• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and numerical study on the flame root of premixed flame after a small size V-gutter

    2021-07-05 10:03:18GONGFanHUANGYongWANGZongweiCHANGZhipengLIUZhu
    火箭推進(jìn) 2021年3期

    GONG Fan,HUANG Yong,WANG Zongwei,CHANG Zhipeng,LIU Zhu

    (1.Science and Technology on Physics Laboratory,Beijing 100076,China 2.School of Energy and Power Engineering,Beihang University,Beijing 100191,China)

    Abstract:Flame stabilization in combustor is very important for the performance of combustors such as ramjet,turbojet or turbofan afterburners,and the flame stabilization mechanism is an important reference for the stability design of combustor.From the perspective of flame propagation and flame stabilization mechanism,the flame root is the key influencing factor.However,the traditional study focuses on larger size gutter,and there are few studies on small size gutter.The objective of this study is to investigate the flame root characteristics after a small V-gutter,and the research object is a two-dimensional lean methane premixed flame.In the experiment,the V-gutter size is 5 mm,and the Re number range is 126~315.The inlet velocity and equivalence ratio are adjusted respectively to obtain the variation of flame root characteristics with related parameters.When the inlet velocity is increased,the flame root moves downstream.When the equivalence ratio of inlet mixture is decreased,the flame root moves downstream.In the numerical simulation,the V-gutter size is 1mm and 2 mm,and the Re number range is 45~250.For the flame root after 1mm V-gutter,there is one flame root,and as the inlet velocity is raised,the flame root moves downstream.For the flame root after 2 mm V-gutter,there are two flame roots,and as the inlet velocity is raised,the flame roots move downstream and finally merge into one flame root until the flame blows out.For the small size V-gutter flame,when the flame is about to blow out,the flame root moves downstream.During this movement,the flame root can effectively sustain the flame propagation until the flame blowout finally occurs.The flame phenomenon found in this study can be used to support the establishment of a semi-empirical formula in the future.

    Keywords: flame stabilization; V-gutter; flame root; small size; blowout

    0 Introduction

    Ground-based or aero-gas turbine engines,jet engine augmenters,ramjet or scramjet engine applications routinely incorporate bluff-body flame holders for primary or secondary combustion in high speed flows.In a propulsion system,flames are stabilized by using a flame holder with a recirculation zone[1].However,the flame is unstable when the engine closes to the lean blowout limit.In order to get the flame stabilized characteristics in the entire engine cycle,the lean blowout limit should be known accurately[2-3].

    The bluff body is placed in a high-speed flow and produces a recirculation zone in the wake of bluff-body,allowing the combustion products to reside in this region for continuously igniting the oncoming flow[4].Research has been conducted for nearly six decades with the objective of understanding the underlying phenomena of bluff-body stabilized flames and there is an extensive body of literatures covering this subject[5].

    The practical importance of the bluff-body stabilization process has given rise to a large number of theoretical and experimental studies.These studies aim to understand the physics of static stability in order to design the combustor to operate away from the unstable boundary.

    Most of our present understanding of the flame stabilization process is due to the pioneering studies carried out by Longwell[6-7](Well Stirred Reactor model),Zukoski[8](Recirculation zone ignition model) and Lefebvre[9].Their work leads to the development of equations for predicting stability limit in terms of the bluff-body dimension,blockage ratio,pressure,temperature,velocity,and equivalence ratio of the incoming mixture.

    These studies are based on two classical theories.One theory presumes that blowout occurs when the heat release of the reversed hot products in the recirculation zone is insufficient to heat the fresh mixture from the free stream,and the other one presumes that blowout occurs when the ignition time of unburned fresh mixture in the shear layer is less than the time required for the chemical reaction.Up to the present,the lean blowout models are proposed based on the theories above[10].These models consider the wake of the bluff-body flame as a whole,and the reactive flow field is not analyzed in detail.

    The flame holder generates a flow field composed of boundary layers,separated shear layers,and a wake[11-12].From experimental chemical luminescence images[13],the flames exist in the shear layers and do not directly attach to the bluff-body.The interaction of flame and wall forces the flame to be anchored at a finite distance away from the flame holder,which is defined as the flame standoff distance.The flame propagates in the form of waves and is anchored near the flame holder,and the anchored location should be the position where the flame speed is equal to the flow velocity.The front points upstream of the flame sheets are the flame roots.

    Kiel studied the bluff-body flames near the blowout and they asserted that the large von Karman vortex was the dominant drive in causing the flame extinction[14].But Khosla compared the blowout condition on bluff-body with and without von Karman vortex shedding[15].The results show that von Karman vortex shedding has no effect on the blowout condition,because the flame extinction occurs at the same equivalence ratio.

    The flame root movements in both laminar and turbulent premixed flames have been a topic of investigation because of its relevance to the stabilization mechanism.Huang studied the anchoring point (i.e.flame root) experimentally and theoretically on Bunsen flame,and the experimental and theoretical results were in good agreement[16].Kedia and Ghoniem[17-18]studied the flame root movement on the small size perforated plate premixed flame,and their results showed that the flame was located totally after the recirculation zone,and the flame root moved downstream as the inlet velocity increased.The flame roots after small size V-gutter shows different characteristics from the flame after the large size V-gutter[19].

    In this paper,the experimental and numerical study are conducted to investigate the operating parameters (the equivalence ratio and the inlet velocity) on the steady,lean premixed flame structure as well as the characteristics of the flow fields.The premixed flame after a small size V-gutter is performed.The movement of flame root is studied,and the flame structure and the flow field are analyzed.The characteristics of the small V-gutter flames are determined.

    1 Experiment

    1.1 Experimental facility

    The V-gutter used in the experiment is made of stainless steel,as shown in Fig.1.The V-gutter width is 5 mm and its spread angle is 24 degree.The spanning width is 30 mm,which is same as the width of the test section.

    Fig.1 Schematic of the V-gutter flame holder.

    A schematic diagram of the test facility used in the experimental investigation is shown in Fig.2.The basic system consists of an air supply at atmospheric pressure.Methane and air flows into a 350 mm long mixing duct separately to mix up,in which there are four perforated plates.Downstream of the mixing duct,there is the combustion chamber,which has a rectangular cross section of 30 mm×30 mm and a length of 320 mm.The V-gutter is placed in the test section,and is put on the centerline.Three side walls of the test section are quartz windows,which is accessible for the optical observation.

    Fig.2 Experiment facility

    1.2 Test conditions

    The operating conditions are shown in table 1,a range of conditions are chosen to perform the required tests.The inlet velocity varies from 0.4 m/s to 1.0 m/s,and the equivalence ratio varies from 0.54 to 0.78.The Reynolds number range is between 126~315.

    Tab.1 Operating conditions in experiment

    The V-gutter flame is captured by a digital camera (SONY α33).Camera settings are shown in table 2.

    Tab.2 Camera parameters

    2 Experimental results

    The experimental flame after the V-gutter is shown in Fig.3.The direction of inlet flow is from right to left.The coordinate axis is put on the trailing edge and center line of the V-gutter.The V-gutter flame in Fig.3 is light blue.To emphasize the flame,the images are taken at the black background in the experiments,and the images are shown in Fig.4.

    Fig.3 V-gutter flame in the duct

    Fig.4 Determination of flame root

    The method for determining the flame root is shown in Fig.4.At first,the photo of the flame is opened in PHOTOSHOP and zooms in.A border line can be achieved after running “color difference” order in the flame photo,as the white line in Fig.4 (b).The flame root is determined to be the point that is closest to the solid rim.

    2.1 Inlet velocity

    Fig.5 shows the flames at three different inlet velocities,and the equivalence ratio is 0.66.In Fig.5 (a),the inlet velocity is 0.5 m/s; In Fig.5(b),the inlet velocity is 0.6 m/s; In Fig.5(c),the inlet velocity is 0.7 m/s.The time-averaged flame surface is smooth.

    Fig.5 V-gutter flames for φ=0.66

    As the inlet velocity increases,the brightness of the flame sheet decreases.With the increase of inlet velocity,the angle between the flame and the flow direction decreases.That is because when the equivalence ratio is constant,the flame speed is constant,and the flame angle decreases as the flow velocity increases.In the Fig.5,when the inlet velocity is low,the distance between the two flame roots is close.

    Fig.6 shows the movement of the flame roots with the variation of the inlet velocity when the equivalence ratio is kept constant.The round represents the data for equivalence ratio 0.58; the rectangle represents the data for equivalence ratio 0.62; the triangle represents the data for equivalence ratio 0.66.

    Fig.6 Movement of the flame root with different flow velocities

    When the equivalence ratio is constant,the flame root location onx-axisxb/Dincreases with the increase of inlet velocity.When the equivalence ratio is 0.58,the flame root location ony-axis is kept at 0.That indicates there is one flame root on the centerline.When the equivalence ratio is 0.62 and 0.66,the flame root location ony-axisyb/Dis increased.So as the velocity increases,one flame root is divided into two flames.

    When the equivalence ratio is low,such as 0.58,there is one flame root on they-axis,as theyb/D=0.As the equivalence ratio is raised,the flame will move radially away from the centerline.As the inlet velocity is increased,the flame root is moving downstream.If the inlet velocity is continuously increased,the flame will blowout.

    2.2 Equivalence ratio

    Fig.7 shows the flames for three different equivalence ratios.As the equivalence ratio is increased,the brightness of the flame sheet increases,and the flame thickness increases.As the equivalence ratio is increased,the flame angle to the flow direction increases.When the equivalence ratio is raised,the flame speed raises,so that the flame angle increases.The flame thickness increases because the flame temperature increases with the increasing of equivalence ratio.

    Fig.7 V-gutter flames for Uin=0.6 m/s

    Fig.8 shows the movement of flame root with the variation of equivalence ratio when the inlet velocity is kept constant.The small square represents the data for inlet velocity 0.5 m/s; the round represents the data for inlet velocity 0.56 m/s; the rhombus represents the data for inlet velocity 0.6 m/s; the triangle represents the data for inlet velocity 0.66 m/s; the large rectangle represents the data for inlet velocity 0.7 m/s.

    Fig.8 Movement of flame root with different equivalence ratios

    When the inlet velocity is constant and the equivalence ratio increases,the flame root location onx-axisxb/Ddecreases and the flame root location ony-axis increases from 0.For the inlet velocity between 0.5 m/s to 0.7 m/s,when the equivalence ratio is below 0.65,there is one flame root due toyb/D=0.As the equivalence ratio decreases,the flame moves downstream.If the equivalence ratio continuously decreases,the flame will blowout.

    3 Simulation

    The flow fields after small size V-gutter for different inlet velocities are simulated by steady RANS solver.Commercial software FLUENT 14 is used for solving the mass,momentum,species,and energy conservation equations.The pressure based implicit steady second order upwind scheme,and the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm are employed.The Laminar viscous model and Laminar Finite-Rate combustion model are adopted for laminar flow condition.To validate the adopted computation models,a perforated plate methane-air flame is simulated,and the results are compared with Kedia′s.As the perforated plate is to some extend like a bluff-body,so the laminar flowfield can be used for validation.

    The governing equations for the mixture are shown below:

    Continuity

    (1)

    Momentum

    (2)

    Energy:

    (3)

    Species:

    (4)

    WhereYkdenotes the mass fraction of species k;Rkis the generation or consumption rate of species k,hkis the enthalpy,andJkis the diffusion flux of species k;keffis the effective thermal conductivity of fluid;Shis the chemical heat release.

    3.1 Validation

    The computational domain for the perforated plate is the same as that in Ref.[17],and is shown in Fig.9.The black part in the computational domain is the plate body.The computational domain starts 13.2 mm upstream and ends 15 mm downstream of the upper-plate-wall.The thickness of the plate,d=1 mm and the diameter of the inlet hole,D=1 mm, see Fig.9(a).The flow conditions are:Tin=300 K,p=1.01 Pa,upstream velocity=0.8 m/s and the inlet premixed methane/air is atφ=0.75.Fig.9(b) shows the grid structure used in the present simulation.

    Fig.9 Computation domain for validation

    The simulated local temperature contours are compared with Kedia’s and shown in Fig.10,and the circles represent the flame roots.Fig.10(a) is the results of present simulation and shows the flame root located atz/D=0.6,which agrees well with Kedia’s prediction as shown in Fig.10(b) (the flame root is located at aroundz/D=0.62).In Ref.[17],a detailed chemical kinetics mechanism with 20 species and 79 reactions for a methane-air mixture is used,while a one-step chemical kinetics mechanism is used in this simulation.From the results in Fig.10,it is concluded that the flame root location can be captured by one-step chemical kinetics mechanism.

    Fig.10 Comparison of temperature contours

    3.2 Computational conditions

    The different bluff-bodies studied in this paper are closed V-gutters placed in rectangular (2D) passages.The typical configuration is shown as Fig.11.

    Fig.11(a) shows the closed V-gutter.The width and length of the V-gutter isDand 2D,respectively.Two V-gutters with different widths are studied including 1mm and 2 mm.The blockage ratios of the V-gutter are kept the same as 0.1.Fig.11(b) shows a closed V-gutter placed in a 2Dpassage.The computational domain starts 5Dupstream and ends 40Ddownstream of the trailing edge of the V-gutter.The upper and lower walls are 5Dfrom the center line.

    Fig.12 shows the computational meshes forD=1 mm.Dense triangle grids are used around and inside V-gutters and square grids are used for the remained region.The grids around the V-gutter are small enough in order to obtain the detailed flow structure and the accurate flame root location.The grid points for 1 mm V-gutter is 13 122,and the grid points for 2 mm V-gutter is 18 854.

    Fig.12 Grid structure used in simulations for D=1 mm.

    The simulation is performed with the premixed mixture of methane and air.The inlet and outlet pressures are at atmosphere conditions,and the inlet temperature is 300 K.The equivalence ratio is kept at 0.8.The coupling effect of heat transferring to the V-gutter has been considered in computations.The thermal conductivity of the V-gutter is 1.5 W/ (m·K).The operation conditions of the simulation cases are shown in Tab.3.

    Tab.3 Operation conditions of simulation cases

    4 Computational results

    The reactive flow fields are shown in the following figures,the black part is the V-gutter’s trailing body.In these figures,the grey contour represents the methane reaction rate; the solid lines represent the iso-lines of axial velocities; the dashed lines represent the temperatures iso-lines.The dash-dot-dot lines represent the iso-lines of fuel mass fraction.It is considered that the low velocity region and the high temperature are two fundamental conditions for flame roots,so here the flame root is defined as the front point of the isoline of 1 400 K temperature (i.e.flammable temperature[19]).The flame root is the front point of the flame sheet,and is represented by a circle.

    4.1 1 mm V-gutter flame

    Fig.13 shows the constant-axial velocity lines,isotherms,kerosene mass fraction iso-lines and the reaction rate contours near the flame root at different inlet velocities forD=1 mm.

    In Fig.13,there is one constant-axial velocity lines of 0 m/s and four isotherms of 600 K,1 000 K,1 400 K and 1 800 K.There are two methane mass fraction iso-lines of 0.044 and 0.000 01,which represents the maximum and minimum methane mass fraction,respectively,and encircle the main reaction zone.WhenD=1 mm,there is one flame root and the flame root is located on the centerline behind the V-gutter’s trailing.Fig.13 (a) shows the reactive flowfield forUin=0.78 m/s and there is no recirculation zone because the inlet velocity is too small.Fig.13 (b) shows the reactive flowfield forUin=0.84 m/s and the recirculation zone is just onset.Fig.13(c) clearly presents long recirculation zones forUin=0.96 m/s.

    Fig.13 Reactive flow field for 1 mm V-gutter

    Fig.14 shows the movement of the flame root after 1 mm V-gutter with the variation of the inlet velocity,and the equivalence ratio is 0.8.When the inlet velocity increases from 0.72~0.96 m/s,the flame root moves downstream in x-direction from 0.3~1.3D,and the location of the flame root in y-direction is kept at 0.The length of recirculation zone is increased from 0~1.1D.

    Fig.14 Movement of flame roots after 1mm V-gutter

    As the inlet velocity increases,the flame moves downstream.The tendency of the flame roots’ variation with the inlet velocity in the simulation is same as that in the experiment.

    4.2 2 mm V-gutter flame

    Fig.15 shows the reactive flow fields for three different inlet velocities for the flames after 2 mm V-gutter.In Fig.15,the inlet velocity is 1.0 m/s,1.2 m/s and 1.6 m/s,respectively.

    Fig.15 Reactive flow field for 2 mm V-gutter flames

    In Fig.15,the width D=2 mm.Fig.15 (a) shows the reactive flowfield forUin=1.0 m/s,there are two flame roots and the flame roots are located after the V-gutter’s trailing.Fig.15(b) shows the reactive flowfield forUin=1.2 m/s,and the two flame roots move downstream.Fig.15(c) shows the reactive flowfield forUin=0.96 m/s,and the recirculation zone length is increased,and there is only one flame root.

    Fig.16 shows the movement of the flame root after 2 mm V-gutter with the variation of the inlet velocity,the equivalence ratio is 0.8.When the inlet velocity increases from 1~2 m/s,the flame roots move downstream in x-direction from 0.8D~3.9D,and the location of the flame roots in y-direction is decreased from 0.48D~0D.The length of recirculation zone is increased from 0.7D~2.4D.

    Fig.16 Movement of flame root after 2 mm V-gutter

    The flow time can be considered as the ratio of the length of recirculation zone to the inlet velocity,tflow=LRZ/Uin.In the numerical cases,the range of the flow time is from 0 ms to 2.6 ms.The ignition delay time is larger than 10 ms[20],so that the ignition delay time is larger than flow time.Besides,the temperature in the recirculation zone is below 1 000 K,and even below 400 K,so the recirculation zone can’t heat the incoming flow.That is the reason why the flame root can’t exist in the shear layers of the recirculation zone.Furthermore,the length of recirculation zone is nearly same as the quench distance.The flame can only exist outside the quench distance.

    5 Conclusions

    The studies on the flame after the small size V-gutter placed in a two-dimensional passage are performed experimentally and numerically.The inlet mixture is the premixed methane and air.In the experiment,the V-gutter size is 5 mm,and theRerange is 126~315.In the numerical simulations,the V-gutter sizes are 1mm and 2mm,and theRerange is 45~250.

    In experiments,the effect of the inlet velocity and equivalence ratio on the flame structures and flow fields are investigated.As the inlet velocity isincreased,the flame angle to the flow direction decreases.When the inlet velocity is increased,the flame root moves downstream.As the equivalence ratio of inlet mixture is decreased,the flame angle to the flow direction decreases.When the equivalence ratio is decreased,the flame root moves downstream.When the equivalence ratio is low,there is one flame root; when the equivalence ratio is increased,there are two flame roots.

    In numerical simulations,for the flame root after 1 mm V-gutter,there is one flame root,and as the inlet velocity is raised,the flame root moves downstream.For the flame root after 2 mm V-gutter,there are two flame roots,and as the inlet velocity is raised,the flame roots move downstream.The two flame roots become one as the flame near blowout.

    For the flame after the small size V-gutter,when the flame approaches the blowout,the flame roots move downstream.As the flame root moves downstream,the flame root can’t sustain the flame propagation,and then the flame blowout will occur.The phenomenon can be used for the semi-empirical formula establishment in the future.

    18禁在线播放成人免费| av.在线天堂| 深夜a级毛片| 欧美少妇被猛烈插入视频| 毛片一级片免费看久久久久| 国产91av在线免费观看| 99re6热这里在线精品视频| 久久久久久九九精品二区国产| 高清日韩中文字幕在线| 夜夜骑夜夜射夜夜干| 特大巨黑吊av在线直播| 99re6热这里在线精品视频| 自拍偷自拍亚洲精品老妇| 97在线视频观看| 亚洲精品日本国产第一区| 日日啪夜夜爽| 三级经典国产精品| 又大又黄又爽视频免费| 美女福利国产在线 | 1000部很黄的大片| 一边亲一边摸免费视频| 国产精品一区www在线观看| 丝袜喷水一区| 大话2 男鬼变身卡| 精品午夜福利在线看| 日韩免费高清中文字幕av| 老熟女久久久| 成人亚洲欧美一区二区av| 精品国产乱码久久久久久小说| 久久人人爽av亚洲精品天堂 | 少妇被粗大猛烈的视频| 少妇猛男粗大的猛烈进出视频| 美女视频免费永久观看网站| 大香蕉久久网| 国产成人91sexporn| 一区二区三区免费毛片| 在线观看人妻少妇| 男女免费视频国产| 麻豆国产97在线/欧美| 热99国产精品久久久久久7| 伊人久久国产一区二区| 波野结衣二区三区在线| 爱豆传媒免费全集在线观看| 国产淫片久久久久久久久| 久久国产精品男人的天堂亚洲 | 国产人妻一区二区三区在| 国产免费又黄又爽又色| av网站免费在线观看视频| 国产亚洲欧美精品永久| 男人爽女人下面视频在线观看| 欧美一级a爱片免费观看看| 国产熟女欧美一区二区| 国产一区亚洲一区在线观看| 熟女人妻精品中文字幕| 91精品一卡2卡3卡4卡| 日韩一本色道免费dvd| 国产精品免费大片| 人妻少妇偷人精品九色| 国产精品国产av在线观看| 国产乱人视频| 一级毛片久久久久久久久女| 性色av一级| 久久亚洲国产成人精品v| 男女啪啪激烈高潮av片| 综合色丁香网| 久久久久久久久久久丰满| 三级经典国产精品| 各种免费的搞黄视频| 亚洲欧美清纯卡通| 成年女人在线观看亚洲视频| 日韩av不卡免费在线播放| 九色成人免费人妻av| 精品人妻熟女av久视频| 日日摸夜夜添夜夜添av毛片| 精华霜和精华液先用哪个| 免费观看无遮挡的男女| 久久久a久久爽久久v久久| 免费观看在线日韩| 狂野欧美激情性xxxx在线观看| 熟女人妻精品中文字幕| 国产伦在线观看视频一区| 免费人妻精品一区二区三区视频| 一二三四中文在线观看免费高清| 观看免费一级毛片| 亚洲精品亚洲一区二区| 天美传媒精品一区二区| 亚洲国产精品国产精品| 亚洲av日韩在线播放| 国产亚洲91精品色在线| 97精品久久久久久久久久精品| 久久毛片免费看一区二区三区| freevideosex欧美| 久久精品久久精品一区二区三区| 伊人久久国产一区二区| 久久热精品热| 国产精品精品国产色婷婷| 妹子高潮喷水视频| 欧美日韩综合久久久久久| 高清日韩中文字幕在线| 下体分泌物呈黄色| 熟女av电影| 中国三级夫妇交换| 亚洲欧美中文字幕日韩二区| 国产伦在线观看视频一区| 美女主播在线视频| 校园人妻丝袜中文字幕| 晚上一个人看的免费电影| 五月开心婷婷网| 日本wwww免费看| 最后的刺客免费高清国语| 黄色欧美视频在线观看| 蜜臀久久99精品久久宅男| 综合色丁香网| 久久久a久久爽久久v久久| 两个人的视频大全免费| 狂野欧美激情性xxxx在线观看| 干丝袜人妻中文字幕| 欧美激情极品国产一区二区三区 | 欧美一级a爱片免费观看看| av网站免费在线观看视频| 我要看日韩黄色一级片| 国产久久久一区二区三区| 色网站视频免费| 久久久久视频综合| 韩国高清视频一区二区三区| 黄色配什么色好看| 在线观看三级黄色| 妹子高潮喷水视频| 日本免费在线观看一区| 色哟哟·www| 国产精品一二三区在线看| 久久鲁丝午夜福利片| 亚洲怡红院男人天堂| 婷婷色综合www| a级一级毛片免费在线观看| 一区二区三区精品91| 黄色怎么调成土黄色| 蜜桃久久精品国产亚洲av| 一级毛片黄色毛片免费观看视频| 欧美少妇被猛烈插入视频| 婷婷色av中文字幕| 在线看a的网站| 91久久精品国产一区二区三区| 热re99久久精品国产66热6| 亚洲中文av在线| 高清日韩中文字幕在线| 日本黄色片子视频| 欧美日韩综合久久久久久| 国产精品免费大片| 亚洲精品乱码久久久v下载方式| 天堂中文最新版在线下载| 激情五月婷婷亚洲| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区性色av| 国产视频首页在线观看| 午夜精品国产一区二区电影| 边亲边吃奶的免费视频| 美女福利国产在线 | 菩萨蛮人人尽说江南好唐韦庄| 五月天丁香电影| 亚洲国产精品999| 男女下面进入的视频免费午夜| 国语对白做爰xxxⅹ性视频网站| 一级毛片aaaaaa免费看小| 国产精品偷伦视频观看了| 男男h啪啪无遮挡| 99热这里只有是精品50| 欧美日韩在线观看h| 好男人视频免费观看在线| 国产淫语在线视频| 日韩精品有码人妻一区| 久久精品夜色国产| 看十八女毛片水多多多| 亚洲精品国产成人久久av| 国产91av在线免费观看| 久久久午夜欧美精品| 美女福利国产在线 | 国产精品一及| 在线免费观看不下载黄p国产| 在线精品无人区一区二区三 | 国产精品国产av在线观看| 99热国产这里只有精品6| av不卡在线播放| 蜜桃在线观看..| 亚洲欧洲国产日韩| 亚洲人与动物交配视频| 国产精品久久久久久久电影| 校园人妻丝袜中文字幕| 成年女人在线观看亚洲视频| 亚洲伊人久久精品综合| 啦啦啦啦在线视频资源| 成人毛片a级毛片在线播放| 色视频在线一区二区三区| 又爽又黄a免费视频| 婷婷色麻豆天堂久久| 好男人视频免费观看在线| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 尾随美女入室| 国产精品三级大全| 乱码一卡2卡4卡精品| 2022亚洲国产成人精品| 日本一二三区视频观看| 性高湖久久久久久久久免费观看| 国产精品爽爽va在线观看网站| 欧美日韩亚洲高清精品| 91午夜精品亚洲一区二区三区| 国产免费视频播放在线视频| 国产又色又爽无遮挡免| 亚洲精品色激情综合| 久久99热6这里只有精品| 大陆偷拍与自拍| 亚洲精品国产成人久久av| 99久久人妻综合| 国产黄色免费在线视频| av不卡在线播放| 日本黄色日本黄色录像| 伦理电影免费视频| 国产成人a区在线观看| av播播在线观看一区| 国产在视频线精品| 成人高潮视频无遮挡免费网站| 国产精品人妻久久久影院| 久热久热在线精品观看| 婷婷色麻豆天堂久久| 能在线免费看毛片的网站| 熟女av电影| 日韩三级伦理在线观看| 美女视频免费永久观看网站| 午夜日本视频在线| 亚洲av免费高清在线观看| 日本黄色日本黄色录像| 黑人猛操日本美女一级片| 国产乱人偷精品视频| 亚洲精品日韩在线中文字幕| 在线 av 中文字幕| 欧美日韩综合久久久久久| 欧美一区二区亚洲| 人妻 亚洲 视频| 国产伦精品一区二区三区视频9| 狂野欧美白嫩少妇大欣赏| 黑丝袜美女国产一区| 久久ye,这里只有精品| 在线观看人妻少妇| 日韩制服骚丝袜av| 久久精品久久久久久久性| 寂寞人妻少妇视频99o| 日日摸夜夜添夜夜爱| 80岁老熟妇乱子伦牲交| 亚洲av福利一区| 久久久久久久国产电影| 亚洲一区二区三区欧美精品| 男人和女人高潮做爰伦理| 人妻制服诱惑在线中文字幕| 22中文网久久字幕| 欧美xxxx黑人xx丫x性爽| 日韩在线高清观看一区二区三区| 一级a做视频免费观看| 久久精品国产a三级三级三级| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡 | 高清视频免费观看一区二区| 免费av中文字幕在线| 极品少妇高潮喷水抽搐| 亚洲欧美成人综合另类久久久| 久久久久性生活片| 永久网站在线| 亚洲综合精品二区| 色网站视频免费| 亚洲精品久久午夜乱码| av视频免费观看在线观看| 成人国产av品久久久| 亚洲婷婷狠狠爱综合网| 色综合色国产| 我要看日韩黄色一级片| 久久毛片免费看一区二区三区| 97超视频在线观看视频| 伊人久久国产一区二区| 搡女人真爽免费视频火全软件| 青春草国产在线视频| av在线蜜桃| 亚洲国产最新在线播放| 老司机影院毛片| 少妇裸体淫交视频免费看高清| 免费人成在线观看视频色| 亚洲av男天堂| 直男gayav资源| 一区在线观看完整版| 免费观看的影片在线观看| 在线观看免费视频网站a站| 国产一区二区三区av在线| 午夜老司机福利剧场| 亚洲欧美日韩东京热| 黑人猛操日本美女一级片| 国产成人精品一,二区| 少妇人妻 视频| 热re99久久精品国产66热6| 日韩av不卡免费在线播放| 2021少妇久久久久久久久久久| 黄色配什么色好看| 国产av国产精品国产| 尾随美女入室| 偷拍熟女少妇极品色| 日韩电影二区| 国产男人的电影天堂91| 直男gayav资源| 欧美日韩精品成人综合77777| 色视频www国产| 成人毛片a级毛片在线播放| 免费观看的影片在线观看| 人人妻人人澡人人爽人人夜夜| 视频中文字幕在线观看| 欧美+日韩+精品| 日韩强制内射视频| 日韩在线高清观看一区二区三区| 噜噜噜噜噜久久久久久91| 一级爰片在线观看| 各种免费的搞黄视频| 伊人久久国产一区二区| 久久久久久久久大av| 18禁动态无遮挡网站| 国产精品福利在线免费观看| 欧美3d第一页| 亚洲精品日韩av片在线观看| 欧美 日韩 精品 国产| 在线观看免费日韩欧美大片 | 亚洲欧美清纯卡通| 亚洲电影在线观看av| 国模一区二区三区四区视频| 亚洲经典国产精华液单| av国产久精品久网站免费入址| 黄色一级大片看看| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久成人| 午夜免费鲁丝| 免费大片黄手机在线观看| 午夜免费鲁丝| 看免费成人av毛片| 亚洲色图综合在线观看| 五月开心婷婷网| 亚洲色图综合在线观看| 伦理电影大哥的女人| 青青草视频在线视频观看| 国产精品不卡视频一区二区| 国产精品一区二区在线不卡| 日韩成人伦理影院| 国产精品女同一区二区软件| 人人妻人人爽人人添夜夜欢视频 | 好男人视频免费观看在线| 成人免费观看视频高清| 国模一区二区三区四区视频| 国产精品久久久久久久电影| 99久国产av精品国产电影| 国产有黄有色有爽视频| 一本一本综合久久| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 91久久精品电影网| 国产黄色视频一区二区在线观看| 日日啪夜夜撸| 国产乱来视频区| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久久久按摩| 国产美女午夜福利| 国产亚洲5aaaaa淫片| a级毛色黄片| av在线观看视频网站免费| 国产精品99久久99久久久不卡 | 天堂中文最新版在线下载| 中文字幕精品免费在线观看视频 | 一级黄片播放器| 亚洲精品乱码久久久久久按摩| 国产美女午夜福利| 久久99精品国语久久久| 免费看日本二区| 五月伊人婷婷丁香| 久久精品国产a三级三级三级| 草草在线视频免费看| 久久精品国产鲁丝片午夜精品| 色婷婷av一区二区三区视频| 国产 一区 欧美 日韩| 97超视频在线观看视频| 久久精品熟女亚洲av麻豆精品| 国产男女内射视频| 国产精品不卡视频一区二区| 久久青草综合色| 黄色一级大片看看| 97热精品久久久久久| av福利片在线观看| 国内精品宾馆在线| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 亚洲美女黄色视频免费看| 亚洲av综合色区一区| 亚洲美女黄色视频免费看| 亚洲精品456在线播放app| 美女主播在线视频| 高清在线视频一区二区三区| xxx大片免费视频| 男人添女人高潮全过程视频| 一级毛片电影观看| 99国产精品免费福利视频| 久久6这里有精品| 久久女婷五月综合色啪小说| 亚洲av免费高清在线观看| 国产高潮美女av| 熟女人妻精品中文字幕| 国产精品偷伦视频观看了| 蜜桃亚洲精品一区二区三区| 成人国产麻豆网| av黄色大香蕉| 2018国产大陆天天弄谢| 人人妻人人看人人澡| 国产综合精华液| www.av在线官网国产| av卡一久久| 欧美日韩综合久久久久久| 2021少妇久久久久久久久久久| 永久免费av网站大全| 在线免费观看不下载黄p国产| 自拍偷自拍亚洲精品老妇| 极品教师在线视频| 七月丁香在线播放| 日韩一区二区视频免费看| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产成人一精品久久久| 亚洲av.av天堂| 日本欧美视频一区| 国产高清国产精品国产三级 | 精华霜和精华液先用哪个| 欧美高清性xxxxhd video| 日日撸夜夜添| 日韩欧美一区视频在线观看 | 黄色视频在线播放观看不卡| 中文欧美无线码| 国产精品蜜桃在线观看| 十分钟在线观看高清视频www | 国产毛片在线视频| 啦啦啦视频在线资源免费观看| 大陆偷拍与自拍| 在线 av 中文字幕| 免费人妻精品一区二区三区视频| 内地一区二区视频在线| 国产精品人妻久久久影院| 国产在线男女| 一区二区三区四区激情视频| 你懂的网址亚洲精品在线观看| 在线 av 中文字幕| 久久99蜜桃精品久久| 久久久久久人妻| 亚州av有码| 亚洲人成网站在线观看播放| 校园人妻丝袜中文字幕| 国产av码专区亚洲av| 赤兔流量卡办理| 久久人人爽av亚洲精品天堂 | 亚洲国产色片| 只有这里有精品99| 欧美成人午夜免费资源| 国产国拍精品亚洲av在线观看| 91精品一卡2卡3卡4卡| 久久 成人 亚洲| 插逼视频在线观看| 少妇人妻精品综合一区二区| 欧美日韩精品成人综合77777| av在线app专区| 日本猛色少妇xxxxx猛交久久| 亚洲精品一二三| 国产成人免费无遮挡视频| 久久人妻熟女aⅴ| 秋霞在线观看毛片| 精品国产三级普通话版| 日韩视频在线欧美| 免费大片18禁| 插逼视频在线观看| 韩国av在线不卡| 免费播放大片免费观看视频在线观看| 在线观看一区二区三区激情| 国产高清国产精品国产三级 | 国产淫片久久久久久久久| 自拍偷自拍亚洲精品老妇| 老熟女久久久| 欧美另类一区| 伦理电影大哥的女人| 一本一本综合久久| 亚洲欧美日韩无卡精品| 免费黄网站久久成人精品| 国产男人的电影天堂91| 亚洲久久久国产精品| 午夜老司机福利剧场| 日韩av不卡免费在线播放| 久久久久久久大尺度免费视频| 国产成人免费观看mmmm| 少妇的逼水好多| 国产高清有码在线观看视频| 男女免费视频国产| 国产一级毛片在线| 日韩中文字幕视频在线看片 | av国产久精品久网站免费入址| 欧美精品一区二区大全| 免费看日本二区| 一本—道久久a久久精品蜜桃钙片| 国产又色又爽无遮挡免| 美女内射精品一级片tv| 国内少妇人妻偷人精品xxx网站| 欧美成人精品欧美一级黄| 一本—道久久a久久精品蜜桃钙片| 蜜桃在线观看..| 美女内射精品一级片tv| 亚洲精品自拍成人| 亚洲人成网站在线播| xxx大片免费视频| 久久久久久久久久成人| av不卡在线播放| 日本av免费视频播放| 国产亚洲av片在线观看秒播厂| 激情五月婷婷亚洲| 国产精品一区二区在线观看99| 水蜜桃什么品种好| 亚洲欧美成人综合另类久久久| 亚洲丝袜综合中文字幕| 91精品国产国语对白视频| 亚洲av欧美aⅴ国产| 中文字幕制服av| 少妇的逼好多水| 九草在线视频观看| 国产精品一区www在线观看| 欧美bdsm另类| 青春草视频在线免费观看| 人人妻人人添人人爽欧美一区卜 | 欧美成人a在线观看| 天天躁夜夜躁狠狠久久av| 国产爽快片一区二区三区| 精品久久国产蜜桃| 成人亚洲精品一区在线观看 | 天堂中文最新版在线下载| 免费看av在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 蜜桃在线观看..| 一级毛片我不卡| 2022亚洲国产成人精品| 老女人水多毛片| 青青草视频在线视频观看| 欧美xxⅹ黑人| 亚洲av不卡在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲中文av在线| 最近2019中文字幕mv第一页| 99久久精品热视频| 国产精品不卡视频一区二区| 春色校园在线视频观看| 亚洲精品日韩av片在线观看| 日韩电影二区| 六月丁香七月| 亚洲av国产av综合av卡| 精品亚洲成国产av| 精品少妇久久久久久888优播| 日本黄大片高清| 嘟嘟电影网在线观看| 午夜激情久久久久久久| 精品酒店卫生间| 国产人妻一区二区三区在| 亚洲美女视频黄频| 欧美老熟妇乱子伦牲交| 久久国内精品自在自线图片| 亚洲美女黄色视频免费看| 黄色欧美视频在线观看| 少妇猛男粗大的猛烈进出视频| 日韩av在线免费看完整版不卡| 极品少妇高潮喷水抽搐| 人人妻人人添人人爽欧美一区卜 | 精品久久久精品久久久| 91aial.com中文字幕在线观看| 欧美一级a爱片免费观看看| 女人十人毛片免费观看3o分钟| 男女啪啪激烈高潮av片| 乱码一卡2卡4卡精品| 天美传媒精品一区二区| av网站免费在线观看视频| 久久久久久久久久久丰满| 深爱激情五月婷婷| 永久网站在线| 国产91av在线免费观看| 搡老乐熟女国产| 欧美xxⅹ黑人| 久久久久久人妻| 久久影院123| 精品熟女少妇av免费看| 国产欧美日韩一区二区三区在线 | 大码成人一级视频| 看十八女毛片水多多多| 99热这里只有是精品在线观看| 亚洲av福利一区| 人人妻人人澡人人爽人人夜夜| 国产亚洲一区二区精品| 大片电影免费在线观看免费| 波野结衣二区三区在线| 国产无遮挡羞羞视频在线观看| 2018国产大陆天天弄谢| 老司机影院毛片| 免费看日本二区| 欧美少妇被猛烈插入视频| 亚洲电影在线观看av| 午夜精品国产一区二区电影| 舔av片在线| 成人毛片60女人毛片免费| 久久精品国产a三级三级三级| 欧美日韩视频高清一区二区三区二| 纵有疾风起免费观看全集完整版| 亚洲国产精品国产精品| 日本爱情动作片www.在线观看| 亚洲精品乱码久久久久久按摩| 一级爰片在线观看|