• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proton-induced fast preparation of size-controllable MoS2 nanocatalyst towards highly efficient water electrolysis

    2021-07-01 05:29:54JingjiangWeiGeWangYijieZhangShengpingWangWanyuZhaoQihangLiuCongcongLiuXiaoliZhaoXiaoweiYang
    Chinese Chemical Letters 2021年3期

    Jingjiang Wei,Ge Wang,Yijie Zhang,Shengping Wang,Wanyu Zhao,Qihang Liu,Congcong Liu,Xiaoli Zhao*,Xiaowei Yang*

    School of Materials Science and Engineering,Tongji University,Shanghai 201804,China

    ABSTRACT MoS2 has emerged for catalyzing the hydrogen evolution reaction.Various notable strategies have been developed to downsize the MoS2 particles and expose more active edges.However,the restacking issue,which reduces the exposure degree,has rarely been taken into account.Herein,we report on a facile proton-induced fast hydrothermal approach to produce size-controllable MoS2 nanocatalysts and demonstrate that along the varying of sheet sizes,there is a trade-off between the intrinsic catalytic activity(mainly determined by the unsaturated sulfur on the sheet edges)and the active edge accessibility(influenced by the assembly structure).The size-optimized catalyst delivers a high performance of a low overpotential of~200 mV at 10 mA/cm2,a Tafel slope of 46.3 mV/dec,and a stable working state,which is comparable to the recent notable works.Our findings will provide a pathway for its large-scale application and enhance the water electrolysis performance.

    Keywords:Size-controllable nanocatalys Proton inducement MoS2 nanocatalyst Hydrogen evolution reaction Electrode-level performance

    Hydrogen,a clean and renewable energy,is one of the most promising alternatives for traditional fossil fuels[1].Water electrolysis is an ideal approach for hydrogen production,and the key to achieving its practical applications is to develope costeffective electrocatalyst to accelerate the hydrogen evolution reaction(HER)[2–5].Pt-based materials possess the best performance in HER,yet their expensiveness and scarcity have hampered the large-scale applications[6–9].To this end,enormous efforts have been devoted to the non-noble and earth-abundant HER catalysts in the past years[ 10–15].Molybdenum disulfide(MoS2)has drawn great attention due to its low cost and high abundance[16,17].However,the bulk MoS2is not an active HER catalyst because its exposed basal planes are generally inert and the electron/mass transportation is sluggish[18].Fortunately,both theoretical and experimental studies have verified that the edge sites and defects of MoS2are catalytically active owing to the unsaturated sulfur[19–21]. Hence,nanostructured MoS2HER catalysts with smaller sheet size and more edge sites exposed are highly desirable in order to realize the superior performance of electrocatalysts.Using ultrasonic exfoliation to cleave bulk MoS2into a few nanolayers can increase the exposure of active edge sites;nevertheless,the number of layers and the lateral size of resultant nanosheets are hard to control[22].Chemical vapor deposition is beneficial for the growth of high-quality MoS2nanosheets with controllable sizes, shapes,and structures,but rigorous experimental conditions,such as high vacuum,high temperature,and specific substrates,restricting its wide practical applications[23].Benefiting from the low-cost precursors(metal salts)and simple manipulation to meet the practical requirements that obtain abundant edge defects[23,24], hydrothermal synthesis of MoS2nanosheets has drawn great attention in synthesizing nanostructured MoS2electrocatalysts.

    Favorable HER performance has been successfully achieved by preparing the defect-rich nanosized MoS2flakes with promoted intrinsic catalytic activity[24].Although the as-prepared MoS2nanosheets in the solution can be conveniently stored,separated and easily transferred onto any substrates for electrode construction[23],those MoS2nanosheets with exposed edges are easily restacked in the solution because of their high surface energy and interlayer van der Waals attractions.Besides,the aggregate MoS2nanoparticles,which greatly impede the ion accessibility of the exposed active sites,reducing the electrocatalytic performance in the electrode level.Therefore,various controllable nanostructures such as hybrid nanoflowers[25,26],hybrid core-shell structure[27,28],nanoconfined structure[29]and vertically aligned nanolayers[30–32]have been reported to design the transport channels with exposed edges by introducing supporters.However,because of the restacking problem in nanostructured MoS2with abundant defects,it remains a great challenge that how to balance the intrinsic catalytic activity(mainly determined by the unsaturated sulfur on the sheet edges)and the active edge accessibility(influenced by the assembly structure)of MoS2nanosheets without other dopants to maximize the catalytic performance during electrochemical processes.

    Herein,we report a hydrothermal method for the fast synthesis of size-controllable MoS2nanocatalysts by pH regulation.We investigated the effects of the acid concentrations on the synthesizing process and the resulting structure of the MoS2nanosheets.Results suggested that increasing the proton concentrations can downsize MoS2nanosheets with better intrinsic catalytic activity,but lead to serious aggregation of the nanosheets:The increase of proton concentrations may provide more nucleation sites during pretreatment and thus result in the size decrease of the as-formed MoS2nanosheets;however,the small size renders the nanosheets freedom to well restack.In other words,our results show that varying the size of the nanosheets,there is a trade-off between the intrinsic catalytic activity and active site accessibility.By the facile pH regulation,the MoS2nanosheets with the moderate intrinsic activity and the restacking degree deliver the best catalytic property of~200 mV at the current density of 10 mA/cm2,a Tafel slope of 46.3 mV/dec,and long-run stability in our work.Furthermore,MoS2nanocatalysts were prepared within 3 h via the proton-induced hydrothermal preparation process,leading to significant time savings(the reaction time of recent MoS2catalysts prepared by hydrothermal synthesis are shown in Table S1 in Supporting information),which was a benefit for its practical use.Our success in fast synthesis and insights into the edge-exposed MoS2catalyst properties provide a simple method to adjust catalytic performance without other dopant and a pathway for the practical applications of non-noble catalysts for water electrolysis.

    Sodium molybdate dihydrate(Na2MoO4·2H2O),sulfuric acid(H2SO4),and hydrochloric acid(HCl)were purchased from Sinopharm Chemical Reagent Co.,Ltd.Thiourea(SC(NH2)2)and Nafion solution(5 wt%)were purchased from Sigma-Aldrich.

    Typically,2.5× 10-3mol Na2MoO4·2H2O and 10× 10-3mol SC(NH2)2were dissolved in 70 mL HCl solution(pH 1.00,0.69,0.50,0.37 and 0.24).After being stirred to form a homogeneous mixture,the solution was transferred into a 100 mL Teflon-lined stainless-steel autoclave.The autoclave was heated at 200°C for 3 h and then cooled to room temperature naturally.Thereafter,the products were washed with deionized water assisted by centrifugation for several times to remove redundant HCl and unreacted reagents.The resulting products were collected and maintained in deionized water.The MoS2catalyst synthesized with pH 1.00,0.67,0.50,0.37,0.24 are denoted as MoS2-1.00,MoS2-0.67,MoS2-0.50,MoS2-0.37,MoS2-0.24,respectively.

    Powder X-ray diffraction(XRD)profiles were recorded on an Xray diffract meter(D2 PHASER,BRUKER).The scanning electron microscope(SEM)was performed in FEI Nova NanoSEM 450.A JEM-2100 electron microscopy with an accelerating voltage of 200 kV was performed for transmission electron microscope(TEM)measurements.X-ray photoelectron spectroscopy(XPS)measurement was carried out on a Thermo Scientific Escalab 250Xi X-ray photoelectron spectrometer using Al as the exciting source.The dynamic light scattering(DLS)was carried out on Malvern Zetasizer Nano ZS90.

    Electrochemical measurements were performed in a threeelectrode electrochemical cell with Bio-Logic potentiostat(VMP3).Typically,1 mL of water-isopropanol solution(volume ratio,4:1)containing 3 mg MoS2catalyst was mixed with 60 μL Nafion by sonicating for 30 min to form a homogeneous ink.Then 5 μL of the ink was dropped onto the glassy carbon electrode with a 3 mm diameter(catalyst loading:0.21 mg/cm2).All measurements were performed in the electrolyte of N2-saturated 0.5 mol/L H2SO4aqueous solution with a graphite rod as the counter electrode,saturated calomel electrode(SCE)as the reference electrode and the glassy carbon electrode loaded with MoS2as the working electrode.

    The linear sweep voltammetry(LSV)with a scan rate of 5 mV/s and Tafel analysis were conducted for the characterization of HER activity.The double-layer capacitance was measured by cyclic voltammetry(CV)scan with various scan rates(25,50,100,200,400 mV/s)in the range of 0.25–0.35 V vs.SCE.The electrochemical impedance spectroscopy(EIS)measurements were carried out at an overpotential of 250 mV in the frequency range from 105Hz to 0.01 Hz.To investigate the electrochemical stability,chronopotentiometry scan(at 10 mA/cm2)and CV(-0.3–0.1 V vs.RHE at 50 mV/s)were conducted.All data in this work were corrected with iR(removing the effect of solution resistance).All potentials were calibrated to a reversible hydrogen electrode(RHE),E(vs.RHE)=E(vs.SCE)+0.241 V.

    Proton-induced MoS2nanocatalysts were fast prepared by the hydrothermal synthesis from the pre-treatment of precursors(Na2MoO4·2H2O and SC(NH2)2)with the addition of aqueous HCl solution(Fig.S1 in Supporting information).The products MoS2powder was characterized by TEM,XRD,and XPS as shown in Fig.S2(Supporting information),which demonstrate that our fastprepared material was predominately composed of low-crystalline 2H-MoS2nanosheets[31,33].To investigate the effect of HCl pretreatment on resultant products and their formed electrode architectures,XRD of the MoS2products prepared with various pH was further carried out to analyze the crystalline structure of the synthesized MoS2in the assembled electrode.Note that samples for XRD shown in Fig.1A were prepared from the dried ink for drop-casting to simulate the state of the real electrode,while that for XRD in Fig.S2 was prepared by freeze drying which has an obvious crystal structure.A typical 2H-MoS2profile of JCPDS card No.75-1539 of these samples can be observed[34].The lower intensity of(100)and(002)peaks indicates a shorter basal plane and less stacking of MoS2layers[35].As seen in Fig.1B,the intensity of(100)peak decreases along with the decrease of pH.When the pH value decreases to 0.24,the(100)peak even becomes difficult to be observed,which suggests that the lateral size of resultant MoS2products was decreased by lowering pH and more edge sites and defects were exposed.Notably,in Fig.1C,with the decrease of pH,the intensity of(002)peak becomes weaker at first(from pH 1.00 to 0.50)but then becomes stronger(from pH 0.50 to 0.24).The weakening of intensity of the(002)peak is probably due to the proton-induced downsizing of MoS2nanosheets at c axis.Since the smaller nanosheets with higher surface energy are easier to restack,we could assume that the subsequent increase in(002)peak is mainly attributed to the restacking of further sizedecreased MoS2nanosheets which decreases the edge-exposing degree[16,36].

    To further investigate the pH effect on the size control,SEM was carried out to further investigate the effect of pH on the size of MoS2nanosheets as shown in Fig.1D,which was inconsistent with the results of XRD.Three SEM samples prepared from the ethanol solution of MoS2for drop-casting merely shown that the size of resultant MoS2products was decreased by lowering pH,which is consistent with the results of DLS(Fig.S3 in Supporting information).Here,we have a clear understanding of the effect of HCl pre-treatment on resultant MoS2by summarizing those characterizations.Decreasing the pH value is propitious to decrease the lateral size and thickness of resultant MoS2nanosheets.However,the too small MoS2nanosheets would tend to restack and aggregate after being assembled into the electrode.Meanwhile,the size decrease is beneficial for the enhancement of intrinsic activity,but the resultant restacking with narrow dspacing between neighboring sheets is harmful for the exposition of active sites(Fig.1E).Therefore,the size of MoS2nanosheets should be optimized.

    Fig.1.(A)XRD profiles of the MoS2 synthesized with different pH.(B)Normalized XRD intensity of(002)peak and(C)(100)peak.(D)SEM images(scale bar:100 nm)and schematics of the effect of pH regulation on the resultant MoS2.(E)Schematics of the trade-off between the intrinsic catalytic activity and the active edge accessibility determined by nanosheets size.

    After having demonstrated the particle size was determined by various pH values from characterization in Fig.1,we tried to address the synthesis process of proton-induced MoS2that is schematically shown in Fig.2A.When dissolved in HCl solution,the MoO42-can be condensed into polymolybdate groups by protonation as following reactions(1),(2)simultaneously[37]:

    Compared with the MoO42-,the as-formed polymolybdate groups are more reactive and can be reduced by thiourea even under normal temperature and pressure,indicated by a vivid color change,in sharp contrast with that without proton pre-treatment(Fig. 2A and Fig.S1).These polymolybdate groups may serve as nucleation sites for the subsequent fast hydrothermal reaction.Consequently,the reaction time was greatly shortened from 20 h to 3 h assisted by the pre-formation of polymolybdate groups.As schematically shown in Fig.2B,we further proposed the following mechanism for this pH regulation effect.At high pH(e.g.,pH 1.00),less polymolybdate groups are formed to play the role of nucleation active centers,so more Mo sources participate in the crystal growth process,which results in the formation of largesized MoS2sheets;at low pH(e.g.,pH 0.24),more polymolybdate groups are formed,leading to the formation of the small-sized MoS2nanosheets.Since the smaller nanosheets suffer from a restacking problem,which is unfavorable to edges exposure and the catalytic performance on the electrode level.

    Fig.2.(A)Process of the proton-induced fast synthesis process of MoS2 nanocatalysts,(top)optical photos showing the color change of the reaction system at successive steps and(bottom)schematics of the species in the reaction systems.(B)Schematic illustration of the reaction process of MoS2 with different pH pre-treatments.

    We further investigated the electrocatalytic performance of these drop-casted size-controlled MoS2via a standard threeelectrode setup with 0.5 mol/L H2SO4as the electrolyte.The electrochemical measurements were carried out with a constant mass loading of 0.21 mg/cm2of MoS2catalysts on the glassy carbon electrode and carbon paper(Fig.S4 in Supporting information),and the effects of substrate on the final activity of MoS2catalysts can be ignored.As shown in Fig.3A,among the three MoS2species,the one synthesized under the medium pH of 0.50 exhibits the best performance,delivering the lowest overpotential(η~200 mV)at the current density of 10 mA/cm2.Corresponding Tafel plots of the three MoS2samples also show the same tendency(Fig.3B).The Tafel slope decreases from 83.3 mV/dec(MoS2-1.00)to 46.3 mV/dec(MoS2-0.50)and then increase to 77 mV/dec(MoS2-0.24).The Tafel slope of MoS2-0.50 suggests that they match the Volmer-Heyrovsky mechanism.The electrocatalytic performance of MoS2-0.50 is compatible with recent notable works(Table S2 in Supporting information).

    Fig.3.Characterizations on the electrocatalytic performance of the synthesized size-controllable MoS2 on the glassy carbon electrode.(A)LSV plots.(B)Tafel plots.The longterm electrochemical stability of the MoS2 synthesized with pre-treatment of pH 0.50:(C)CV curves and(D)chronopotentiometry plot at a constant current density of 10 mA/cm2.

    Notably,the catalytic performances of the three kinds of MoS2are well consistent with their intensity of(002)peaks in the XRD profiles(Fig.1C).These demonstrate that MoS2-1.00 with larger and thicker nanosheets and MoS2-0.24 with serious restacking show a compromised HER performance.Furthermore,the longterm electrochemical stability of MoS2-0.50 is also examined by CV and chronopotentiometry scan(at 10 mA/cm2).As shown in Fig.3C,MoS2-0.50 affords a similar CV curve after 1000 cycles,and a negligible increase of overpotential can be observed under a constant current density of—10 mA/cm2for 12 h(Fig.3D).

    To further demonstrate the possible origins of such different performances of these size-controlled MoS2,exchange current density(j0),double layer capacitance(Cdl),and EIS were carried out.j0represents the inherent activity for HER,which is obtained by extrapolating E-I data to the Tafel equation[20].It can be seen that the activity of the MoS2catalyst is improved along with the decrease of pH(from pH 1.00 to 0.24),demonstrated by the increase of j0from 2.9 μA/cm2(MoS2-1.00)to 7.8 μA/cm2(MoS2-0.50)and 26.3 μA/cm2(MoS2-0.24)as shown in Fig.4A.These results can be explained by the size of the three kinds of MoS2nanocatalysts.Cdlwas carried out to evaluate the electrochemically active surface area(ECSA)of each sample[38,39].As shown in Fig.4B,the capacitive current corresponding to the measured CV curves(Fig.S5 in Supporting information)is plotted as the function of the scan rates,from which the Cdlis extracted to evaluate the ECSA.As can be seen,the Cdldecreases from 1.09 mF(MoS2-1.00)to 0.09 mF(MoS2-0.24),suggesting adsorbable sites decreases along with the decrease of pH during the synthesis process.Note that not all adsorbable sites can be used for hydrogen evolution.EIS was performed to examine the electrode kinetics.As shown in Fig.4C,the two semicircles at the low and the high frequencies represent the charge transfer resistance(Rct)and the non-negligible electronic resistance of MoS2(Ri),respectively[40].The smaller Rctand Rican afford faster HER kinetics.Detailed data of Rctand Riare exhibited in Table S3(Supporting information).The Rctdecreases from 54.1Ω(MoS2-1.00)to 22.3Ω(MoS2-0.50),and then increases to 131.6Ω(MoS2-0.24).The Rctcorresponds to their LSV performance and Tafel slopes.Notably,the Rikeeps increasing along with the decrease of pH,from 5.3Ω(MoS2-1.00)to 5.9Ω(MoS2-0.50)and 40.4Ω(MoS2-0.24)(Fig.4D).This result can be attributed to the downsizing of MoS2nanosheets,which impairs the electron migration in the electrode.

    Fig.4.Evaluations on the electrochemical characteristics of the synthesized MoS2 on the glassy carbon electrode.(A)Calculated exchange current densities by applying the extrapolation method to the Tafel plots.(B) The derived Cdl under different scan rates.(C,D)Nyquist plots and(D)is the magnified high frequency region.

    From the above electrochemical characterizations,we summary the mechanism of the pH regulation as follows.The increase of proton concentrations can effectively decrease the size of MoS2nanosheets to produce more unsaturated sulfur,endowing an enhanced intrinsic catalytic activity of each nanosheet.However,the serious aggregation occurs in these highly-active small-sized nanosheets,which will impair the system conductivity and electrolyte-accessibility.That may be the reason for MoS2-0.50,which holds moderate intrinsic activity and the restacking degree and delivers the best electrode performance among the three.

    Importantly,we have shown that the small difference in the size of these MoS2products will lead to such diverse electrode-level performances.Much attention should be paid to catalytic electrode construction apart from the chemical structure of the catalysts.

    In this work,we put forward a strategy to realize the fast synthesis method of size-controllable MoS2nanocatalysts.Through an additional pre-treatment by HCl,nanosized MoS2catalysts can be synthesized simply and controllably by the hydrothermal reaction that achieves a superior performance of electrocatalysts without dopant.We demonstrate that lowing pH value can effectively decrease the size of resultant MoS2nanosheets,which will increase the intrinsic catalytic activity but lead to the restacking problem.By adjusting the size of MoS2nanoparticle,an excellent HER performance can be exhibited with a small overpotential of~200 mV at 10 mA/cm2,a low Tafel slope of 46.3 mV/dec and long-time stability.These findings will encourage further studies on the engineering of the catalytic electrode construction apart from the intrinsic activity of catalyst to improve the catalytic performance.Moreover,the protoninduced fast hydrothermal reaction in 3 h provides a new pathway for the large-scale application of highly active MoS2catalysts.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.21905206)and Shanghai Sail Program(No.19YF1450800).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.08.005.

    一个人免费在线观看的高清视频 | 国产高清视频在线播放一区 | 人人妻,人人澡人人爽秒播| 青春草亚洲视频在线观看| 日韩制服骚丝袜av| 久久女婷五月综合色啪小说| 久久精品国产a三级三级三级| 一区二区三区四区激情视频| 国产精品免费大片| 91国产中文字幕| 女人久久www免费人成看片| 搡老岳熟女国产| 亚洲专区国产一区二区| 正在播放国产对白刺激| 视频区图区小说| 久久99一区二区三区| 色婷婷久久久亚洲欧美| 正在播放国产对白刺激| 久久久精品国产亚洲av高清涩受| 久久99一区二区三区| 国产有黄有色有爽视频| 亚洲视频免费观看视频| 国产在线一区二区三区精| 欧美成人午夜精品| 亚洲五月色婷婷综合| 99久久99久久久精品蜜桃| 首页视频小说图片口味搜索| 国产精品 国内视频| 大香蕉久久网| 一区二区日韩欧美中文字幕| 国产欧美日韩一区二区三区在线| 不卡av一区二区三区| 黄片播放在线免费| 成年女人毛片免费观看观看9 | 免费观看a级毛片全部| 大陆偷拍与自拍| 在线永久观看黄色视频| 女人被躁到高潮嗷嗷叫费观| 亚洲专区字幕在线| 成人18禁高潮啪啪吃奶动态图| 久久这里只有精品19| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一码二码三码区别大吗| 久久久久精品人妻al黑| 啦啦啦免费观看视频1| 午夜视频精品福利| 不卡av一区二区三区| 色视频在线一区二区三区| 男女国产视频网站| 免费不卡黄色视频| 国产精品偷伦视频观看了| 国产有黄有色有爽视频| 人妻一区二区av| 女人高潮潮喷娇喘18禁视频| 亚洲一区中文字幕在线| 高潮久久久久久久久久久不卡| av片东京热男人的天堂| 亚洲七黄色美女视频| 国产精品自产拍在线观看55亚洲 | 91国产中文字幕| 大香蕉久久成人网| 精品免费久久久久久久清纯 | 亚洲国产av影院在线观看| 亚洲精品自拍成人| 国产精品.久久久| 蜜桃在线观看..| 丝袜喷水一区| 悠悠久久av| 久久人人爽人人片av| 国产精品熟女久久久久浪| 丁香六月欧美| 精品一区二区三区av网在线观看 | 日本黄色日本黄色录像| 日韩电影二区| 久久久国产欧美日韩av| 久久久精品区二区三区| 在线 av 中文字幕| 午夜福利视频精品| 午夜久久久在线观看| 日本撒尿小便嘘嘘汇集6| 在线观看免费日韩欧美大片| 国产成人精品久久二区二区91| 国产一区二区激情短视频 | 性少妇av在线| 如日韩欧美国产精品一区二区三区| 亚洲精品日韩在线中文字幕| 免费看十八禁软件| 日韩熟女老妇一区二区性免费视频| 久久久精品免费免费高清| 精品亚洲成国产av| 欧美亚洲日本最大视频资源| 国产精品免费视频内射| 一级黄色大片毛片| 亚洲自偷自拍图片 自拍| 99九九在线精品视频| 国产激情久久老熟女| 亚洲伊人久久精品综合| 成人黄色视频免费在线看| 久久免费观看电影| 人成视频在线观看免费观看| 久久久久久久精品精品| 精品欧美一区二区三区在线| 色综合欧美亚洲国产小说| 国产男女内射视频| av一本久久久久| 亚洲精品国产一区二区精华液| 老司机午夜十八禁免费视频| 久久久精品国产亚洲av高清涩受| 中文字幕人妻熟女乱码| 日韩大码丰满熟妇| 亚洲精品中文字幕一二三四区 | 精品乱码久久久久久99久播| 99精品欧美一区二区三区四区| 亚洲国产日韩一区二区| 热99久久久久精品小说推荐| videos熟女内射| 乱人伦中国视频| 黑人巨大精品欧美一区二区蜜桃| 欧美亚洲日本最大视频资源| 国产无遮挡羞羞视频在线观看| 国产精品一二三区在线看| 亚洲午夜精品一区,二区,三区| 美女国产高潮福利片在线看| netflix在线观看网站| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区久久| 亚洲欧洲精品一区二区精品久久久| 国产片内射在线| 久久ye,这里只有精品| 国产免费视频播放在线视频| 九色亚洲精品在线播放| 97精品久久久久久久久久精品| 国产精品免费视频内射| 老熟妇乱子伦视频在线观看 | 亚洲精品在线美女| 亚洲熟女毛片儿| 水蜜桃什么品种好| 黄色视频在线播放观看不卡| 美女国产高潮福利片在线看| 亚洲一区中文字幕在线| 成年人午夜在线观看视频| 老司机亚洲免费影院| 亚洲专区字幕在线| 亚洲精品国产av成人精品| 美国免费a级毛片| 欧美日韩国产mv在线观看视频| 男男h啪啪无遮挡| 精品国产国语对白av| 午夜福利影视在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 女人爽到高潮嗷嗷叫在线视频| 午夜福利影视在线免费观看| 国产在视频线精品| 久久精品国产综合久久久| 欧美日韩国产mv在线观看视频| netflix在线观看网站| 亚洲欧美清纯卡通| 9热在线视频观看99| 五月天丁香电影| 又黄又粗又硬又大视频| 热99国产精品久久久久久7| 亚洲专区国产一区二区| 黑人巨大精品欧美一区二区mp4| 成年av动漫网址| 美女视频免费永久观看网站| 国产在线一区二区三区精| 日韩视频在线欧美| 视频区欧美日本亚洲| 免费人妻精品一区二区三区视频| tocl精华| 69精品国产乱码久久久| 国产国语露脸激情在线看| 少妇人妻久久综合中文| 日本撒尿小便嘘嘘汇集6| 欧美一级毛片孕妇| 国产激情久久老熟女| svipshipincom国产片| 久久综合国产亚洲精品| 一级毛片女人18水好多| av国产精品久久久久影院| 午夜福利视频精品| 我要看黄色一级片免费的| 妹子高潮喷水视频| 无遮挡黄片免费观看| 两个人免费观看高清视频| av视频免费观看在线观看| 黄片小视频在线播放| 国产在线视频一区二区| 美女高潮到喷水免费观看| 久久精品人人爽人人爽视色| 免费观看人在逋| 永久免费av网站大全| 亚洲av国产av综合av卡| av福利片在线| 亚洲精品国产一区二区精华液| 免费在线观看日本一区| 热99国产精品久久久久久7| 午夜激情av网站| 侵犯人妻中文字幕一二三四区| 午夜福利影视在线免费观看| 久久国产精品影院| 亚洲全国av大片| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久成人aⅴ小说| 黄片小视频在线播放| 国产一区二区三区在线臀色熟女 | 国产欧美日韩一区二区三 | 欧美精品一区二区大全| 久9热在线精品视频| 女人精品久久久久毛片| 国产精品一区二区在线不卡| 日日爽夜夜爽网站| 欧美 亚洲 国产 日韩一| 色老头精品视频在线观看| 超碰97精品在线观看| 伊人久久大香线蕉亚洲五| 亚洲第一av免费看| 欧美黄色片欧美黄色片| 色94色欧美一区二区| 狠狠婷婷综合久久久久久88av| 亚洲国产欧美一区二区综合| 亚洲熟女精品中文字幕| 日韩中文字幕视频在线看片| 亚洲欧洲精品一区二区精品久久久| 人人澡人人妻人| 色播在线永久视频| 老熟妇乱子伦视频在线观看 | 午夜免费观看性视频| 成在线人永久免费视频| 国产成人精品久久二区二区91| 国产熟女午夜一区二区三区| 亚洲综合色网址| xxxhd国产人妻xxx| 国产成+人综合+亚洲专区| 午夜两性在线视频| 99国产极品粉嫩在线观看| 亚洲,欧美精品.| 中文字幕人妻丝袜制服| 国产色视频综合| 欧美日韩亚洲国产一区二区在线观看 | 免费观看a级毛片全部| 少妇的丰满在线观看| 久久久久久久精品精品| 在线十欧美十亚洲十日本专区| 热re99久久精品国产66热6| 人人妻,人人澡人人爽秒播| 考比视频在线观看| 一个人免费在线观看的高清视频 | 女警被强在线播放| 国产激情久久老熟女| 亚洲色图综合在线观看| 欧美精品啪啪一区二区三区 | 国产免费av片在线观看野外av| videosex国产| 亚洲激情五月婷婷啪啪| 国产麻豆69| 欧美精品av麻豆av| 亚洲欧美一区二区三区久久| 国产精品一二三区在线看| 涩涩av久久男人的天堂| 18禁国产床啪视频网站| 精品国产一区二区三区久久久樱花| 青草久久国产| 老司机午夜福利在线观看视频 | 亚洲黑人精品在线| 国产成人一区二区三区免费视频网站| 久久久精品94久久精品| 午夜91福利影院| 国产日韩欧美视频二区| 新久久久久国产一级毛片| 午夜福利,免费看| 男女之事视频高清在线观看| 久久香蕉激情| 免费av中文字幕在线| 国产1区2区3区精品| 久热爱精品视频在线9| 欧美av亚洲av综合av国产av| 日韩,欧美,国产一区二区三区| 男女免费视频国产| 18禁黄网站禁片午夜丰满| 亚洲av电影在线观看一区二区三区| 无限看片的www在线观看| 蜜桃国产av成人99| 国产又色又爽无遮挡免| 日韩人妻精品一区2区三区| 男女国产视频网站| 午夜两性在线视频| 国产深夜福利视频在线观看| 宅男免费午夜| 久久精品国产亚洲av高清一级| 免费在线观看黄色视频的| 伦理电影免费视频| a级毛片黄视频| 99久久人妻综合| 美女高潮喷水抽搐中文字幕| 纵有疾风起免费观看全集完整版| 老司机午夜十八禁免费视频| 亚洲 欧美一区二区三区| 侵犯人妻中文字幕一二三四区| 日韩视频在线欧美| 国产精品一区二区在线观看99| 国产黄频视频在线观看| 又紧又爽又黄一区二区| 999久久久国产精品视频| 久久av网站| 最近最新免费中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 50天的宝宝边吃奶边哭怎么回事| 水蜜桃什么品种好| 国产淫语在线视频| 亚洲人成77777在线视频| 欧美精品一区二区免费开放| 欧美另类亚洲清纯唯美| 在线观看舔阴道视频| 国产一级毛片在线| 国产又色又爽无遮挡免| 久久99一区二区三区| 99热网站在线观看| 中文字幕av电影在线播放| 午夜两性在线视频| 久久久精品免费免费高清| 亚洲欧美精品自产自拍| 极品人妻少妇av视频| 久久国产亚洲av麻豆专区| 999精品在线视频| 91麻豆精品激情在线观看国产 | 老司机影院毛片| 99香蕉大伊视频| 久久影院123| 欧美精品亚洲一区二区| avwww免费| 国产精品久久久久久人妻精品电影 | 国产精品久久久人人做人人爽| 亚洲欧美精品自产自拍| 日韩一卡2卡3卡4卡2021年| 丁香六月欧美| 免费在线观看影片大全网站| 欧美黑人欧美精品刺激| 在线观看免费日韩欧美大片| 啦啦啦视频在线资源免费观看| 飞空精品影院首页| 深夜精品福利| 永久免费av网站大全| 最新在线观看一区二区三区| 国产成人精品久久二区二区免费| 欧美日韩亚洲高清精品| 黄片小视频在线播放| 最新的欧美精品一区二区| 久久久久精品国产欧美久久久 | 精品人妻1区二区| 黄色视频不卡| 精品一区二区三区四区五区乱码| 黄色毛片三级朝国网站| 欧美日韩亚洲高清精品| 久久亚洲国产成人精品v| cao死你这个sao货| 一级毛片电影观看| 亚洲国产精品成人久久小说| 久久久欧美国产精品| a在线观看视频网站| 国产精品一区二区在线不卡| 天堂俺去俺来也www色官网| www.999成人在线观看| 最黄视频免费看| 国产av国产精品国产| 亚洲国产欧美日韩在线播放| 人妻一区二区av| 亚洲人成电影免费在线| 国产av国产精品国产| 亚洲专区中文字幕在线| 精品久久久久久久毛片微露脸 | 正在播放国产对白刺激| 97精品久久久久久久久久精品| 日韩精品免费视频一区二区三区| 国产黄频视频在线观看| 黄色怎么调成土黄色| 动漫黄色视频在线观看| 久久久久精品人妻al黑| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看 | 亚洲熟女精品中文字幕| 国产99久久九九免费精品| 国产在线一区二区三区精| 免费观看人在逋| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 少妇精品久久久久久久| 这个男人来自地球电影免费观看| 黑人欧美特级aaaaaa片| 亚洲精品在线美女| 亚洲久久久国产精品| 69精品国产乱码久久久| 久久国产亚洲av麻豆专区| 老熟女久久久| 中文字幕人妻丝袜制服| 婷婷丁香在线五月| 日韩 亚洲 欧美在线| 国产91精品成人一区二区三区 | 亚洲九九香蕉| 熟女少妇亚洲综合色aaa.| 777久久人妻少妇嫩草av网站| 人妻 亚洲 视频| 亚洲精品日韩在线中文字幕| 一级毛片女人18水好多| 99久久人妻综合| 又大又爽又粗| 国产成+人综合+亚洲专区| 天天影视国产精品| 国产免费福利视频在线观看| 多毛熟女@视频| 热re99久久精品国产66热6| av有码第一页| 各种免费的搞黄视频| 国产精品一区二区精品视频观看| 1024香蕉在线观看| 精品一区二区三区四区五区乱码| 夜夜骑夜夜射夜夜干| 国产淫语在线视频| 中国美女看黄片| 日日爽夜夜爽网站| 日本欧美视频一区| 中文欧美无线码| 国产精品熟女久久久久浪| 少妇被粗大的猛进出69影院| 99精品久久久久人妻精品| 亚洲专区字幕在线| 久久久欧美国产精品| 日日爽夜夜爽网站| 乱人伦中国视频| 欧美在线一区亚洲| 国产精品一区二区免费欧美 | 最近最新中文字幕大全免费视频| 成人18禁高潮啪啪吃奶动态图| 悠悠久久av| 中文字幕人妻丝袜制服| 国产人伦9x9x在线观看| 18禁观看日本| 精品免费久久久久久久清纯 | 国产欧美日韩一区二区三 | 久久 成人 亚洲| 一二三四在线观看免费中文在| 999久久久国产精品视频| 成年美女黄网站色视频大全免费| 中文字幕最新亚洲高清| 午夜精品国产一区二区电影| 成年美女黄网站色视频大全免费| 制服人妻中文乱码| 狠狠精品人妻久久久久久综合| 亚洲国产精品一区二区三区在线| 9色porny在线观看| 亚洲精品一区蜜桃| 久久免费观看电影| 黄色毛片三级朝国网站| 国产xxxxx性猛交| 国产一区二区三区av在线| 一区二区三区乱码不卡18| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 老司机影院成人| 在线精品无人区一区二区三| 成人国语在线视频| 国产亚洲一区二区精品| 欧美激情高清一区二区三区| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 精品福利永久在线观看| 精品国产乱子伦一区二区三区 | 久久精品成人免费网站| 脱女人内裤的视频| 欧美在线黄色| 制服诱惑二区| 五月天丁香电影| 99精品欧美一区二区三区四区| 日韩有码中文字幕| 久久久久久久久免费视频了| 亚洲国产精品成人久久小说| a级片在线免费高清观看视频| 男女下面插进去视频免费观看| 人人澡人人妻人| 国产成人系列免费观看| 国产一区二区三区av在线| 我要看黄色一级片免费的| 亚洲久久久国产精品| 777米奇影视久久| 三上悠亚av全集在线观看| 日韩人妻精品一区2区三区| 午夜日韩欧美国产| 亚洲精品一二三| 日韩大片免费观看网站| 国产精品久久久久久精品古装| 男女免费视频国产| 热re99久久国产66热| a级片在线免费高清观看视频| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 免费观看人在逋| 脱女人内裤的视频| 亚洲精品久久成人aⅴ小说| 视频区图区小说| 久久久久久免费高清国产稀缺| 永久免费av网站大全| 亚洲成人手机| 欧美黄色片欧美黄色片| 91麻豆av在线| 自线自在国产av| 国产黄频视频在线观看| 老司机影院成人| 一二三四社区在线视频社区8| 欧美日韩亚洲国产一区二区在线观看 | 欧美乱码精品一区二区三区| a级片在线免费高清观看视频| 成人国产av品久久久| 久久综合国产亚洲精品| 日韩 欧美 亚洲 中文字幕| 三级毛片av免费| 国产亚洲一区二区精品| 国产成人精品久久二区二区91| 精品高清国产在线一区| a级片在线免费高清观看视频| 成年女人毛片免费观看观看9 | 国产精品二区激情视频| 成人三级做爰电影| 人人妻,人人澡人人爽秒播| tocl精华| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯 | 人妻一区二区av| 大片电影免费在线观看免费| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 在线 av 中文字幕| 国产精品自产拍在线观看55亚洲 | 大香蕉久久网| 久久99热这里只频精品6学生| 免费在线观看完整版高清| 精品第一国产精品| 另类亚洲欧美激情| 高清av免费在线| 丁香六月天网| 久久这里只有精品19| 老司机靠b影院| 亚洲人成电影观看| 黄色视频在线播放观看不卡| 欧美日韩中文字幕国产精品一区二区三区 | 99久久精品国产亚洲精品| 亚洲国产欧美日韩在线播放| 久久久久国内视频| 亚洲国产精品成人久久小说| 久久中文字幕一级| 亚洲国产欧美网| 欧美日本中文国产一区发布| 亚洲国产精品一区三区| 亚洲精品久久成人aⅴ小说| 亚洲第一欧美日韩一区二区三区 | 啦啦啦 在线观看视频| 久久热在线av| 国产又色又爽无遮挡免| 国产男女内射视频| 国产又爽黄色视频| 亚洲第一欧美日韩一区二区三区 | 搡老熟女国产l中国老女人| 国产精品自产拍在线观看55亚洲 | 亚洲国产日韩一区二区| 国产日韩一区二区三区精品不卡| 考比视频在线观看| 多毛熟女@视频| 久久久精品免费免费高清| 亚洲avbb在线观看| 欧美在线黄色| 自拍欧美九色日韩亚洲蝌蚪91| 波多野结衣av一区二区av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲美女黄色视频免费看| 日韩 亚洲 欧美在线| 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| 欧美激情高清一区二区三区| 99国产精品一区二区三区| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 欧美xxⅹ黑人| 亚洲一区中文字幕在线| 永久免费av网站大全| 欧美日韩av久久| 亚洲精华国产精华精| 久久久精品区二区三区| 男人操女人黄网站| 国产高清视频在线播放一区 | 精品少妇一区二区三区视频日本电影| 亚洲av国产av综合av卡| 久久国产精品影院| 国产黄色免费在线视频| 亚洲专区国产一区二区| 最新的欧美精品一区二区| 激情视频va一区二区三区| 国产精品偷伦视频观看了| 久久久精品区二区三区| 91国产中文字幕| 免费在线观看影片大全网站| 69精品国产乱码久久久| 亚洲全国av大片| 日本撒尿小便嘘嘘汇集6| 国产精品麻豆人妻色哟哟久久| 亚洲综合色网址| 人妻 亚洲 视频| 丰满迷人的少妇在线观看| 亚洲国产日韩一区二区| 黄色毛片三级朝国网站| 亚洲精品国产精品久久久不卡| 国精品久久久久久国模美| 大陆偷拍与自拍| 高清欧美精品videossex| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区mp4| 这个男人来自地球电影免费观看|