• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extreme Learning Machine-Based Thermal Model for Lithium-Ion Batteries of Electric Vehicles under External Short Circuit

    2021-07-08 03:43:10RuixinYngRuiXiongWeixingShenXinfnLin
    Engineering 2021年3期

    Ruixin Yng,Rui Xiong,*,Weixing Shen,Xinfn Lin

    a National Engineering Laboratory for Electric Vehicles,School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China

    b Faculty of Science,Engineering and Technology,Swinburne University of Technology,Hawthorn,VIC 3122,Australia

    c Department of Mechanical and Aerospace Engineering,University of California,Davis,CA 95616,USA

    Keywords:

    ABSTRACT External short circuit(ESC)of lithium-ion batteries is one of the common and severe electrical failures in electric vehicles.In this study,a novel thermal model is developed to capture the temperature behavior of batteries under ESC conditions.Experiments were systematically performed under different battery initial state of charge and ambient temperatures.Based on the experimental results,we employed an extreme learning machine(ELM)-based thermal(ELMT)model to depict battery temperature behavior under ESC,where a lumped-state thermal model was used to replace the activation function of conventional ELMs.To demonstrate the effectiveness of the proposed model,we compared the ELMT model with a multi-lumped-state thermal(MLT)model parameterized by the genetic algorithm using the experimental data from various sets of battery cells.It is shown that the ELMT model can achieve higher computational efficiency than the MLT model and better fitting and prediction accuracy,where the average root mean squared error(RMSE)of the fitting is 0.65°C for the ELMT model and 3.95°C for the MLT model,and the RMES of the prediction under new data set is 3.97 °C for the ELMT model and 6.11°C for the MLT model.

    1.Introduction

    The popularization of electric vehicles(EVs)is a worldwide strategy to reduce the dependence on fossil fuels and alleviate environmental pollution.Rechargeable lithium-ion batteries are considered as the most viable power sources for EVs[1–4].With the wide adoption of EVs,we are beginning to see an increasing number of safety accidents caused by lithium-ion batteries in EVs around the world.These accidents tarnish the reputation of EV and battery manufacturers and harm public confidence in EV acceptance.Some accidents are caused by one type of electrical faults in batteries,that is,external short circuit(ESC).ESC faults can be triggered under any circumstances,for example,deformation of a battery pack during EV collision and water or oil leakage in a battery pack.Once an ESC fault occurs,it may cause a dramatic increase in battery temperature,which would lead to thermal runaway[5,6].Therefore,it is necessary to study the thermal behavior of batteries under ESC faults for battery safety management.

    1.1.Literature review and motivations

    Many researchers studied exothermic reaction mechanism and thermal responses as batteries generate tremendous heat under abusing conditions[7–9].Ren et al.[10]developed a coupled electrochemical–thermal model to quantify heat generation rates of each heat source during the process from overcharge to thermalrunaway.Zhao et al.[11]studied the nail penetration test using a coupled three-dimensional(3D)multi-scale electrochemical–thermal model to illustrate the strong coupling relationship between thermal response and electrochemical behavior.Chen et al.[12]developed a multi-layer 3D thermal model to simulate temperature distribution in a battery at the occurrence of an internal short circuit.Zhu et al.[13]studied overcharge-induced thermal runaway by conducting overcharge experiments and found that side reactions dominate temperature rise before thermal runaway.In the abovementioned studies,complicated coupled electrochemical–thermal models were established to depict the thermal behaviors of batteries under abuse conditions.Generally,these models are computationally intensive and not suitable for real-world EV applications.

    Many other researchers studied ESCs and mainly focused on ESC experimental methods,ESC behaviors and hazard analysis,and modeling and fault diagnosis[14–21].Rheinfeld et al.[14,15]employed a quasi-isothermal ESC testing method to study the influence of material transport properties on transient shortcircuit behavior,and established a homogenized physical–chemical model to simulate the ESC process.In Refs.[16,17],ESC experiments were conducted to investigate electrical and thermal behavior under different ambient temperatures,initial states of charge(SOCs),and external resistances during the ESC process.Kupper et al.[18]proposed a physicochemical pseudo-3D multiscale model to describe thermodynamics and kinetics of main and side reactions in a battery cell under ESC conditions.In our previous research,we developed a fractional-order model to describe electrical characteristics of battery cells under ESC conditions,proposing a three-step diagnosis framework for an ESC fault[19]and later we proposed an online ESC detection method for a battery pack using an improved equivalent circuit model,which has high accuracy and generalization ability[20].In Ref.[21],a neural-network-based method was proposed to estimate the ESC current of a battery cell using only voltage information.

    In the above ESC studies,there is a lack of an effective thermal model to depict temperature rise in batteries under ESC conditions.A desirable model needs to be developed to achieve a balance between prediction accuracy and computational cost compared with complicated electrochemical–thermal models.In real-world EV applications,since not all battery cells are equipped with temperature sensors due to space limitation and manufacturing cost,temperatures of battery cells should be able to estimate only using current or voltage information.This motivates our development of a novel thermal model to predict temperatures with high accuracy and low computational burden to fill the gap in ESC studies.

    1.2.Original contributions

    The paper attempts to make the following three contributions:Firstly,ESC experiments of battery cells under different initial SOC values(20%,40%,and 80%)and different ambient temperatures(-10,10,20,and 40°C)were performed to establish an ESC database for building and validating the proposed thermal model.Secondly,an extreme learning machine(ELM)-based thermal(ELMT)model was explored to predict battery temperature under ESC conditions.Compared with the conventional ELM,the activation function was replaced with a lumped-state physical thermal model to better capture the battery temperature change.Finally,the proposed ELMT model was validated using the experimental data in terms of model fitting and prediction accuracy as well as computational cost.To demonstrate the effectiveness of the ELMT model,we compared the performances of the ELMT model with those of a multi-lumped-state thermal(MLT)model optimized by the genetic algorithm(GA).

    1.3.Organization of the paper

    In Section 2,the experimental results of batteries under ESC conditions are systematically presented and analyzed.Then,an ELMT model is proposed and explained in detail in Section 3.In Section 4,the proposed model is validated using data under different initial SOC values and ambient temperatures.Conclusions are summarized in Section 5.

    2.Experimental study

    To investigate the electrical and thermal characteristics of batteries under ESC conditions,we carried out ESC abusing tests under different experimental conditions.These conditions covered high,moderate,and low ambient temperatures(namely 40,20,10,and-10°C,respectively),as well as high,moderate,and low SOCs(namely 80%,40%,and 20%,respectively).Under each condition,we repeated the ESC test twice and their experimental results were denoted as group 1 and group 2.The data will be used to train and validate the proposed model in this paper.Table 1 describes the detailed specifications of the 18650 type Li(Ni0.5Co0.2Mn0.3)O2battery cells studied in this paper.

    2.1.Experiment platform of ESC test

    As shown in Fig.1,an ESC test bench has been established to study the characteristics of batteries under ESC conditions.In our previous work[20],we employed a similar platform to carry out the ESC test of battery packs,which has been illustrated in detail.In this paper,we focus on the ESC test of battery cells and briefly explain that the configuration of the experimental platform includes:①an ESC test controller;②a compressor supplying air source to the controller;③an explosion-proof thermal chamber;④current,voltage,and temperature sensors;and⑤a highprecision data acquisition system.

    The data acquisition instrument was started to record experimental data once the contactor(shown in Fig.1)was closed,where the contactor driven by the ESC test controller is used to make the connection of the positive and negative of battery cells,imitating ESC faults in EVs.Meanwhile,battery current,voltage,and temperature were measured by relevant sensors.When the current and voltage reduced to 0 A and 0 V indicating the battery was destroyed,the ESC testing was ended manually.

    2.2.Analysis of experimental results

    The current and temperature data are shown in Figs.2 and 3,respectively.Figs.2(a)and(b)show the results of group 1 under different SOCs at the ambient temperatures of 20 and 40°C;Figs.2(c)and(d)show the results of group 1 under different SOCs at the ambient temperatures of 10 and-10°C.Similarly,Fig.3 shows the results of group 2 under different SOCs and different ambient temperatures.As shown in Figs.2 and 3,once the ESC occurred,the current increased rapidly within 1 s and the peak current can reach nearly 150 A(about 61 C-rate).The large current generated Joule heat accumulating inside batteries,causing the temperature of batteries to rise rapidly.After the current reached the peak,it was gradually decreased.As described in Ref.[18],the reason for current being reduced after the peak is that the high temperature can cause a‘‘shut down”effect of battery separator,reducing the rate of lithium-ion diffusion and migration.Eventually,the current experienced a‘‘discharge plateau”and then dropped to 0 A,indicating that the battery was damaged.

    We can have the following observations from Figs.2 and 3:①Under the same SOC and ambient temperature conditions,theresults of two groups exhibit good repeatability;②under the same ambient temperature,battery cells with lower SOC discharge longer than those with higher SOC;③cells with higher SOC may have a larger rate of temperature rise under all ambient temperatures.More ESC test results were analyzed in detail in our previous work[19–21].

    Table 1 Specifications of the nickel–cobalt–manganese-based cathode materials battery.

    Fig.1.Battery ESC test bench.

    Fig.2.Current and temperature of battery cells during ESC under different ambient temperatures and SOCs(group 1).(a)Current at 20 and 40°C;(b)temperature at 20 and 40 °C;(c)current at-10 and 10 °C;(d)temperature at-10 and 10 °C.

    Fig.3.Current and temperature of battery cells during ESC under different ambient temperatures and SOCs(group 2).(a)Current at 20 and 40°C;(b)temperature at 20 and 40 °C;(c)current at-10 and 10 °C;(d)temperature at-10 and 10 °C.

    3.Modeling and prediction of battery thermal behaviors

    3.1.Lumped-state thermal(LT)model

    An LT model is employed to describe the temperature behavior of a battery cell under ESC faults.It is assumed that the temperature within a battery cell is uniform.According to energy conservation,a gross heat generated by a battery can be expressed as the convection heat and the generated heat,which is modeled by

    where h is the convection coefficient;Tambis the ambient temperature;T is the temperature of the cell;Cp,V,A,ρ,and t represent the battery specific heat capacity,volume,surface area,density,and time,respectively;q is the heat generation[22,23],which can be computed as

    In Eq.(2),researchers have proved that the reversible heat generation is much smaller than the irreversible heat generation under ESC conditions[16].In this work,the ESC experimental data at 40%SOC and 20°C in group 1 was used to calculate and compare the two parts of heat generation.Figs.4(a)and(b)show the measured entropy coefficient dUo/dT and results of reversible and irreversible heat generation,respectively.

    where Tkis the battery temperature at time instant k andΔt is the sampling period.

    3.2.Description of ELM

    Huang et al.[24]first proposed ELM to overcome the drawbacks of the single-hidden-layer feedforward neural network,for example,slow training speed,susceptibility to a local minimum,and sensitivity to the learning rate.The structure of a conventional ELM is shown in Fig.5.In ELM,the weights connecting the input layer and the hidden layer and the bias of the hidden layer are randomly generated.Learning can be made more effectively without iteratively tuning,as the weights connecting the hidden layer and the output layer are identified by fitting the training data[25].

    The input vector X and output vector Y of the ELM are defined as

    where x and y are input and output data,respectively;n and m denote total data in the input and output layer,respectively.

    Fig.4.Results of heat generation.(a)Entropy coefficient;(b)reversible and irreversible heat generation.

    Fig.5.Structure of conventional ELM.x and y are input and output data,respectively;n and m are total data in input and output layer,respectively;w is the weight connecting the input layer and the hidden layer;βjs is the weight connecting the hidden layer and the output layer;g(?)denotes the activation function;b is the bias in the hidden layer;i denotes the input number;j denotes the sub-model number;and s denotes the data number in output layer.

    The procedures for constructing an ELM are described as follows:

    Step 1:Determine the number of neurons/nodes in the hidden layer,l.

    Step 2:Randomly generate the weights w between the input layer and the hidden layer and the bias b in the hidden layer.The matrix w and vector b are shown as

    Step 3:Select a type of activation function g(?)for computing the output.

    whereβjsis the weight connecting the hidden layer and the output layer,s is the data number in output lay(s=1,2,...,m),i is the input data number,j is the sub-model number.If we define weight matrix βas

    Eq.(6)can be expressed in matrix form as

    Step 4:Determine the weights between the hidden layer and the output layer.The weight matrixβcan be obtained by applying the least-squares fitting of Eq.(8)with the measurement data matrix Y*.

    The solution would be

    where H+is the Moore–Penrose inverse of H.

    3.3.Proposed ELMT model

    In conventional ELM,the activation function is usually nonlinear and differentiable,including sigmoid function,hyperbolic tangent function,and Gaussian function[24].Further research found that the activation function can be any nonlinear function or even discontinuous or non-differentiable function[25–28].

    In this paper,we combined a physics-based LT model with the ELM,proposing an ELMT model to capture battery temperature under ESC conditions.Specifically,we replaced the conventional activation function of the ELM with the LT model previously introduced in Section 3.1.The ELMT model structure is shown in Fig.6.In this model,we employed L sub-models,taking current Ikas the input and temperature Tk+1as the output(k=1,2,...,N-1).N is the total number of temperature data.The L sub-models can be viewed as a type of activation functions of the ELM.

    Based on Eq.(3)of the LT model and Eq.(6)of the ELM,battery temperature Tk+1can be expressed as

    where j denotes the sub-model number(j=1,2,...,L),Hk,jis the output of the jth sub-model in the hidden layer.The significance of the other parameters has been explained in Section 3.1.The recursive expression of Hk+1,jcan be shown as

    Fig.6.Diagram of ELMT model.Ik:current at time instant k.

    As a result,Eq.(11)can be rewritten as

    Eq.(13)shows that the temperatures at every time instant are regarded as the weighted sum of L sub-models.In this model,we can directly measure or calculate the battery mass,surface area A,and ambient temperature Tamb.The unknown parameter matrix P is shown as follows:

    There are 3×L parameters in the L sub-models that need to be determined.According to the principle of ELM,these parameters are assigned randomly within reasonable ranges and do not need to be tuned using the experimental data.This practice can significantly reduce the computational complexity of model parameterization.The ranges of these parameters are given based on prior knowledge[29,30].For example,h is usually between 10 and 200 W?m-2?K-1under forced air convection.Therefore,the wide ranges of these parameters as shown in Table 2 are provided to cover a variety of battery operation conditions and obtain the optimal solution.

    The weightsβjconnecting the hidden layer and the output layer are determined by fitting the experimental data as in Eq.(10).In this paper,the number of LT model is set to 20 to balance the computational efficiency and model fidelity.

    The advantages of the ELMT model are summarized as follows:

    Table 2 Parameter ranges of LT model.

    (1)Compared to general machine learning models,the ELMT model greatly improves the computation efficiency,as learning can be made more effectively without iteratively tuning parameters in Eq.(14).

    (2)Since the ELMT model is a type of neural network model,it can achieve better accuracy by fitting the training data compared to the simple lumped thermal model.

    (3)Compared to conventional ELM,the ELMT model employs the physics-based thermal model to replace the activation function,rendering its physical significance.The ranges of these weights w and bias b can be set based on the prior knowledge of the model parameters.

    (4)The method to combine thermal model and conventional ELM can also be extended to other complicated electrical and electrochemical models,in which some parameters are difficult to determine.The proposed method can obtain an accurate model by setting parameters in reasonable ranges.

    3.4.MLT model

    To demonstrate the advantages of the ELMT model,an MLT model is employed as the benchmark for comparison.The MLT model consists of five LT models and the MLT model structure is the same as that of the ELMT model shown in Fig.6.However,in the MLT model,the parameters,for example,Ri,h,Cp,andβj,can be tuned to fit the experimental data.For a fair comparison,a total of 20 tunable parameters in the MLT model are the same as those of the ELMT model(20 weightsβjconnecting the hidden layer and the output layer).

    The parameters of the MLT model are identified using GA,which is a commonly used nonlinear heuristic optimization algorithm[29].In GA,the parameters are tuned to minimize a leastsquares objective function J defined as

    where Testis the estimated temperature and Tmeais the measured temperature.

    Overall,there are 20 tunable parameters in both ELMT and MLT models.The major difference between the two models is the method to tune the parameters.For the ELMT model,the parameters are obtained through a one-shot least-square fitting without tuning iteratively;for the MLT model,the parameters are obtained through a process of iterative optimization.

    4.Evaluation of the proposed method

    In this section,we used the experimental data presented in Section 2 to evaluate the proposed ELMT model.We checked both the fitting accuracy of the model under the original training data in group 1 and the prediction accuracy under new data acquired from different battery cells in group 2.In all fitting and prediction cases,the MLT model is used as the benchmark to evaluate the ELMT model.

    4.1.Fitting accuracy

    The experiment data in group 1 was used to examine the fitting accuracy of the ELMT model,which indicates the capability of the model to capture the fundamental dynamics of battery thermal behavior under ESC conditions.Fig.7 shows the model fitting results of the ELMT and MLT models under the ambient temperatures of 20 and 40°C and 80%,40%,and 20% SOCs,and Fig.8 presents the results under the ambient temperatures of-10 and 10°C and the same SOCs as those in Fig.7.Besides,the inset(i)of each subplot represents the errors of the ELMT model,and inset(ii)represents those of the MLT model.It can be seen that the temperature errors of the ELMT model were less than 4 °C,whereas those of the MLT model can be as high as 25°C.

    Fig.7.Model fitting results with different SOCs under ambient temperatures of 20 and 40°C.(a)80%SOC at 40°C;(b)40%SOC at 40°C;(c)20%SOC at 40°C;(d)80%SOC at 20°C;(e)40% SOC at 20°C;(f)20% SOC at 20°C.

    Table 3 compares the root mean squared error(RMSE)of the two models under different conditions.Table 4 shows the average RMSE results under each ambient temperature as well as all conditions.It can be seen that the ELMT model has better fitting accuracy than the MLT model under all the conditions,namely the average RMSE of the ELMT model is 0.65°C whereas that of the MLT model is 3.95°C(Table 4).Thus,the ELMT model has a better ability than the MLT model with the same number of tuning parameters to capture the temperature response under all battery initial SOCs and ambient temperatures.

    In terms of the computational efficiency of model training/fitting,the training time of the two models under different conditions are shown in Table 5.The computing time is recorded from the start of the program to the end of the program based on MATLAB 2013b(MathWorks,USA).All results were obtained on the platform of a ThinkPad T470(Intel?CoreTMi7-7700HQ central processing unit(CPU)2.8 GHz,random access memory(RAM)16 GB,solid state drive(SSD)500 GB).

    It is clear that the ELMT model takes less time to compute than the MLT model.As mentioned previously,the reason for the better computational efficiency of the ELMT model is that the majority of its parameters are randomly assigned without the need for training and the remaining parameters are obtained through a one-shot least-square fitting without the need for iterative tuning.On the contrary,the parameters of the MLT model are identified by using the more complicated iterative GA.

    4.2.Prediction accuracy

    The experiment data in group 2 was used to evaluate the prediction accuracy of the ELMT model for the thermal behavior of a different set of batteries under the same ESC conditions.The same group of the data was also employed to the MLT model as the benchmark for comparison.

    Fig.8.Model fitting results with different SOCs under ambient temperatures of-10 and 10°C.(a)80%SOC at 10°C;(b)40%SOC at 10°C;(c)20%SOC at 10°C;(d)80%SOC at-10°C;(e)40% SOC at-10°C;(f)20% SOC at-10°C.

    Table 3 Model fitting RMSE under different conditions.

    Table 4 Average RMSE results under different ambient temperatures.

    Fig.9 shows the temperature prediction results of the two models under 20 and 40°C at three different SOCs;Fig.10 shows the results under-10 and 10°C at the same SOCs.In each subplot of Figs.9 and 10,inset(i)denotes the temperature prediction errors from the ELMT model;inset(ii)denotes the temperature prediction errors from the MLT model.

    Table 6 shows the comparison of the RMSE results between the predicted values by the two models and measured data under different SOCs and ambient temperatures.Table 7 shows the comparison of the average RMSE results under each ambienttemperature as well as all conditions.As shown in Table 7,the average RMSE of all conditions from the ELMT model is only 3.97°C,whereas that from the MLT model is 6.11°C.Thus,the ELMT model has better temperature prediction accuracy than the MLT model under all initial SOCs and ambient temperatures.

    Table 5 Comparison of computing time under different conditions.

    Fig.9.Temperature prediction results with different SOCs under ambient temperatures of 20 and 40°C.(a)80% SOC at 40°C;(b)40% SOC at 40°C;(c)20% SOC at 40°C;(d)80% SOC at 20°C;(e)40% SOC at 20°C;(f)20% SOC at 20°C.

    5.Conclusions

    In this paper,we develop an ELMT model to capture the thermal behavior of lithium-ion batteries under different ESC conditions.In the proposed model,we replaced the conventional activation function with a physics-based LT model.Then,we systematically performed the ESC experiments of battery cells under different initial SOCs(20%,40%,and 80%)and ambient temperatures(-10,10,20,and 40°C).The experimental database is established to construct and evaluate the proposed model.To demonstrate the effectiveness of this model,we compared the ELMT model with an MLT model parameterized by GA.The two models are first evaluated by comparing their fitting training data(experimental data in group 1).The average RMSE of the ELMT model is 0.65°C under all ESC conditions,whereas that of the MLT model is 3.95°C.Besides,the computational complexity of the two models is also compared and it has been proved that the ELMT model has lower computing cost than the MLT model.Then,the two models are further evaluated for the prediction ability using the new data from different battery cells(experimental data in group 2).The average RMSE of the ELMT model is 3.97°C under all ESC conditions,whereas that of the MLT model is 6.11°C.All these results show that the ELMT model has better fitting and prediction accuracy as well as a lower computational burden than the MLT thermal model.

    Fig.10.Temperature prediction results with different SOCs under ambient temperatures of-10 and 10°C.(a)80% SOC at 10°C;(b)40% SOC at 10°C;(c)20% SOC at 10°C;(d)80% SOC at-10°C;(e)40% SOC at-10°C;(f)20% SOC at-10°C.

    Table 6 RMSE of predicted results of two models under different conditions.

    Our future work includes:①studying on damage characteristics under different ESC stages;②improving the generalization ability of the ELMT model to predict battery internal temperature.

    Acknowledgements

    Rui Xiong acknowledges support by the National Key Research and Development Program of China(2018YFB0104100).Ruixin Yang acknowledges support by the China Scholarship Council.The systematic experiments of batteries were performed at the Advanced Energy Storage and Application(AESA)Group,Beijing Institute of Technology.

    Compliance with ethics guidelines

    Ruixin Yang,Rui Xiong,Weixiang Shen,and Xinfan Lin declare that they have no conflict of interest or financial conflicts to disclose.

    欧美人与善性xxx| 国产成人av激情在线播放| 午夜福利影视在线免费观看| 亚洲精品国产av蜜桃| 国产91精品成人一区二区三区 | 亚洲国产毛片av蜜桃av| 国产一区二区激情短视频 | xxxhd国产人妻xxx| 亚洲欧美一区二区三区国产| 精品人妻在线不人妻| 欧美日韩亚洲综合一区二区三区_| 国产成人av教育| 高潮久久久久久久久久久不卡| 一级黄片播放器| 美女午夜性视频免费| 中文字幕人妻丝袜制服| 久久久久国产一级毛片高清牌| 99九九在线精品视频| 91字幕亚洲| 亚洲成av片中文字幕在线观看| 久久精品成人免费网站| 中文字幕最新亚洲高清| 亚洲av综合色区一区| 蜜桃在线观看..| 电影成人av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲自偷自拍图片 自拍| av在线app专区| 波野结衣二区三区在线| 亚洲伊人久久精品综合| 亚洲自偷自拍图片 自拍| 涩涩av久久男人的天堂| 在线看a的网站| 最新在线观看一区二区三区 | 在线天堂中文资源库| 欧美精品一区二区免费开放| 50天的宝宝边吃奶边哭怎么回事| 纯流量卡能插随身wifi吗| 国产一区二区三区综合在线观看| 视频区图区小说| 亚洲,一卡二卡三卡| 国产精品久久久久久精品古装| 欧美激情 高清一区二区三区| 免费高清在线观看视频在线观看| 看免费av毛片| av天堂在线播放| 色94色欧美一区二区| 欧美日韩福利视频一区二区| 精品久久久精品久久久| 精品视频人人做人人爽| 最新的欧美精品一区二区| 激情五月婷婷亚洲| 国产成人欧美| 亚洲国产日韩一区二区| 操美女的视频在线观看| a级毛片黄视频| 日韩 欧美 亚洲 中文字幕| 国产福利在线免费观看视频| 国产人伦9x9x在线观看| 久久久久久久国产电影| 久久精品人人爽人人爽视色| 婷婷丁香在线五月| 黄网站色视频无遮挡免费观看| kizo精华| 国产精品秋霞免费鲁丝片| 亚洲成人手机| 国产又爽黄色视频| 欧美日韩成人在线一区二区| 丁香六月欧美| 欧美+亚洲+日韩+国产| 女性生殖器流出的白浆| av片东京热男人的天堂| 9热在线视频观看99| 两个人免费观看高清视频| 日韩av不卡免费在线播放| √禁漫天堂资源中文www| 亚洲精品一卡2卡三卡4卡5卡 | 日韩熟女老妇一区二区性免费视频| 精品国产乱码久久久久久小说| 国产免费视频播放在线视频| 国产在线观看jvid| 日韩大码丰满熟妇| 啦啦啦在线免费观看视频4| 久久久久久久国产电影| 最近中文字幕2019免费版| 日韩大片免费观看网站| 亚洲专区国产一区二区| 久久久久精品人妻al黑| 首页视频小说图片口味搜索 | 国产色视频综合| 人人妻人人添人人爽欧美一区卜| 97在线人人人人妻| 色精品久久人妻99蜜桃| av在线播放精品| 亚洲精品国产av蜜桃| 国产精品一区二区在线观看99| 国产成人91sexporn| 一区二区三区乱码不卡18| 亚洲欧美色中文字幕在线| 大型av网站在线播放| 午夜久久久在线观看| 又紧又爽又黄一区二区| 少妇 在线观看| 欧美老熟妇乱子伦牲交| 视频区图区小说| 日韩免费高清中文字幕av| 亚洲欧美色中文字幕在线| 男的添女的下面高潮视频| 国产人伦9x9x在线观看| 美女视频免费永久观看网站| 亚洲av日韩精品久久久久久密 | 国产麻豆69| 男人添女人高潮全过程视频| 少妇精品久久久久久久| 国产精品麻豆人妻色哟哟久久| 搡老岳熟女国产| 免费观看人在逋| av网站在线播放免费| 侵犯人妻中文字幕一二三四区| 高清视频免费观看一区二区| 日本一区二区免费在线视频| 亚洲午夜精品一区,二区,三区| 亚洲视频免费观看视频| 日本一区二区免费在线视频| 欧美性长视频在线观看| av天堂在线播放| 中文字幕另类日韩欧美亚洲嫩草| 成人黄色视频免费在线看| 男女国产视频网站| 国产一级毛片在线| 亚洲av日韩在线播放| 男女国产视频网站| videos熟女内射| 亚洲av欧美aⅴ国产| 久久国产精品人妻蜜桃| 亚洲成人免费av在线播放| 国产女主播在线喷水免费视频网站| 亚洲欧洲精品一区二区精品久久久| 欧美 日韩 精品 国产| 成人亚洲欧美一区二区av| 国产男人的电影天堂91| 久久久久久久大尺度免费视频| 久久国产精品大桥未久av| 大片电影免费在线观看免费| 久久久久久久国产电影| 亚洲av欧美aⅴ国产| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 国产成人精品无人区| 搡老乐熟女国产| 18禁观看日本| 日韩av在线免费看完整版不卡| 久久久久久久久免费视频了| 国产日韩欧美在线精品| 69精品国产乱码久久久| 成年人午夜在线观看视频| 亚洲成人国产一区在线观看 | 蜜桃国产av成人99| 国产熟女欧美一区二区| 久久久久久久久免费视频了| 欧美在线黄色| 视频区图区小说| 老司机影院成人| 欧美激情 高清一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲国产精品成人久久小说| 成人亚洲精品一区在线观看| 男女高潮啪啪啪动态图| 精品亚洲成国产av| 亚洲色图 男人天堂 中文字幕| 一本久久精品| 九草在线视频观看| 国产人伦9x9x在线观看| 天天影视国产精品| 欧美日韩成人在线一区二区| 在线 av 中文字幕| 看十八女毛片水多多多| 欧美大码av| 国产深夜福利视频在线观看| 只有这里有精品99| 99国产精品一区二区三区| 深夜精品福利| 日韩大片免费观看网站| 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| 美国免费a级毛片| 久久久欧美国产精品| 又大又黄又爽视频免费| 亚洲精品第二区| 老司机影院毛片| 免费av中文字幕在线| 午夜精品国产一区二区电影| 国产福利在线免费观看视频| 99久久99久久久精品蜜桃| 精品人妻在线不人妻| 操出白浆在线播放| 激情视频va一区二区三区| 国产男女超爽视频在线观看| 人人妻人人添人人爽欧美一区卜| 在线观看免费视频网站a站| 精品熟女少妇八av免费久了| 久久人人爽人人片av| 亚洲人成77777在线视频| 久久久精品94久久精品| 欧美av亚洲av综合av国产av| 最黄视频免费看| 下体分泌物呈黄色| 国产亚洲欧美在线一区二区| 亚洲av电影在线观看一区二区三区| av天堂在线播放| 亚洲人成电影观看| 高清欧美精品videossex| 亚洲男人天堂网一区| 精品久久蜜臀av无| 嫩草影视91久久| 日韩一本色道免费dvd| 色播在线永久视频| 欧美人与善性xxx| av又黄又爽大尺度在线免费看| 国产成人欧美| 丝袜人妻中文字幕| 中文乱码字字幕精品一区二区三区| www.999成人在线观看| 亚洲成国产人片在线观看| 在线观看www视频免费| 免费女性裸体啪啪无遮挡网站| 我的亚洲天堂| 国产淫语在线视频| 亚洲免费av在线视频| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人| 黄色毛片三级朝国网站| 亚洲第一青青草原| www.精华液| 丝瓜视频免费看黄片| 婷婷色麻豆天堂久久| 欧美日韩国产mv在线观看视频| 国产91精品成人一区二区三区 | 精品久久久久久电影网| 每晚都被弄得嗷嗷叫到高潮| 日韩大码丰满熟妇| 九色亚洲精品在线播放| 99精国产麻豆久久婷婷| 一区二区三区四区激情视频| 久久狼人影院| 成人国语在线视频| 亚洲av在线观看美女高潮| 大香蕉久久成人网| 一二三四在线观看免费中文在| 夫妻性生交免费视频一级片| 高清不卡的av网站| 亚洲成av片中文字幕在线观看| 亚洲精品国产一区二区精华液| 人人妻,人人澡人人爽秒播 | 妹子高潮喷水视频| 18在线观看网站| 亚洲国产av影院在线观看| 日韩一区二区三区影片| 欧美精品人与动牲交sv欧美| 亚洲欧美清纯卡通| 亚洲av电影在线进入| 精品第一国产精品| 久久久欧美国产精品| 可以免费在线观看a视频的电影网站| 国产一级毛片在线| 最近最新中文字幕大全免费视频 | 大话2 男鬼变身卡| 精品卡一卡二卡四卡免费| 亚洲第一青青草原| 中文字幕最新亚洲高清| 赤兔流量卡办理| 国产成人欧美在线观看 | 国产亚洲欧美精品永久| 免费黄频网站在线观看国产| 极品人妻少妇av视频| 亚洲精品在线美女| 欧美日韩成人在线一区二区| 亚洲精品成人av观看孕妇| 亚洲av电影在线进入| 精品少妇久久久久久888优播| 两个人免费观看高清视频| 日韩大片免费观看网站| 男女午夜视频在线观看| 日本vs欧美在线观看视频| 亚洲精品国产区一区二| 1024视频免费在线观看| 五月天丁香电影| 久久女婷五月综合色啪小说| 日日摸夜夜添夜夜爱| 亚洲成人国产一区在线观看 | 九草在线视频观看| 一区二区三区四区激情视频| 在线精品无人区一区二区三| 亚洲情色 制服丝袜| 人妻 亚洲 视频| 亚洲国产欧美在线一区| 国产在线观看jvid| 少妇的丰满在线观看| 成年av动漫网址| 国产精品偷伦视频观看了| 精品福利观看| 母亲3免费完整高清在线观看| av电影中文网址| 大香蕉久久网| 国产av国产精品国产| 1024香蕉在线观看| 国产视频首页在线观看| kizo精华| 两个人看的免费小视频| a级片在线免费高清观看视频| 免费久久久久久久精品成人欧美视频| 欧美在线黄色| 一边亲一边摸免费视频| 久久亚洲精品不卡| √禁漫天堂资源中文www| 免费少妇av软件| 少妇人妻久久综合中文| 91字幕亚洲| 别揉我奶头~嗯~啊~动态视频 | 老汉色av国产亚洲站长工具| 国产99久久九九免费精品| 亚洲男人天堂网一区| 国产高清国产精品国产三级| 黄片小视频在线播放| 黑人猛操日本美女一级片| 日本欧美视频一区| 色综合欧美亚洲国产小说| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 纯流量卡能插随身wifi吗| 欧美日韩视频精品一区| 国产一级毛片在线| 日韩伦理黄色片| 悠悠久久av| 欧美成狂野欧美在线观看| 日韩一区二区三区影片| 中文欧美无线码| 秋霞在线观看毛片| 青草久久国产| 每晚都被弄得嗷嗷叫到高潮| 女警被强在线播放| 黑人巨大精品欧美一区二区蜜桃| 精品久久久久久电影网| 精品亚洲成国产av| xxx大片免费视频| av在线老鸭窝| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区激情| 精品久久蜜臀av无| av欧美777| 国产激情久久老熟女| avwww免费| 免费久久久久久久精品成人欧美视频| 午夜福利一区二区在线看| 夫妻午夜视频| 欧美老熟妇乱子伦牲交| 人人妻人人添人人爽欧美一区卜| www.av在线官网国产| 日本av手机在线免费观看| 国产精品二区激情视频| 高清不卡的av网站| 黑丝袜美女国产一区| 亚洲国产最新在线播放| 黄频高清免费视频| 欧美日韩精品网址| a级毛片在线看网站| 下体分泌物呈黄色| 母亲3免费完整高清在线观看| a 毛片基地| 亚洲国产欧美一区二区综合| 亚洲精品第二区| 18在线观看网站| 亚洲熟女毛片儿| av网站免费在线观看视频| a级毛片黄视频| 久久久久久久久久久久大奶| 亚洲精品第二区| 亚洲人成电影观看| 晚上一个人看的免费电影| 别揉我奶头~嗯~啊~动态视频 | 免费高清在线观看日韩| 国产精品久久久久成人av| 免费观看av网站的网址| 一边摸一边抽搐一进一出视频| 国产成人精品久久二区二区91| 老司机亚洲免费影院| 男女免费视频国产| 国产精品一区二区精品视频观看| 18在线观看网站| 性色av一级| 欧美日韩视频精品一区| 亚洲图色成人| 日韩中文字幕视频在线看片| 国产av一区二区精品久久| 国产高清videossex| 亚洲视频免费观看视频| 精品少妇久久久久久888优播| www.av在线官网国产| 男男h啪啪无遮挡| 精品久久久久久久毛片微露脸 | 亚洲三区欧美一区| 成人黄色视频免费在线看| 久久久久久久国产电影| 日韩大片免费观看网站| 午夜免费观看性视频| 国产片内射在线| 熟女av电影| 黄色怎么调成土黄色| 国产在线免费精品| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡| 色精品久久人妻99蜜桃| 婷婷成人精品国产| 色婷婷av一区二区三区视频| 免费少妇av软件| 欧美另类一区| 一二三四社区在线视频社区8| 亚洲,一卡二卡三卡| 夫妻性生交免费视频一级片| 国产片特级美女逼逼视频| 欧美精品人与动牲交sv欧美| 久久久久久免费高清国产稀缺| 婷婷色综合大香蕉| 新久久久久国产一级毛片| 中文字幕色久视频| 午夜福利一区二区在线看| 国产精品一区二区免费欧美 | 久久久精品国产亚洲av高清涩受| 在线观看一区二区三区激情| 亚洲欧洲精品一区二区精品久久久| 在线精品无人区一区二区三| 亚洲欧美一区二区三区久久| 精品福利永久在线观看| 亚洲成人免费电影在线观看 | 国产一区有黄有色的免费视频| 国产男人的电影天堂91| 欧美老熟妇乱子伦牲交| 热re99久久国产66热| 国产熟女欧美一区二区| 久热爱精品视频在线9| 国产精品一国产av| 国产在线一区二区三区精| 亚洲国产欧美在线一区| 尾随美女入室| 大片免费播放器 马上看| 香蕉丝袜av| 亚洲国产精品成人久久小说| 香蕉国产在线看| 日本欧美国产在线视频| 国产成人影院久久av| 欧美亚洲日本最大视频资源| 七月丁香在线播放| 男人添女人高潮全过程视频| 黄片播放在线免费| 精品国产一区二区三区久久久樱花| 国产老妇伦熟女老妇高清| 超色免费av| 中文字幕亚洲精品专区| 久久久久视频综合| a级片在线免费高清观看视频| 亚洲情色 制服丝袜| 色94色欧美一区二区| 在现免费观看毛片| 两性夫妻黄色片| www.自偷自拍.com| xxx大片免费视频| 亚洲伊人色综图| 爱豆传媒免费全集在线观看| 另类亚洲欧美激情| 在线观看免费高清a一片| 国产成人精品在线电影| 精品福利观看| 亚洲人成电影免费在线| 美女午夜性视频免费| 国产精品一区二区免费欧美 | 一级毛片 在线播放| 亚洲第一av免费看| 亚洲国产精品一区三区| 国产男女超爽视频在线观看| 日韩 亚洲 欧美在线| 日本av免费视频播放| 欧美成人精品欧美一级黄| 亚洲美女黄色视频免费看| 国产亚洲一区二区精品| 亚洲国产av影院在线观看| 少妇精品久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美在线精品| 久久人人爽av亚洲精品天堂| 色网站视频免费| 精品福利观看| 99热国产这里只有精品6| 国产又爽黄色视频| 黄色怎么调成土黄色| 国产亚洲精品久久久久5区| 国产日韩欧美视频二区| 精品一区二区三区四区五区乱码 | 可以免费在线观看a视频的电影网站| 久久天堂一区二区三区四区| 精品国产国语对白av| 日韩av不卡免费在线播放| 在线亚洲精品国产二区图片欧美| 成人三级做爰电影| 久久精品国产亚洲av涩爱| 精品久久久精品久久久| 嫁个100分男人电影在线观看 | 国产精品三级大全| 亚洲中文av在线| 国产片特级美女逼逼视频| 一区在线观看完整版| 国产在线观看jvid| 精品少妇久久久久久888优播| 免费女性裸体啪啪无遮挡网站| 韩国高清视频一区二区三区| 日韩大片免费观看网站| 男女床上黄色一级片免费看| 国产在视频线精品| 两性夫妻黄色片| 波多野结衣av一区二区av| 中国国产av一级| 人体艺术视频欧美日本| 黄网站色视频无遮挡免费观看| av片东京热男人的天堂| 亚洲国产精品999| 精品卡一卡二卡四卡免费| 亚洲一区二区三区欧美精品| 日本五十路高清| 精品一区在线观看国产| 最近中文字幕2019免费版| 亚洲欧美激情在线| 桃花免费在线播放| 男女床上黄色一级片免费看| 日本欧美国产在线视频| 婷婷色综合大香蕉| 精品一品国产午夜福利视频| 高清不卡的av网站| 日韩一本色道免费dvd| 亚洲av成人不卡在线观看播放网 | 麻豆乱淫一区二区| 色婷婷av一区二区三区视频| 免费在线观看完整版高清| 又黄又粗又硬又大视频| 午夜av观看不卡| 精品一区二区三卡| 黄色毛片三级朝国网站| 亚洲精品自拍成人| 亚洲伊人色综图| 国产日韩一区二区三区精品不卡| 狠狠婷婷综合久久久久久88av| 久久久精品区二区三区| xxx大片免费视频| 岛国毛片在线播放| 亚洲专区国产一区二区| av片东京热男人的天堂| 男女床上黄色一级片免费看| 久久久久网色| 午夜老司机福利片| 欧美激情 高清一区二区三区| 欧美人与性动交α欧美软件| 国产精品一国产av| 成年动漫av网址| 99国产精品99久久久久| 亚洲精品久久久久久婷婷小说| 免费黄频网站在线观看国产| 久久99热这里只频精品6学生| 精品福利永久在线观看| 亚洲国产精品国产精品| 制服人妻中文乱码| 中文字幕人妻丝袜制服| 中文字幕制服av| av一本久久久久| 香蕉丝袜av| 每晚都被弄得嗷嗷叫到高潮| 欧美国产精品一级二级三级| 叶爱在线成人免费视频播放| 啦啦啦啦在线视频资源| av网站在线播放免费| 久久精品人人爽人人爽视色| 国产精品一二三区在线看| 91麻豆av在线| 成人亚洲精品一区在线观看| 韩国高清视频一区二区三区| 又粗又硬又长又爽又黄的视频| 女人久久www免费人成看片| 亚洲欧美日韩另类电影网站| 久久久久久亚洲精品国产蜜桃av| 亚洲精品美女久久av网站| 手机成人av网站| 极品人妻少妇av视频| 亚洲成av片中文字幕在线观看| 亚洲一区中文字幕在线| 少妇人妻 视频| 欧美激情 高清一区二区三区| 女性被躁到高潮视频| 视频区图区小说| 免费在线观看完整版高清| a级毛片黄视频| 少妇人妻久久综合中文| 久久久久精品人妻al黑| 久热爱精品视频在线9| 中文字幕色久视频| 久久精品人人爽人人爽视色| 亚洲精品在线美女| 国产精品欧美亚洲77777| 欧美日韩亚洲综合一区二区三区_| 欧美成人精品欧美一级黄| 亚洲欧洲精品一区二区精品久久久| 精品免费久久久久久久清纯 | 黑人猛操日本美女一级片| 你懂的网址亚洲精品在线观看| 午夜精品国产一区二区电影| 成人18禁高潮啪啪吃奶动态图| 国产成人精品久久久久久| 黑人巨大精品欧美一区二区蜜桃|