧美人与性动交α欧美软件| 亚洲人成网站在线观看播放| 日本色播在线视频| 美国免费a级毛片| tube8黄色片| 亚洲一码二码三码区别大吗| 亚洲精品国产色婷婷电影| 国产日韩欧美视频二区| 大香蕉久久网| 日本wwww免费看| 9191精品国产免费久久| 久久精品国产a三级三级三级| 免费高清在线观看日韩| 夫妻午夜视频| 三上悠亚av全集在线观看| 久久久国产精品麻豆| 搡女人真爽免费视频火全软件| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品成人久久小说| 极品少妇高潮喷水抽搐| 国产成人精品久久久久久| 亚洲av福利一区| 丝袜脚勾引网站| 人妻 亚洲 视频| 日本-黄色视频高清免费观看| 大码成人一级视频| 久久久久国产精品人妻一区二区| 岛国毛片在线播放| 又粗又硬又长又爽又黄的视频| 日日爽夜夜爽网站| 秋霞在线观看毛片| 国产又色又爽无遮挡免| 久久精品久久久久久噜噜老黄| 天美传媒精品一区二区| 欧美日韩精品网址| 尾随美女入室| 男女边摸边吃奶| 最近最新中文字幕免费大全7| 一本大道久久a久久精品| 最新中文字幕久久久久| 日日爽夜夜爽网站| 日本欧美视频一区| 边亲边吃奶的免费视频| av国产精品久久久久影院| 九九爱精品视频在线观看| 国产高清不卡午夜福利| 国产精品免费大片| 性色av一级| 十八禁网站网址无遮挡| 七月丁香在线播放| 在线免费观看不下载黄p国产| 国产精品二区激情视频| 日韩不卡一区二区三区视频在线| 一区二区三区乱码不卡18| 国产精品麻豆人妻色哟哟久久| 纵有疾风起免费观看全集完整版| 久久热在线av| 欧美少妇被猛烈插入视频| 久久人人爽人人片av| 99国产精品免费福利视频| 免费播放大片免费观看视频在线观看| 亚洲精品国产av成人精品| 亚洲三级黄色毛片| 欧美日韩视频精品一区| 美国免费a级毛片| h视频一区二区三区| 一区二区三区精品91| 日日爽夜夜爽网站| h视频一区二区三区| av在线观看视频网站免费| 一区二区三区四区激情视频| 国产日韩欧美在线精品| 香蕉国产在线看| 亚洲婷婷狠狠爱综合网| 日韩电影二区| 99香蕉大伊视频| 精品国产国语对白av| 天天影视国产精品| 亚洲熟女精品中文字幕| www日本在线高清视频| 男人添女人高潮全过程视频| 亚洲av日韩在线播放| 国产成人精品久久二区二区91 | 国产极品天堂在线| 看免费av毛片| 精品一品国产午夜福利视频| 最新中文字幕久久久久| 侵犯人妻中文字幕一二三四区| 亚洲视频免费观看视频| 少妇人妻久久综合中文| 少妇熟女欧美另类| 成人亚洲欧美一区二区av| 可以免费在线观看a视频的电影网站 | 毛片一级片免费看久久久久| 久热这里只有精品99| 亚洲精品久久久久久婷婷小说| 啦啦啦在线免费观看视频4| 久久久a久久爽久久v久久| 久久免费观看电影| 精品一区在线观看国产| 精品亚洲成a人片在线观看| 精品福利永久在线观看| 91精品伊人久久大香线蕉| 男女无遮挡免费网站观看| 免费高清在线观看视频在线观看| 我要看黄色一级片免费的| 欧美av亚洲av综合av国产av | 777米奇影视久久| 亚洲五月色婷婷综合| 黄色配什么色好看| 激情五月婷婷亚洲| 男女午夜视频在线观看| 日本av免费视频播放| 大片免费播放器 马上看| h视频一区二区三区| 99香蕉大伊视频| 国产成人a∨麻豆精品| 久久久久久久国产电影| 成人免费观看视频高清| 久久久亚洲精品成人影院| 久久影院123| 国产精品国产三级国产专区5o| 国产一区有黄有色的免费视频| 日韩一本色道免费dvd| www.精华液| 97人妻天天添夜夜摸| 男人添女人高潮全过程视频| 男女边摸边吃奶| 啦啦啦中文免费视频观看日本| 欧美成人精品欧美一级黄| 国产成人精品福利久久| 日韩不卡一区二区三区视频在线| 黑人欧美特级aaaaaa片| 丰满饥渴人妻一区二区三| 国产不卡av网站在线观看| 欧美精品一区二区免费开放| 免费观看无遮挡的男女| 亚洲av综合色区一区| 人人妻人人爽人人添夜夜欢视频| 精品国产乱码久久久久久小说| 日日爽夜夜爽网站| 极品少妇高潮喷水抽搐| 免费观看av网站的网址| 精品一区二区免费观看| 人妻人人澡人人爽人人| 国产成人精品一,二区| 麻豆av在线久日| 午夜免费鲁丝| 国产乱来视频区| 伦精品一区二区三区| 亚洲熟女精品中文字幕| av在线播放精品| 久久久久国产精品人妻一区二区| 欧美老熟妇乱子伦牲交| 亚洲精品自拍成人| 成人影院久久| 麻豆乱淫一区二区| 精品一品国产午夜福利视频| 考比视频在线观看| 一区二区三区精品91| 国产高清国产精品国产三级| 国产成人aa在线观看| av视频免费观看在线观看| 母亲3免费完整高清在线观看 | 一本大道久久a久久精品| 天天躁夜夜躁狠狠躁躁| 宅男免费午夜| 国产精品成人在线| 免费久久久久久久精品成人欧美视频| 亚洲成人手机| 日韩在线高清观看一区二区三区| 日日爽夜夜爽网站| 久久av网站| 中文精品一卡2卡3卡4更新| 久久久久久久国产电影| 制服诱惑二区| 麻豆精品久久久久久蜜桃| 永久网站在线| 天天躁日日躁夜夜躁夜夜| 在线观看免费视频网站a站| 国产极品天堂在线| 91精品伊人久久大香线蕉| 精品一区二区三卡| 亚洲一区二区三区欧美精品| 天美传媒精品一区二区| 新久久久久国产一级毛片| 亚洲激情五月婷婷啪啪| 日日爽夜夜爽网站| 免费少妇av软件| 精品福利永久在线观看| 日日摸夜夜添夜夜爱| 热99国产精品久久久久久7| 自线自在国产av| 波野结衣二区三区在线| 成人国语在线视频| 夜夜骑夜夜射夜夜干| 久久精品国产鲁丝片午夜精品| 人人妻人人澡人人爽人人夜夜| 一本色道久久久久久精品综合| 久久久久网色| 成年女人在线观看亚洲视频| 丝袜人妻中文字幕| 黑人欧美特级aaaaaa片| 欧美成人精品欧美一级黄| 成年人免费黄色播放视频| 免费播放大片免费观看视频在线观看| 色播在线永久视频| 亚洲av在线观看美女高潮| 成人亚洲欧美一区二区av| 男人操女人黄网站| 黄色怎么调成土黄色| 999久久久国产精品视频| 波野结衣二区三区在线| 高清av免费在线| 欧美成人午夜精品| videosex国产| av天堂久久9| 精品一区二区三卡| 亚洲国产欧美在线一区| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区在线观看av| 欧美亚洲日本最大视频资源| 两性夫妻黄色片| 亚洲欧美一区二区三区国产| 交换朋友夫妻互换小说| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区黑人 | 熟女电影av网| 精品卡一卡二卡四卡免费| 日本黄色日本黄色录像| xxxhd国产人妻xxx| 国产一区二区三区综合在线观看| 国产成人av激情在线播放| 午夜福利一区二区在线看| 爱豆传媒免费全集在线观看| 国产在线一区二区三区精| 欧美日韩视频精品一区| 国产一级毛片在线| 亚洲熟女精品中文字幕| 啦啦啦啦在线视频资源| 两性夫妻黄色片| 秋霞在线观看毛片| 欧美亚洲 丝袜 人妻 在线| 777久久人妻少妇嫩草av网站| 最近中文字幕2019免费版| 国产免费视频播放在线视频| 成人免费观看视频高清| 热re99久久国产66热| 久久精品国产亚洲av涩爱| 在线观看国产h片| 日韩精品免费视频一区二区三区| 日本vs欧美在线观看视频| 侵犯人妻中文字幕一二三四区| kizo精华| 午夜福利,免费看| 美女脱内裤让男人舔精品视频| 美女xxoo啪啪120秒动态图| 巨乳人妻的诱惑在线观看| 国产精品偷伦视频观看了| 我的亚洲天堂| tube8黄色片| 成人手机av| 久久精品国产综合久久久| 午夜福利一区二区在线看| 国产精品秋霞免费鲁丝片| 午夜日韩欧美国产| 国产一区有黄有色的免费视频| 国产熟女午夜一区二区三区| 国产精品免费视频内射| 成年美女黄网站色视频大全免费| av又黄又爽大尺度在线免费看| 最近的中文字幕免费完整| 亚洲第一av免费看| 国产精品 国内视频| 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 亚洲精品自拍成人| 久久 成人 亚洲| 国产乱人偷精品视频| 男女啪啪激烈高潮av片| 亚洲 欧美一区二区三区| 日本91视频免费播放| 国产精品 国内视频| 丰满迷人的少妇在线观看| 精品亚洲成a人片在线观看| 视频在线观看一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美成人午夜免费资源| 男女下面插进去视频免费观看| 综合色丁香网| 波多野结衣av一区二区av| 久久99精品国语久久久| 国产成人a∨麻豆精品| 日韩精品免费视频一区二区三区| 日本色播在线视频| a级毛片黄视频| 寂寞人妻少妇视频99o| 国产精品嫩草影院av在线观看| 狠狠婷婷综合久久久久久88av| 天天躁日日躁夜夜躁夜夜| 丝袜美腿诱惑在线| 亚洲精品日本国产第一区| 成人毛片60女人毛片免费| 美女国产高潮福利片在线看| 日韩av在线免费看完整版不卡| 午夜激情av网站| 日韩av不卡免费在线播放| 最近2019中文字幕mv第一页| 免费高清在线观看视频在线观看| 999精品在线视频| 午夜av观看不卡| 晚上一个人看的免费电影| 看非洲黑人一级黄片| 熟妇人妻不卡中文字幕| av免费在线看不卡| 亚洲第一av免费看| 免费av中文字幕在线| 欧美97在线视频| 午夜激情久久久久久久| 国产又色又爽无遮挡免| 啦啦啦在线观看免费高清www| 亚洲成人一二三区av| 亚洲熟女精品中文字幕| 老汉色∧v一级毛片| 永久免费av网站大全| 国产在视频线精品| 成人毛片a级毛片在线播放| 久久久久精品性色| 这个男人来自地球电影免费观看 | 久久久久久人人人人人| 日本vs欧美在线观看视频| 久久久a久久爽久久v久久| 在线观看三级黄色| 亚洲视频免费观看视频| 91在线精品国自产拍蜜月| 九草在线视频观看| 亚洲国产最新在线播放| 国产97色在线日韩免费| 免费少妇av软件| 午夜久久久在线观看| 一区福利在线观看| 久久久久久久久免费视频了| videosex国产| 国产精品熟女久久久久浪| av网站免费在线观看视频| 亚洲精品第二区| 亚洲美女黄色视频免费看| 三上悠亚av全集在线观看| 人人妻人人澡人人看| av在线app专区| 国产精品人妻久久久影院| 美女中出高潮动态图| 国产精品欧美亚洲77777| 热99久久久久精品小说推荐| 黄色怎么调成土黄色| 成人免费观看视频高清| 亚洲四区av| 亚洲激情五月婷婷啪啪| 欧美成人精品欧美一级黄| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产毛片av蜜桃av| 国产亚洲最大av| 亚洲,欧美,日韩| 黄色毛片三级朝国网站| 免费观看在线日韩| 最近的中文字幕免费完整| 一区二区三区精品91| 18禁动态无遮挡网站| 日本vs欧美在线观看视频| 巨乳人妻的诱惑在线观看| 男女国产视频网站| 国产在线免费精品| 亚洲欧美清纯卡通| 亚洲av国产av综合av卡| 飞空精品影院首页| 一本色道久久久久久精品综合| 精品一品国产午夜福利视频| 人人妻人人添人人爽欧美一区卜| 黑丝袜美女国产一区| 久久久久网色| 国产精品无大码| 亚洲美女搞黄在线观看| 一级片'在线观看视频| 国产不卡av网站在线观看| 一区二区三区四区激情视频| 狠狠婷婷综合久久久久久88av| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 黑人巨大精品欧美一区二区蜜桃| 秋霞在线观看毛片| 成人毛片a级毛片在线播放| 丰满饥渴人妻一区二区三| 国产国语露脸激情在线看| 亚洲国产毛片av蜜桃av| av天堂久久9| 亚洲中文av在线| 不卡av一区二区三区| freevideosex欧美| 三上悠亚av全集在线观看| 亚洲精品乱久久久久久| 国产不卡av网站在线观看| 啦啦啦视频在线资源免费观看| 国产熟女欧美一区二区| 少妇熟女欧美另类| 精品一区二区三区四区五区乱码 | 亚洲一区中文字幕在线| 国产一区二区三区av在线| 伊人久久国产一区二区| 一级片'在线观看视频| 人妻一区二区av| 9191精品国产免费久久| 久久久亚洲精品成人影院| 老汉色∧v一级毛片| 久久久久久伊人网av| 在线观看免费视频网站a站| 黄色怎么调成土黄色| 国产av码专区亚洲av| 在线免费观看不下载黄p国产| 少妇被粗大猛烈的视频| 男人添女人高潮全过程视频| 校园人妻丝袜中文字幕| 在线天堂最新版资源| 一级黄片播放器| 搡女人真爽免费视频火全软件| 精品国产一区二区三区四区第35| 日本av手机在线免费观看| 成人亚洲欧美一区二区av| 国产黄色视频一区二区在线观看| 日韩中字成人| 国产又爽黄色视频| 天堂8中文在线网| 国产av码专区亚洲av| 久久人人爽人人片av| 国产精品秋霞免费鲁丝片| 久久这里有精品视频免费| 亚洲,一卡二卡三卡| 满18在线观看网站| 国产精品蜜桃在线观看| 精品久久蜜臀av无| 亚洲久久久国产精品| av电影中文网址| 国产精品国产三级专区第一集| 久久精品国产a三级三级三级| √禁漫天堂资源中文www| 精品人妻熟女毛片av久久网站| 高清欧美精品videossex| 免费高清在线观看视频在线观看| 亚洲少妇的诱惑av| 国产高清国产精品国产三级| 国产av精品麻豆| 日韩一区二区三区影片| 一级毛片 在线播放| 国产精品不卡视频一区二区| 人妻人人澡人人爽人人| 国产精品成人在线| 在线观看一区二区三区激情| 校园人妻丝袜中文字幕| 国产福利在线免费观看视频| 18禁动态无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 国产高清国产精品国产三级| 色网站视频免费| 下体分泌物呈黄色| 欧美bdsm另类| 久久精品熟女亚洲av麻豆精品| 久久青草综合色| 国产女主播在线喷水免费视频网站| 女的被弄到高潮叫床怎么办| 国产精品国产三级专区第一集| 男女午夜视频在线观看| 国产精品女同一区二区软件| 日本-黄色视频高清免费观看| 亚洲成人一二三区av| 777米奇影视久久| 久久鲁丝午夜福利片| 国产精品久久久久久精品电影小说| 欧美人与性动交α欧美精品济南到 | 美女脱内裤让男人舔精品视频| 人妻系列 视频| 美女国产视频在线观看| 欧美老熟妇乱子伦牲交| 精品久久久精品久久久| 91aial.com中文字幕在线观看| 天天影视国产精品| 91在线精品国自产拍蜜月| 中文天堂在线官网| 久久人人97超碰香蕉20202| 免费av中文字幕在线| 久久国产精品大桥未久av| 欧美成人午夜精品| 中文字幕色久视频| 久久鲁丝午夜福利片| 黄色视频在线播放观看不卡| 精品久久久久久电影网| a级片在线免费高清观看视频| 天天躁日日躁夜夜躁夜夜| 亚洲美女黄色视频免费看| 精品国产一区二区三区四区第35| 一二三四中文在线观看免费高清| 久久免费观看电影| 亚洲少妇的诱惑av| 我的亚洲天堂| 欧美精品人与动牲交sv欧美| 国产深夜福利视频在线观看| 精品第一国产精品| 欧美xxⅹ黑人| 男人舔女人的私密视频| 久久久久人妻精品一区果冻| 免费观看在线日韩| 久久久久久久国产电影| av天堂久久9| 寂寞人妻少妇视频99o| 天天躁夜夜躁狠狠躁躁| 在线观看国产h片| 寂寞人妻少妇视频99o| 成年av动漫网址| 在线观看国产h片| 亚洲国产精品一区二区三区在线| 精品99又大又爽又粗少妇毛片| 精品一区在线观看国产| 黄频高清免费视频| 欧美成人精品欧美一级黄| 激情五月婷婷亚洲| 久久人妻熟女aⅴ| 18禁观看日本| 国产日韩一区二区三区精品不卡| 免费观看在线日韩| 成年av动漫网址| 亚洲国产精品一区三区| 国产女主播在线喷水免费视频网站| 久久精品国产a三级三级三级| 青青草视频在线视频观看| 国产女主播在线喷水免费视频网站| 亚洲伊人色综图| 精品少妇久久久久久888优播| 日韩人妻精品一区2区三区| 丝袜喷水一区| 午夜福利视频精品| 欧美精品一区二区免费开放|