• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perspectives of Individual-Worn Sensors Assessing Personal Environmental Exposure

    2021-07-08 03:42:46UweSchlinkMximilinUeerhm
    Engineering 2021年3期

    Uwe Schlink,Mximilin Ueerhm

    a Department of Urban and Environmental Sociology,Helmholtz Centre for Environmental Research(UFZ),Leipzig 04318,Germany

    b Centre for Environmental Biotechnology(UBZ),Helmholtz Centre for Environmental Research(UFZ),Leipzig 04318,Germany

    1.Introduction

    In recent years we have witnessed a rapid surge of interest in novel person-based sensing devices,for example,for wellbeing,sports,safety,childcare,healthcare,and bio-surveillance[1].In parallel,an additional aspect increasingly moving into the forefront is the mobile environmental monitoring by individual-worn sensors combined with a smartphone[2].Intelligent sensors(called smart sensors)accomplish the acquisition of an electric signal from a physical property as well as the processing(and storage or communication)of measured signals,an amenity that makes them excellent personal exposure recorders.The wearable environmental sensors approach pools the recordings of environmental data(air quality,temperature,humidity,radiation,noise,etc.)together with recordings of human activity spaces[3].The latter represent the urban areas within which people move during the course of their daily activities and that can be tracked by Global Positioning System(GPS)-devices[4].

    The role of personal exposure in the etiology of environmental(and often chronic)health problems was emphasized by the exposome concept[5]that attributes high importance to an individual’s exposure compared to their genetic make-up.Epidemiological studies of environmental health effects often work with data aggregated at regional levels.Statistical associations are studied between disease prevalence or incidence in certain districts and data of environmental parameters gathered at fixed monitoring stations that are‘‘representative’’for each of these districts(often based on administrative boundaries).However,recordings from a sparse station network do not adequately represent the range of exposure experienced by different individuals,especially in diverse indoor and outdoor urban environments[6].

    Moreover,while results from such studies are valid for the given scheme of districts,they change for another arrangement of districts which is known as the modifiable areal unit problem(MAUP)[7,8].Therefore,more advanced approaches focus directly on individuals and work with buffers around the individuals’residences.Applying ecological regressions,these studies analyze the associations between the individuals’health status and the percentages of traffic,green area,industrial area and so on in their buffer as surrogate measures for exposure[9].Evidently,the real personal exposure of each individual is only indirectly measured with this approach and exposure misclassification occurs that can weaken the statistical significance of the results[10,11].

    As a remedy,individual-worn sensors can record environmental parameters directly at a person’s location;some authors call it anthropocentric opportunistic sensing[12].The small size of modern sensors,their smart functionality,and affordable costs make them perfect tools to register exposure data in vivo.Our commentary aims to guide the choice of appropriate sensors,to improve the understanding of obtained results,and to highlight the principal needs of constructive elements of wearable environmental sensors(Fig.1).In particular,we outline standards for application procedures of these sensors.Such standard operating procedures(SOPs)depend on the intended purpose of the study and the research question.The illustration through examples and challenges is an attempt to initiate more interdisciplinary discussions related to constructive elements and diverse use of sensors and wearables in environmental monitoring,public health,and personal exposure assessments.

    2.Utility of person-worn environmental sensors

    Personal exposure is multifactorial,involving,for example,air temperature,air humidity,radiation,air pollutants(gases,particulate matter),and noise.This definition aims to encompass all exogenous exposure factors contributing to the human exposome.

    As the health outcome or discomfort associated with an exposure depends on the vulnerability and the behavior of an individual,additional person-specific variables have to be considered.They comprise fixed values(e.g.,age,sex,and pre-existing health conditions)as well as time-dependent values(e.g.,movement behavior recorded by GPS and breath rate that is related to physical activity recorded by accelerometers[13]).Smartphonebased sensing methods have become a valuable way to simultaneously collect many of these variables[14,15].

    Fig.1.Short facts of environmental sensing by individuals.

    Individual-based environmental measurements are useful for two very different purposes.First,they continuously collect complete exposure data for an individual.This approach results in metrics for cumulative exposure,location and activity-specific exposure increments,frequency distributions of exposure increments[16],mobility habits,and behavior.It can facilitate behavioral changes and adaptation for a sensor wearing individual and being informed about its current exposure status.At the very least this can help to promote individuals’environmental health literacy[17].For example,cyclists can adjust their travel behavior according to information assigned to their geo-position[18,19].Second,individuals can act as urban explorers and,by means of their portable sensors,can capture the variability of atmospheric parameters[20].Combining such crowdsourced measurements from numerous people,or with model simulations,data for all locations/times in the city are estimated within a participatory citizen science approach[21,22].Plotting the spatiotemporal data along the trajectory of each person(according to the concept of time-geography[23])can improve the understanding of disease prevalence,etiology,transmission,and treatment[24];and also help to support sustainable urban planning.

    3.Concepts of personal exposure measurements

    Environmental exposure relevant to a person’s health has to be locally monitored constantly for the individual.The results of such continuous monitoring suggest different levels(and combinations)of exposure depending on the individual’s immediate surroundings[25].Due to this concept,the exposure associated with the daily agenda of a person is a sequence of pollution patterns,each characterizing a specific microenvironment.For example,black carbon exposure was found to be significantly elevated in diesel vehicles,in the subway,or rooms with environmental tobacco smoke[26].

    This microenvironment concept facilitates an approximate exposure estimation based on an individual’s time–activity profile and characteristic pollution levels of the involved microenvironments[25].Typical microenvironments are homes,schools,and vehicles for transit/commuting[27].Exposure to outdoor pollutants occurs not only outdoors,but also indoors in naturally ventilated homes[28].While,in the past,the microenvironment was categorized according to activity logs(diaries)or geographic proximity[29],and the utilization of GPS and accelerometers allows for automated human activity recognition[3,30].

    A weakness of this microenvironment concept is that indoor air pollution varies considerably between different apartments and only very general information is available for selected typical settings.Further,outdoors and especially in urban neighborhoods,the pollution can vary considerably due to many potential sources(e.g.,industry and traffic)and rapidly changing dispersion conditions in street canyons.For example,studying the PM2.5(particulate matter with an aerodynamic diameter no greater than 2.5μm)exposure of schoolchildren,Rabinovitch et al.[31]observed relatively high correlations between the mean concentrations in the microenvironments of home,transit,and school.This raises the question of variability between and within microenvironments.Only very few individual exposure records show clear differences between microenvironments.Much more pronounced are concentration peaks that occur independently of the microenvironment.The authors identify these peaks(exposure events)as an exposure metric that is associated with health effects.

    Another concept of personal exposure is linked with the urban structure.Here the basic assumption is that land use is a proxy for climatic,air quality,and noise conditions.Land use regressions(LURs)are used for modeling[32].The assumption is valid under weak wind conditions(autochthone weather)and also(but weaker)as an average over long periods(in the sense of long-term climate).Mobile personal measurements can provide valuable data for LUR models in high spatial resolution complementing stationary monitoring if appropriate cross-validating schemes are applied to estimate the predictive model performance[33].

    4.Sampling points and sampling rate

    Conventionally,the(urban)atmosphere is monitored by a network of meteorological and air quality stations that are placed at fixed locations with the aim of gathering representative data.For an appropriate selection of these locations,guidelines have been developed[34].However,the urban environment is strongly inhomogeneous and influenced by numerous different processes and the selection of these representative sites is a challenge.One important aspect for the site-selection is the rationale of monitoring:Does it aim to collect climatological data or is it intended to provide data in support of particular needs,such as the prevention of health problems?This determines whether the immediate vicinity(e.g.,a street canyon),the neighborhood,or the entire city is the scale of observation.

    To specify the optimum number and disposition of climatologic monitoring sites in an urban area,information about meteorological scenarios representative of the considered region is usually combined with spatial simulations of pollutant concentration patterns or even composite air quality indices[35].The sum of all these air quality patterns weighted by the probabilities of their occurrence results in the figure-of-merit(FOM).Its maxima help to identify and rank the most desirable monitoring locations.The lowest number of optimal locations are characterized by non-overlapping spheres-of-influence(SOIs),determined by a cut-off value in the spatial autocorrelation between the pollution level at this site and the neighboring monitoring sites[36,37].

    While semi-variances assess the spatial autocorrelation structure of the entire pollution field(and can be useful for the spatial interpolation of pollution data[38]),the SOI concept is based on the calculation of correlograms that are specific for each location.The correlogram cut-off distance(usually after a correlation decay by 1/e(≈36.8%)indicates the size of the region for which the recordings are representative.We suggest the transfer of this concept to mobile measurements and to use it for the sampling rate specification.If the SOIs of a sequence sampled during a walk overlap(see example in Fig.2),the sampled values are correlated because the sampling points are too close together.That means larger time periods between the individual samples can be selected;in other words,sampling rate,which is the number of samples per hour,can be reduced.

    5.Accuracy of sensors—A matter of performance

    An important issue of miniature sensors is their accuracy.While equipment for condition monitoring(e.g.,temperature/humidity control in factories or pollutant monitoring in mines)aims at the detection of extreme values,a sensor that gathers personal environmental burdens has to register very low concentrations with high accuracy[39],which involves①high precision(small random fluctuations and good repeatability),②trueness(no bias from the true value),and③stability(no long-term drift).Trueness can be achieved by regular calibrations,but precision and stability are immanent to the measurement technique.For that reason,not every technique is suitable for application in wearable environmental sensors.

    Regular calibration of the sensors according to the manufacturer guidelines is a must.The field measurement performance can be evaluated by comparison with a standard high-end instrument[40].A set of indices is available for the assessment of the sensors’precision:index of agreement[41,42],Pearson’s correlation coefficient,root mean squared error,mean bias error,mean absolute error,and coefficient of variation.When multiple factors are simultaneously sampled,a similar accuracy of all sensors is desirable.This will guarantee that each factor measurement has the same reliability at a sampling point.In practice,the sensor accuracy can be assessed from a comparison with a precision instrument by means of Bland–Altman and Taylor plots[40].

    6.Time constant of a sensor

    Another important parameter is the time constantτ,characterizing the duration a sensor will need to respond to a step-input(more precisely,1-1/e(≈63.2%)of the step-value).Considering that the sensor might be carried during a walk with a speed of approximately 5 km?h-1(≈1.4 m?s-1)and the environmental conditions markedly vary within a range of 14 m,an adequate sampling rate needs to be 10 s.The sensor has to be compatible with this sampling rate and the time constant has to beτ≤10 s(unfortunately,many of the new smart sensors haveτ≥1 min).The time constant essentially depends on whether or not the sampling is active(that means sensor ventilation by a micro-fan using a standardized flow rate is applied).In contrast,passive sampling is generally not adequate in the context of mobile measurements as to the large time-constant(inertia effect).An example comparing active and passive temperature measurements(Fig.3)demonstrates that considerable mismeasurement can result from an inappropriate combination of sampling rate and time constant.

    Fig.2.Spheres-of-influence(SOIs)calculated from mobile temperature recordings sampled with a ventilated(55 m?s-1 flow rate)and sun-protected sensor(data logger testostor 171 with humidity/temperature probe 0572 6172,Germany;accuracy:±0.2 K,τ≈12 s(τis the time constant characterizing the duration a sensor will need to respond to a step-input))1.5 m above ground during a walk made 22:50–00:00 UTC on Tuesday,18 July 2017,in Leipzig,Germany.The dots mark the sampling sites(coordinates registered by a GPS(Garmin GPSMap 60CSx,USA),which are separated by a time-step of 1 min.The circles around the dots mark the SOI-distance at which the correlation of temperature in the center with the remaining data decays by 1/e(≈36.8%)(exponential function fitted to the correlogram;negative correlations removed).The sampling rate was 5 s,so that for each sampling site 12 recordings(comprising 1 min)were included into the correlation calculation.The daily temperature profile was estimated using a lowpass filter(6 h cut-off period)and then eliminated from the recordings.To improve readability,successive circles were plotted in colors red,blue,and green.The urban structure is visible in the background(coordinate system World Geodetic System 1984(WGS84),Universal Transverse Mercator(UTM)zone 32).

    Fig.3.Contemporaneous recordings of different temperature sensors and sampling modes(outdoor temperatures gathered at time steps of 1 min):Testo Sensor(data logger testostor 171 with humidity/temperature probe 0572 6172,Germany;accuracy:±0.2 K,τ≈12 s)active sampling with sun protection and ventilation;TSI Q-Trak 7565 sensor(USA;accuracy:±0.6 K,τ≈30 s)handheld with natural ventilation and no sun protection;Texas Instruments(TI)SensorTag CC2650STK(USA;accuracy:±0.2 K,τ≈300 s)without any sun protection and ventilation.

    Undoubtedly,in a specific application of a wearable sensor,the sampling rate needs to be adapted to the existing spatial variability of the environmental parameter(see the SOI concept above),the speed of the mobile measurements,and the sensor’s time constant.Possibilities to tune the sampling rate may be limited—not every sensor is useful to every design for personal environmental monitoring.

    7.Implementation of personal monitoring

    The arguments above suggest that the implementation of mobile measurements depends on their purpose and the prevalent environmental conditions.The variability of the environmental parameters can be assessed by point measurements,geostatistical techniques(e.g.,semi-variogram analyses),and micrometeorological modeling.For the measurement task at hand,it will be very helpful to develop an SOP,which is state-of-the-art with pharmaceutical and industrial processes.

    Such an SOP for mobile measurements involves a detailed description of the measurement procedure,including the purpose of the study,materials and devices,details of the sensors(including functionality,energy supply,calibration,accuracy,and time constants),details on the implementation of mobile measurements(flow diagram),a protocol for the mobile measurement campaign(including start date and time,location,preparations required for the measurements,sampling rates,carriers(e.g.,pedestrians,bikers,and cars)),average movement speed,sampling period,method of synchronization between all sensors and GPS,potential sources of errors,data storage details,and data analysis approaches.Such working instructions are useful for researchers that test different sensors and novel devices or explore the environmental conditions near urban hot spots.They are vital for high-quality population studies when laypeople carry wearable sensors during everyday life and record their burden for health studies.Templates,as well as planning tools,are available for support[43].

    A manual acquisition of all the collected data would be tedious and therefore the data stream has to be integrated and rapidly processed within a data acquisition system linking sensors,smartphones,and a database[44].An important task of this data processing is the synchronization of all measurements that is usually based on a timestamp[45].Future developments toward an Internet of Things(IoT,as a global data infrastructure[46])can bring data management to perfection and simultaneously increases data accuracy and coverage[47].For example,shortdistance communication techniques like iBeacon??http://www.ibeacon.com/.can improve the registration of positions in an indoor environment and contribute to a comprehensive assessment of indoor and outdoor environmental burdens.

    8.Upvaluation of sensor records

    All data recorded by wearables are subject to considerable noise[48].Small scale turbulence near the person,nuisance of recordings due to impacts(e.g.,heat,acoustic noise,and trace gases)caused by the moving individual,and other perturbations will generate outliers as well as bias in the measured data.The quality of the recorded data can be enhanced when an urban region is‘‘explored’’by numerous individuals.During their movement,the data collected at nearby points in time and space can be averaged for random noise reduction.A systematic technique that interpolates many such measurements is the so-called data assimilation,which combines measurements with micro-meteorological simulations.This approach is similar to the procedure that is operationally applied to meteorological and climatological measurements on a global scale.

    Because measurements always have uncertainty,the data assimilation procedure needs to take this into account for the calculation of the combined data and their uncertainty.As an adequate solution for this task,we suggest the Bayesian spatiotemporal epistemic knowledge synthesis[49].This approach can combine micro-meteorological simulations(of air pollutants,temperature,etc.)with multiple person-carried measurements resulting in highly resolved data of environmental parameters and their confidence intervals.

    Another perspective of wearable sensors is the association of recordings with the perceptions of the carrier.A novel technique registering a person’s apperceptions during their daily life are walking interviews[50].Being in a certain urban setting,people are more easily able to reflect their own experiences and this mirrors the measured environmental conditions.This technique is derived from ethnographic studies and can bridge between measured exposure data,an individual’s behavior,and their health status.In combination with wearable sensors,the walking interviews can uncover daily habits and the social context as determinants of personal exposure and contributorsto the etiology of chronicdiseases.Smartphone sensing methods are a feasible way to integrate active user feedback(e.g.,exposure perception)on the move[45].

    9.Conclusions

    Novel sensor and information technology developments can contribute considerably to the provision of human exposome data[51]and foster the transition from population-based to individualbased epidemiological studies[52].While some environmental parameters are reflected by human perceptions(such as the thermal comfort and noise),others are basically imperceptible(such as particulate matter and NOxconcentrations).As a corrective,multifactorial exposure measurement can immediately inform a person about prevalent health risks[53].This is especially important for epidemics of non-communicable(e.g.,asthma and diabetes)as well as communicable(e.g.,tuberculosis and coronavirus disease 2019(COVID-19))diseases,that are influenced by people’s everyday lifestyle and surrounding environments.Further,wearables can help overcome the microenvironment and land-use concepts that are not individual-based.However,the application of wearable sensors demands specifications for sampling rate,accuracy,and numerous other conditions,ideally in the frame of an SOP(Fig.1).To avoid spurious and biased recordings,the sensors themselves must actively sample(i.e.,ventilated by a micro-fan)and be protected against the impact of nuisance parameters.Combining individual-based records with environmental modeling as well as novel techniques surveying‘‘on the move”are promising challenges for future research activities.

    Acknowledgements

    The work was partially supported by the German Research Foundation(Deutsche Forschungsgemeinschaft,DFG)under Schwerpunktprogramm(SPP)1894‘‘Volunteered Geographic Information:Interpretation,Visualization and Social Computing”,project‘‘ExpoAware—Environmental volunteered geographic information for personal exposure awareness and healthy mobility behavior”(SCHL 521/8-1).The authors acknowledge the help of Niels Wollschl?ger with the calculation of SOIs(Fig.2).

    成人三级做爰电影| 黑人欧美特级aaaaaa片| 欧美日韩精品网址| 男人舔女人下体高潮全视频| 在线观看美女被高潮喷水网站 | 可以在线观看毛片的网站| 午夜激情av网站| 在线视频色国产色| 欧美午夜高清在线| 亚洲国产精品999在线| 亚洲自偷自拍图片 自拍| 99国产精品99久久久久| 蜜桃久久精品国产亚洲av| 欧美色欧美亚洲另类二区| av片东京热男人的天堂| 国产精品亚洲av一区麻豆| 久久精品国产99精品国产亚洲性色| 老司机午夜福利在线观看视频| 老司机福利观看| 精品久久久久久成人av| 亚洲第一电影网av| 成人18禁在线播放| 成人三级做爰电影| 观看免费一级毛片| 波多野结衣巨乳人妻| 每晚都被弄得嗷嗷叫到高潮| 国产成年人精品一区二区| 亚洲国产欧美一区二区综合| 好男人在线观看高清免费视频| 国产成人精品久久二区二区91| 日韩欧美三级三区| 老汉色av国产亚洲站长工具| 男人的好看免费观看在线视频 | 亚洲,欧美精品.| 18禁裸乳无遮挡免费网站照片| 午夜福利成人在线免费观看| 久久国产精品影院| 国产成年人精品一区二区| 午夜免费激情av| 黄色丝袜av网址大全| 国产乱人伦免费视频| 美女午夜性视频免费| 我要搜黄色片| 法律面前人人平等表现在哪些方面| 欧美绝顶高潮抽搐喷水| avwww免费| av视频在线观看入口| www国产在线视频色| 一本综合久久免费| 97人妻精品一区二区三区麻豆| av在线天堂中文字幕| 欧美色欧美亚洲另类二区| 韩国av一区二区三区四区| 日韩精品青青久久久久久| 长腿黑丝高跟| aaaaa片日本免费| 亚洲av片天天在线观看| 欧美在线黄色| 一级片免费观看大全| 熟女少妇亚洲综合色aaa.| 亚洲国产精品合色在线| www日本黄色视频网| 18禁美女被吸乳视频| 又爽又黄无遮挡网站| 国产午夜精品论理片| 亚洲自拍偷在线| 我要搜黄色片| 正在播放国产对白刺激| 亚洲国产高清在线一区二区三| 午夜免费观看网址| 国产熟女午夜一区二区三区| 亚洲av中文字字幕乱码综合| 此物有八面人人有两片| 制服丝袜大香蕉在线| 亚洲人成电影免费在线| 在线看三级毛片| avwww免费| 国产私拍福利视频在线观看| 国产精品爽爽va在线观看网站| 久久精品成人免费网站| 国模一区二区三区四区视频 | 国产黄a三级三级三级人| 99在线人妻在线中文字幕| or卡值多少钱| 国产成人精品无人区| av福利片在线| 日韩欧美在线乱码| 日韩 欧美 亚洲 中文字幕| 一个人免费在线观看电影 | 精品日产1卡2卡| 最新美女视频免费是黄的| 少妇熟女aⅴ在线视频| 国产一区二区在线观看日韩 | 国产av一区二区精品久久| 中国美女看黄片| 亚洲男人的天堂狠狠| 看免费av毛片| 免费高清视频大片| 久久人人精品亚洲av| 日韩欧美国产一区二区入口| 日本黄色视频三级网站网址| 成人av一区二区三区在线看| 久久天堂一区二区三区四区| 青草久久国产| 91九色精品人成在线观看| 村上凉子中文字幕在线| 国模一区二区三区四区视频 | 91在线观看av| 精品国产美女av久久久久小说| 男插女下体视频免费在线播放| 99热这里只有是精品50| 国产亚洲精品第一综合不卡| 欧美成人一区二区免费高清观看 | 亚洲精品中文字幕在线视频| 国产亚洲精品久久久久5区| 中出人妻视频一区二区| 成人精品一区二区免费| 国产精品一区二区三区四区免费观看 | 国产一区二区在线av高清观看| 日本免费a在线| 精品欧美国产一区二区三| 怎么达到女性高潮| 啦啦啦免费观看视频1| 欧美黑人巨大hd| 一本精品99久久精品77| 波多野结衣高清无吗| 久久中文字幕一级| 亚洲第一电影网av| 久久精品人妻少妇| av超薄肉色丝袜交足视频| 国产又黄又爽又无遮挡在线| 亚洲av成人不卡在线观看播放网| 69av精品久久久久久| 亚洲精品国产一区二区精华液| 久久久久免费精品人妻一区二区| 麻豆成人av在线观看| 老熟妇仑乱视频hdxx| 精品不卡国产一区二区三区| 99re在线观看精品视频| www.www免费av| 久久久精品大字幕| 亚洲 国产 在线| 免费观看人在逋| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| 国产精品自产拍在线观看55亚洲| 国产久久久一区二区三区| 妹子高潮喷水视频| 男女之事视频高清在线观看| 精品久久久久久久久久免费视频| 在线视频色国产色| 麻豆国产av国片精品| 欧美乱码精品一区二区三区| 久久99热这里只有精品18| 精品欧美国产一区二区三| 亚洲午夜理论影院| 精华霜和精华液先用哪个| 久久精品91无色码中文字幕| 男男h啪啪无遮挡| 丁香欧美五月| 成人av在线播放网站| 好看av亚洲va欧美ⅴa在| 欧美av亚洲av综合av国产av| 好男人在线观看高清免费视频| netflix在线观看网站| 久久国产乱子伦精品免费另类| 99久久无色码亚洲精品果冻| 淫妇啪啪啪对白视频| av中文乱码字幕在线| 夜夜爽天天搞| 91在线观看av| 中文字幕人妻丝袜一区二区| 特大巨黑吊av在线直播| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 亚洲精品国产一区二区精华液| 老汉色∧v一级毛片| 亚洲九九香蕉| 脱女人内裤的视频| 国产精品香港三级国产av潘金莲| 无人区码免费观看不卡| 亚洲一区中文字幕在线| 九九热线精品视视频播放| 成熟少妇高潮喷水视频| 欧美+亚洲+日韩+国产| 免费人成视频x8x8入口观看| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 欧美黄色淫秽网站| 不卡一级毛片| 免费搜索国产男女视频| 精品高清国产在线一区| 国产高清激情床上av| 国产熟女午夜一区二区三区| 脱女人内裤的视频| 欧美精品亚洲一区二区| 欧美一区二区精品小视频在线| 在线视频色国产色| 国产高清激情床上av| 亚洲av熟女| 免费在线观看日本一区| 国产主播在线观看一区二区| 欧美丝袜亚洲另类 | 国产一区二区在线观看日韩 | 淫秽高清视频在线观看| 欧美国产日韩亚洲一区| 成人18禁高潮啪啪吃奶动态图| 一级毛片精品| 又黄又粗又硬又大视频| 免费在线观看影片大全网站| 制服丝袜大香蕉在线| 亚洲人成网站高清观看| 一a级毛片在线观看| 1024手机看黄色片| 国产精品一区二区精品视频观看| 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频| 欧美av亚洲av综合av国产av| 狂野欧美白嫩少妇大欣赏| 亚洲av五月六月丁香网| av在线天堂中文字幕| 制服人妻中文乱码| av国产免费在线观看| 麻豆国产av国片精品| 又黄又爽又免费观看的视频| 亚洲无线在线观看| 亚洲第一电影网av| 啦啦啦免费观看视频1| av福利片在线| 女同久久另类99精品国产91| а√天堂www在线а√下载| 免费观看精品视频网站| 他把我摸到了高潮在线观看| xxxwww97欧美| 18禁观看日本| 久久性视频一级片| 一本大道久久a久久精品| 国产成年人精品一区二区| 亚洲欧美精品综合久久99| 老汉色∧v一级毛片| 69av精品久久久久久| 国产精品野战在线观看| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 国产野战对白在线观看| 操出白浆在线播放| 三级国产精品欧美在线观看 | 中出人妻视频一区二区| 变态另类成人亚洲欧美熟女| 日本五十路高清| 十八禁网站免费在线| 两个人视频免费观看高清| 婷婷丁香在线五月| 午夜视频精品福利| 午夜福利视频1000在线观看| 成人国产综合亚洲| 90打野战视频偷拍视频| 久久午夜综合久久蜜桃| 国产精品久久久人人做人人爽| 成年免费大片在线观看| 又粗又爽又猛毛片免费看| 高清毛片免费观看视频网站| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频不卡| 国产人伦9x9x在线观看| avwww免费| 亚洲成a人片在线一区二区| 亚洲精品中文字幕在线视频| 桃红色精品国产亚洲av| 成人高潮视频无遮挡免费网站| 久久久久久国产a免费观看| 91大片在线观看| 午夜福利欧美成人| 久久久久国产一级毛片高清牌| 老熟妇仑乱视频hdxx| 日韩大码丰满熟妇| av免费在线观看网站| 国内毛片毛片毛片毛片毛片| 国产成人精品久久二区二区免费| 黄色视频不卡| 免费在线观看日本一区| 亚洲男人天堂网一区| 欧美另类亚洲清纯唯美| 国产在线观看jvid| 欧美色欧美亚洲另类二区| 麻豆久久精品国产亚洲av| av超薄肉色丝袜交足视频| 欧美日韩国产亚洲二区| 一个人免费在线观看的高清视频| 日日爽夜夜爽网站| 亚洲熟妇熟女久久| 啦啦啦韩国在线观看视频| 在线永久观看黄色视频| 法律面前人人平等表现在哪些方面| 久久人人精品亚洲av| av福利片在线| 午夜视频精品福利| 在线观看日韩欧美| 黄色 视频免费看| 精品久久久久久久末码| 国语自产精品视频在线第100页| 极品教师在线免费播放| 韩国av一区二区三区四区| 国产黄a三级三级三级人| 最新美女视频免费是黄的| 国内揄拍国产精品人妻在线| 久久久久国产一级毛片高清牌| 日韩精品青青久久久久久| 1024手机看黄色片| 黄色 视频免费看| 午夜免费激情av| 亚洲欧美精品综合一区二区三区| 久久久久久久精品吃奶| 欧美乱色亚洲激情| 一个人免费在线观看电影 | 亚洲 国产 在线| 最近在线观看免费完整版| 婷婷精品国产亚洲av| 亚洲中文av在线| 老司机午夜十八禁免费视频| 真人做人爱边吃奶动态| 老熟妇仑乱视频hdxx| 久久中文字幕人妻熟女| 亚洲欧美激情综合另类| 在线十欧美十亚洲十日本专区| 免费电影在线观看免费观看| 国内久久婷婷六月综合欲色啪| 美女大奶头视频| 亚洲成a人片在线一区二区| 国内少妇人妻偷人精品xxx网站 | 窝窝影院91人妻| 丰满人妻一区二区三区视频av | 一本久久中文字幕| 日本黄色视频三级网站网址| 黄片大片在线免费观看| 国产精品一区二区精品视频观看| 久久精品91无色码中文字幕| 国产视频一区二区在线看| 母亲3免费完整高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久中文字幕人妻熟女| 欧美绝顶高潮抽搐喷水| 精品免费久久久久久久清纯| 黑人操中国人逼视频| 麻豆国产97在线/欧美 | 中文字幕人妻丝袜一区二区| 中文字幕久久专区| 亚洲精品国产精品久久久不卡| 国内精品久久久久精免费| 亚洲,欧美精品.| 欧美大码av| 1024香蕉在线观看| 黄色a级毛片大全视频| 欧美黄色片欧美黄色片| 黄色a级毛片大全视频| 日韩欧美三级三区| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 中文字幕久久专区| 19禁男女啪啪无遮挡网站| 啦啦啦观看免费观看视频高清| 国产欧美日韩一区二区三| 午夜成年电影在线免费观看| 久久精品国产亚洲av香蕉五月| 国产激情久久老熟女| 日韩 欧美 亚洲 中文字幕| 欧美成人免费av一区二区三区| av国产免费在线观看| 精品午夜福利视频在线观看一区| 国产真人三级小视频在线观看| 老司机午夜十八禁免费视频| 亚洲欧美日韩无卡精品| 校园春色视频在线观看| 国产欧美日韩一区二区三| 日韩免费av在线播放| 成人av在线播放网站| 午夜视频精品福利| 老司机午夜十八禁免费视频| 少妇人妻一区二区三区视频| 特大巨黑吊av在线直播| 国产蜜桃级精品一区二区三区| 黄色丝袜av网址大全| 亚洲激情在线av| 最近最新中文字幕大全电影3| 久久中文看片网| 黑人欧美特级aaaaaa片| 床上黄色一级片| 国产1区2区3区精品| 久久久国产精品麻豆| 亚洲成av人片在线播放无| av在线天堂中文字幕| 国产伦一二天堂av在线观看| 亚洲七黄色美女视频| 亚洲欧美日韩东京热| 日韩av在线大香蕉| av福利片在线观看| 男插女下体视频免费在线播放| 动漫黄色视频在线观看| 操出白浆在线播放| 国产亚洲精品第一综合不卡| 亚洲av电影不卡..在线观看| 在线永久观看黄色视频| 人妻丰满熟妇av一区二区三区| 亚洲熟妇中文字幕五十中出| 色综合婷婷激情| 俄罗斯特黄特色一大片| 国产精品国产高清国产av| cao死你这个sao货| 小说图片视频综合网站| 午夜精品在线福利| 欧美又色又爽又黄视频| 亚洲第一欧美日韩一区二区三区| 一区福利在线观看| 制服人妻中文乱码| 国产三级黄色录像| 欧美乱色亚洲激情| 国产精品 国内视频| 久久国产精品影院| 欧美人与性动交α欧美精品济南到| 18禁观看日本| 国产单亲对白刺激| 男女做爰动态图高潮gif福利片| 午夜久久久久精精品| 五月玫瑰六月丁香| 天堂av国产一区二区熟女人妻 | 99精品在免费线老司机午夜| 91成年电影在线观看| 搡老熟女国产l中国老女人| 51午夜福利影视在线观看| 色老头精品视频在线观看| 国模一区二区三区四区视频 | 麻豆国产97在线/欧美 | 午夜福利免费观看在线| 欧美日韩国产亚洲二区| 亚洲黑人精品在线| 日本黄大片高清| 久99久视频精品免费| 亚洲精品一区av在线观看| 亚洲欧美精品综合久久99| 两个人免费观看高清视频| 日本一本二区三区精品| 亚洲av电影在线进入| 国产成+人综合+亚洲专区| 日韩av在线大香蕉| 国产99白浆流出| 无人区码免费观看不卡| 在线观看舔阴道视频| 国产黄a三级三级三级人| 99久久99久久久精品蜜桃| 亚洲精品中文字幕一二三四区| 老司机在亚洲福利影院| 1024手机看黄色片| 国产亚洲精品第一综合不卡| svipshipincom国产片| 国产高清视频在线观看网站| 色综合婷婷激情| 欧美成人性av电影在线观看| 熟女电影av网| 国产欧美日韩一区二区精品| 久久人人精品亚洲av| www.精华液| 国产私拍福利视频在线观看| 一级毛片高清免费大全| 欧美成人性av电影在线观看| 久久精品91蜜桃| 黄色片一级片一级黄色片| 国产成人系列免费观看| 国产又黄又爽又无遮挡在线| 91成年电影在线观看| 亚洲自偷自拍图片 自拍| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| av有码第一页| 观看免费一级毛片| av在线播放免费不卡| 午夜精品在线福利| 国产亚洲av高清不卡| 欧美日韩亚洲综合一区二区三区_| 国产99久久九九免费精品| 亚洲av成人av| 又黄又粗又硬又大视频| 一本久久中文字幕| 午夜免费成人在线视频| 亚洲国产精品久久男人天堂| 国产午夜精品久久久久久| 亚洲一区二区三区不卡视频| 日韩大码丰满熟妇| 99国产极品粉嫩在线观看| 法律面前人人平等表现在哪些方面| 波多野结衣高清作品| 久久久久免费精品人妻一区二区| 国模一区二区三区四区视频 | 天堂√8在线中文| 国产午夜精品论理片| 中国美女看黄片| 亚洲全国av大片| 色av中文字幕| 亚洲精品美女久久av网站| 熟妇人妻久久中文字幕3abv| www.www免费av| 此物有八面人人有两片| 国产精品 欧美亚洲| 国产黄a三级三级三级人| 不卡av一区二区三区| 黄片大片在线免费观看| 亚洲精品一区av在线观看| 国产精品永久免费网站| 国产一区二区在线av高清观看| 日本熟妇午夜| 午夜精品在线福利| 亚洲国产精品sss在线观看| xxx96com| 少妇裸体淫交视频免费看高清 | 国产成人精品久久二区二区91| 999久久久精品免费观看国产| 久久久久久亚洲精品国产蜜桃av| 免费电影在线观看免费观看| 欧美乱码精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 神马国产精品三级电影在线观看 | 亚洲中文av在线| 久久久久国产精品人妻aⅴ院| 国产av又大| 美女大奶头视频| 亚洲av成人精品一区久久| 香蕉丝袜av| 亚洲 欧美 日韩 在线 免费| e午夜精品久久久久久久| 国产精品久久久人人做人人爽| 男男h啪啪无遮挡| 最近最新免费中文字幕在线| 此物有八面人人有两片| 国产片内射在线| 91成年电影在线观看| 黄色成人免费大全| 国产成人一区二区三区免费视频网站| 99久久精品热视频| 亚洲成av人片在线播放无| 中国美女看黄片| 精品人妻1区二区| 久久午夜综合久久蜜桃| 我要搜黄色片| 999精品在线视频| 精品日产1卡2卡| 黄色视频不卡| 亚洲欧美精品综合一区二区三区| 精品一区二区三区四区五区乱码| 日韩欧美一区二区三区在线观看| 亚洲成av人片在线播放无| 18禁裸乳无遮挡免费网站照片| 免费看a级黄色片| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区黑人| 久久婷婷成人综合色麻豆| 人妻久久中文字幕网| 亚洲熟妇熟女久久| 欧美精品亚洲一区二区| 日本撒尿小便嘘嘘汇集6| 国产91精品成人一区二区三区| 欧美乱码精品一区二区三区| 给我免费播放毛片高清在线观看| 亚洲成人精品中文字幕电影| 淫妇啪啪啪对白视频| av视频在线观看入口| 国产爱豆传媒在线观看 | 亚洲国产欧美人成| 国产精品一区二区精品视频观看| 老司机午夜十八禁免费视频| 欧美黄色片欧美黄色片| 亚洲欧美日韩东京热| 欧美日韩一级在线毛片| 久久99热这里只有精品18| 国产亚洲精品av在线| 久久性视频一级片| 日韩 欧美 亚洲 中文字幕| 精品久久久久久久人妻蜜臀av| 中国美女看黄片| 久久久国产欧美日韩av| 国产探花在线观看一区二区| 日韩av在线大香蕉| 神马国产精品三级电影在线观看 | 亚洲性夜色夜夜综合| 国产午夜福利久久久久久| 老司机午夜福利在线观看视频| 亚洲精品粉嫩美女一区| 又紧又爽又黄一区二区| 午夜成年电影在线免费观看| 欧美性猛交黑人性爽| 亚洲熟女毛片儿| 狂野欧美激情性xxxx| 国产一区二区激情短视频| 国产精品亚洲一级av第二区| 久久草成人影院| 久久精品综合一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美激情综合另类| 国产精品一区二区三区四区久久| 国内精品一区二区在线观看| 中文字幕精品亚洲无线码一区| 精品乱码久久久久久99久播| 超碰成人久久| 热99re8久久精品国产| 1024香蕉在线观看| www日本在线高清视频| 久久久精品国产亚洲av高清涩受| 亚洲av美国av| 精品福利观看| xxxwww97欧美| 免费高清视频大片| 一级黄色大片毛片| 国产v大片淫在线免费观看| 亚洲av日韩精品久久久久久密| 日韩中文字幕欧美一区二区| 校园春色视频在线观看| 欧美性猛交╳xxx乱大交人|