• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High electron mobility fluorinated indacenodithiophene small molecule acceptors for organic solar cells

    2021-07-01 05:30:12FeiPnXiojunLiSonBiTinhoLiuXinWeiYinenLiShnshnChenChndukYnXiwenChenMenlnLvYonnLi
    Chinese Chemical Letters 2021年3期

    Fei Pn,Xiojun Li,Son Bi,Tinho Liu,Xin Wei,Yinen Li,Shnshn Chen,Chnduk Yn,Xiwen Chen,Menln Lv,b,d,*,Yonn Li**

    a School of Chemical Engineering,Guizhou Institute of Technology,Guiyang 550003,China

    b Beijing National Laboratory for Molecular Sciences,CAS Key Laboratory of Organic Solids,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    c School of Chemical Science,University of Chinese Academy of Sciences,Beijing 100049,China

    d School of Chemistry and Chemical Engineering,Guizhou University,Guiyang 550025,China

    e MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems,CQU-NUS Renewable Energy Materials & Devices Joint Laboratory,School of Energy & Power Engineering,Chongqing University,Chongqing 400044,China

    f Department of Energy Engineering,School of Energy and Chemical Engineering,Low Dimensional Carbon Materials Center,Ulsan National Institute of Science and Technology(UNIST),Ulsan 689-798,South Korea

    g Guangzhou Polyforte Chemical Technology Co.Ltd.,Guangzhou 510520,China

    ABSTRACT Indacenodithiophene(IDT)derivatives are kinds of the most representative and widely used cores of small molecule acceptors(SMAs)in organic solar cells(OSCs).Here we systematically investigate the influence of end-group fluorination density and position on the photovoltaic properties of the IDT-based SMAs IDIC-nF(n=0,2,4).The absorption edge of IDIC-nF red-shifts with the π-π stacking and crystallinity improvement,and their electronic energy levels downshift with increasing n.Due to the advantages of Jsc and FF as well as acceptable Voc,the difluorinated IDIC-2F acceptor based OSCs achieve the highest power conversion efficiency(PCE)of 13%,better than the OSC devices based on IDIC and IDIC-4F as acceptors.And the photovoltaic performance of the PTQ10:IDIC-2F OSCs is insensitive to the active layer thickness:PCE still keep high values of 12.00% and 11.46% for the devices with active layer thickness of 80 and 354 nm,respectively.This work verifies that fine and delicate modulation of the SMAs molecular structure could optimize photovoltaic performance of the corresponding OSCs.Meanwhile,the thickness-insensitivity property of the OSCs has potential for large-scale and printable fabrication technology.

    Keywords:Organic solar cells Indacenodithiophene Electron mobility Fluorination π-π Stacking Crystallinity

    As hopeful clean and renewable energy sources,organic solar cells(OSCs)are suitable for low-cost solution processing technology and have some unique advantages,such as light weight,flexibility,printability and so on[1–5].Noteworthy development has been made in the progress of novel and efficient highperformance OSCs materials and continuously optimized technology on the device fabrication.In recent five years,the significant improvement of OSCs power conversion efficiency(PCE)has been achieved by employing the wide-bandgap p-type conjugated polymers as donor and the narrow-bandgap n-type small molecule acceptors(SMAs)[6–10].Compared with traditional OSCs based on fullerene acceptor,the SMAs have the remarkable merits of suitable and tunable electronic energy levels,adjustable chemical structures,high absorption in visible–NIR region,and good morphology stability.Very recently,the single junction OSCs with the SMAs have boosted PCE to over 17%,which reached the threshold for application[11–13].

    Indacenodithiophene(IDT)derivatives are kinds of the most representative and widely used cores of SMAs[7,14–18].In IDT acceptors system,there is a general rule that smaller cores increase the ionization energy and blue-shift the absorption,which lead to the poorer π-π stacking.In addition,the side-chain and end groups are the key factors to influence the optical,electrochemical and photovoltaic properties of SMAs.The first report of IDT-based SMA,IDIC and its diverse structural variants have showed potential in various applications of OSCs,including high-efficiency binary,ternary bulk junction(BHJ)and tandem OSCs[19–26].

    There are three components in the SMAs:fused-ring electrondonating core,electrophilic end group and extended side chains.Therefore,in order to obtain the adjustable energy levels,π-π stacking,crystallinity and spectral absorption etc.,the most effective way is to modify the three parts structures[14–26].It is well known that the fluorination of the end groups for the SMAs could result in optical bandgap decrease(absorption redshift),electron affinity and electron mobility increase compared with fluoride-free or mono/di-methylation of the end groups[27–32].Meanwhile,fluorination is an efficient strategy to improve the π-π stacking and crystallinity,thus regulate the morphology to get high fill factor and device performance reasonably[33–35].Fluorination in SMAs showed good application prospects in different kinds of OSCs,hence it is necessary to further study the influence of fluorination density and position on the photovoltaic properties of the IDT-based NFAs.

    We regulate the end-group fluorination density and position to verify the relationship between chemical structures and BHJ photovoltaic properties of an IDT-based SMA series,including IDIC,IDIC-2Fand IDIC-4F(Fig.1)[36,37].The photovoltaicperformance of the IDIC-nF(n=0,2,4)acceptors are investigated by fabricating single-junction OSCs with the wide-bandgap p-type polymer poly[(thiophene)-alt-(6,7-difluoro-2-(2-hexyldecyloxy)quinoxaline)](PTQ10)[37,38]as donor.The UV–vis spectroscopy,thermogravimetric analysis(TGA),cyclic voltammetry(CV),atomic force microscopy(AFM),grazing incidence wide-angle X-ray scattering(GIWAXS),space-charge limited current(SCLC)mobility measurements are performed to investigate the chemical structuremorphology-performance relationship of the PTQ10:IDIC-nF blend films.The results indicate that the number and position of the fluorination on the IDIC-nF acceptors influence their photovoltaic performance significantly,and the difluorinated IDIC-2F acceptor based OSCs achieve the highest PCE of 13%,benefitted from its higher Jscand FF.

    The molecular structures of PTQ10 donor and IDIC-nF(n=0,2,4)acceptors are shown in Fig.1.Fig.2 shows the synthetic routes of the IDIC-nF acceptors.One-pot reaction of compound 1 with IC,IC-1F and IC-2F easily generates the three different symmetrical SMAs:IDIC,IDIC-2F,and IDIC-4F(Scheme S1 in Supporting information).The detailed synthetic procedures were described in Supporting information.TGA measurement was employed to investigate the thermal stability of IDIC-nF,as seen in Fig.S1(Supporting information).The results revealed that the end-group fluorination would enhance the thermal stability of the materials,and the decomposition temperatures(Td)at 5%weight-loss are 310°C,350°C and 350°C for IDIC,IDIC-2F and IDIC-4F,respectively[39].It indicates that all the three acceptors have good thermal stabilities for the OSCs fabrication.

    The UV–vis absorption spectra of the PTQ10(for comparison)and IDIC-nF acceptor films are shown in Fig.S2a(Supporting information),and the optical absorption properties of IDIC-nF are summarized in Table 1.IDIC-2F and IDIC-4F acceptor films both present a main absorption peak at 719 nm with absorption edge at about 775 nm,which corresponds to an optical bandgap of about 1.60 eV.Compared to fluoride-free acceptor IDIC,the fluorinated IDIC-nF generally red-shifts the absorption profile and λmax,resulting in lower optical bandgap than IDIC film(Egopt=1.63 eV).Fig.1c shows the energy level diagram of the related materials calculated from the onset oxidation and reduction potentials measured by electrochemical cyclic voltammetry.Relative to the PTQ10 donor,the three IDIC analogue acceptors display reasonable energy level alignments.The highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)energies of IDIC-nF monotonically down-shift with increasing n,which is consistent with the electron-withdrawing effect of fluorine.

    Table 1 Physicochemical properties of IDIC-nF(n=0,2,4)acceptors.

    Fig.1.(a)Molecular structures of polymer donor PTQ10 and acceptors(IDIC,IDIC-2F,IDIC-4F).(b)Device structure used in this work.(c)Energy level diagram of the related materials used in the OSCs.

    Fig.2.Synthetic routes of IDIC,IDIC-2F and IDIC-4F.

    In order to evaluate the photovoltaic properties of the IDIC-nF acceptors,the OSCs with the conventional architecture(ITO/PEDOT:PSS/PTQ10:IDIC-nF/PDINO/Al)were fabricated.It should be mentioned that PDINO(perylene diimide functionalized with amino N-oxide)is a typical cathode interlayer,and PTQ10 was selected as donor because it possesses a suitable energy level and relatively low-cost synthesis.The fabrication condition of OSCs was optimized via controlling different donor/acceptor weight ratio,thermal annealing treatment and so on.The optimized conditionsofOSCsarePTQ10:IDIC-nF(D/A)atweightratioof1:1and thermal annealing at 140°C(for IDIC-based OSC)or 120°C(for IDIC-2F and IDIC-4F based OSC)for 5 min[36–38].The PTQ10:IDIC-nF blend active layers were spin-coated from chloroform solution without the use of any additives in nitrogen protected glove box.

    The current density–voltage(J–V)curves of the optimized OSCs based on PTQ10:IDIC-nF under air mass global(AM 1.5 G)simulated solar illumination is presented in Fig.3a and the corresponding photovoltaic parameters are listed in Table 2.The devices based on PTQ10:IDIC without thermal annealing showed a PCE of 9.43%(Voc=0.989 V,Jsc=16.07 mA/cm2,FF=59.33%),and the PCE increased to 11.80%(Voc=0.956 V,Jsc=17.11 mA/cm2,FF=72.15%)after 140°C thermal annealing for 5 min,which matches the values reported in the literature[37].Thermal annealing at 120°C for 5 min improved the PCE of the OSCs based on end-group fluorination acceptors from 11.98%(Voc=0.914 V,Jsc=18.54 mA/cm2,FF=70.70%)to 13.02%(Voc=0.904 V,Jsc=18.95 mA/cm2,FF=75.99%)for IDIC-2F acceptor,and from 9.52%(Voc=0.820 V,Jsc=18.13 mA/cm2,FF=64.07%)to 11.10%(Voc=0.810 V,Jsc=18.57 mA/cm2,FF=73.78%)for IDIC-4F acceptor,respectively.It is clearly noted that the Vocdecreases with increasing n(the number of fluorination)in IDIC-nF,which is consistent with the lower LUMO levels of IDIC-2F and IDIC-4F.Meanwhile,the Jscvalues increase from 17.11 mA/cm2for the OSC based on IDIC acceptor to 18.57–18.95 mA/cm2for OSCs with the fluorinated acceptors,benefitted from their lower optical bandgap and broader absorption.The results of Jsctrends are coincident with the external quantum efficiency(EQE)spectra(Fig.3b).The FF values of~72%-73% for the IDIC-nF based OSCs are very similar,except for the IDIC-2F-based OSCs with the highest FF of~75%.Due to the advantages of Jscand FF as well as acceptable Voc,the IDIC-2F-based OSCs achieve the highest PCE of 13%.

    Table 2 Device performance of the OSCs based on PTQ10:IDIC-nF(1:1,w/w)under AM1.5 G 100 mW/cm2 illumination.

    Fig.3.Photovoltaic performance of the OSCs based on PTQ10:acceptors.(a)J-V curves of the traditional structured OSCs based on PTQ10:acceptors(1:1,w/w),under the illumination of AM1.5 G,100 mW/cm2.(b)EQE spectra of the corresponding OSCs.(c)Jph versus Veff curves of the optimized devices.(d)Light intensity dependence of Jsc.

    It is important to develop the photovoltaic materials that tolerate thickness variations of the BHJ active layer for large-scale and printable manufacturing of OSCs[40].Therefore,the active layer thickness dependence of the OSCs performance of the PTQ10:IDIC-2F based OSCs was investigated,and the active layer thickness changed from 80 nm to 354 nm.The plots of photovoltaic performance versus active layer thickness are shown in Fig.S3(Supporting information)and photovoltaic parameters of the corresponding OSCs are presented in Table S1(Supporting Information).The Vocand FF values reveal a decreasing tendency with the increase of active layer thickness,and the downward trend of FF is more obvious,while the Jscvalue of the OSCs increases with the increase of the active layer thickness.The OSC reached the highest PCE of 13.02%with the active layer thickness at 120 nm.It is necessary to mention that the PCE of the OSCs based on PTQ10:IDIC-2F still keep high values of 12.00%and 11.46%with active layer thickness of 80 and 354 nm,respectively.The thickness-insensitive PCE of the OSCs verifies that the PTQ10:IDIC-2F OSCs have potential for large-scale and printable fabrication technology.

    In order to systematically study the exciton dissociation and charge collection behavior of the OSCs with different SMAs,the dependence of photocurrent density(Jph)versus the effective voltage(Veff)of the optimized devices was measured.Fig.3c shows the Jphversus Veffplot of the OSCs,where Jphis defined as JL-JDand Veffis defined as V0-Vbias.JLand JDare the photocurrent densities under illumination and in the dark condition,and V0is the voltage at which Jph=0 and Vbiasis the applied bias[41,42].The charge dissociation probability P(E,T)can be calculated from the value of Jph/Jsat,where Jsatis the saturated Jphvalue when Veff≥2 V.Under the short circuit condition,the P(E,T)value are 96.32%for the IDIC,97.78%for IDIC-2F and 97.19%for IDIC-4F based OSCs,respectively.In general,the highest P(E,T)values of the IDIC-2F based OSCs represent the efficient exciton dissociation and charge collection.Steady state photoluminescence(PL)quenching experiment was carried out to confirm the exciton dissociation and charge transfer behavior in the blends.As shown in Fig.S4(Supporting information),comparison to neat PTQ10 film,PL spectroscopy of all the three blend films show quenching efficiencies of over 99%,indicating effective exciton dissociation and charge transfer between PTQ10 and IDIC-nF,thus resulting in the high FF[43–45].

    To further illustrate the charge carrier recombination behavior in the OSCs with the different SMAs,the dependence of Jscon light intensity(Plight)was measured.The relationship of Jscand Plightcan be described by the formula of Jsc∝(Plight)α,where α is a parameter related to the recombination degree[46–48].If the value of α approaches 1,bimolecular recombination in the BHJ blend films could be ignored.As seen in Fig.3d,the index α is 0.941,0.950 and 0.945 for the IDIC,IDIC-2F and IDIC-4F based OSCs,respectively(Fig.3d).The results of α value illustrate that less bimolecular recombination occur in the IDIC-2F based OSC device compared with the IDIC and IDIC-4F based OSCs.

    Fig.4.1D line-cuts and 2D patterns of the GIWAXS measurements.(a)Neat acceptor films,(b)as cast PTQ10:acceptor blend films and(c)thermal annealed PTQ10:acceptor blend films.(d,g,j)GIWAXS patterns of three acceptor films,(e,h,k)GIWAXS patterns of as cast PTQ10:acceptor blend films.(f,i,l)GIWAXS patterns of thermal annealed PTQ10:IDIC-nF acceptor blend films.The sample names are labeled on the figures.

    The electron mobility(μe)and hole mobility(μh)of the PTQ10:IDIC-nF active layers were measured using the space-charge limited current(SCLC)method[49].The structure of electron-only and hole-only devices are ITO/ZnO/PTQ10:IDIC-nF/PDINO/Al and ITO/PEDOT:PSS/PTQ10:IDIC-nF/MoO3/Ag,respectively.Fig.S5(Supporting information)shows the plots of the measurement results,and the obtained μeand μhvalues of the PTQ10:IDIC-nF active layers and the polymer and SMA pure films are listed in Table S2.The electron mobilities of IDIC-nF are 5.64×10-4cm2V-1s-1for IDIC,1.67×10-3cm2V-1s-1for IDIC-2F and 1.08×10-3cm2V-1s-1for IDIC-4F.Among the IDIC-nF,IDIC-2F has the highest electron mobility which is comparable to the SMFs used for the most efficient OSCs[13].The electron mobilities of the blend active layers of the acceptor with PTQ10 donor are in the range of 6.16–8.96×10-4cm2V-1s-1.For the PTQ10-based OSCs without any post-treatment,the μh/μeratios are 0.09,0.15 and 0.11 for the IDIC,IDIC-2F and IDIC-4F-based devices respectively.After thermal annealing under corresponding conditions for 5 min,the μh/μeratios of the corresponding OSCs increase to 0.13,0.16 and 0.15 respectively.The OSCs based on IDIC-2F show the most balanced charge mobility with μh/μeof 0.15 and 0.16 for the devices without and with thermal treatment,which could be one reason for the higher PCE of 11.98%(as-cast device)and 13.02%(thermal annealing device)for the IDIC-2F based OSCs.

    To investigate the end-group fluorination effects on aggregation morphologies of active layers,the atomic force microscopy(AFM),and transmission electron microscopy(TEM)measurements were conducted[50,51].Grazing incident wide-angle X-ray diffraction(GIWAXS)measurement was also performed to further investigate the molecular orientation and packing behavior in solid state.The plots and 2D patterns of GIWAXS measurement are displayed in Fig.4 and Tables S3 and S4(Supporting information).According to the 2D patterns,all neat IDIC,IDIC-2F and IDIC-4F acceptor films show predominant face-on orientation,mainly due to their similar skeletal structures.In the corresponding line-cuts,the neat IDIC film exhibits the(010)π-π stacking distance of 3.523?and coherence length of 31.821?in the out-of-plane(OOP)direction.With increasing the fluorination substitutions in the end-groups,the OOP(010)π-π stacking distance and coherence length values are 3.507?and 49.438?for neat IDIC-2F film and 3.570?and 57.224?for neat IDIC-4F film,respectively.It is noted that the neat IDIC-2F film presents the tightest π-π stacking with moderate coherence length value.Upon blending with the PTQ10 donor polymer,the OOP π-π stacking coherence length values of all three blend films are comparable.After TA treatment,compared to the coexistence of face-on and edge-on orientation in PTQ10:IDIC blend film,the favorable face-on orientation was mostly retained in both PTQ10:IDIC-2F and PTQ10:IDIC-4F films,which is desirable for the vertical charge transport in devices.Especially,the PTQ10:IDIC-2F blend film shows closer OOP(010)π-π stacking,indicating the suitable miscibility between donor and acceptor components in blend,which benefits for the exciton dissociation and charge transfer in devices[52–54].The improvement of molecular packing could be beneficial for the higher performance of the OSCs with the TA treatment.Meanwhile,the results are correlated well with the device performances mentioned above.

    Fig.S6(Supporting information)presents the AFM images of PTQ10:IDIC-nF blend films,and the relatively uniform morphology and smooth surface with a root-mean-square(RMS)roughness of 0.89 nm for IDIC,0.87 nm for IDIC-2F and 1.27 nm for IDIC-4F.Fig.S7(Supporting information)shows the TEM images of PTQ10:IDIC-nF blend films.The obviously refined fibrillary networks are found in all the PTQ10:IDIC-nF blend films both in as-cast and thermal annealed films.The domain size decreases with the increase of n of IDIC-nF SMAs after thermal annealing treatment.From corresponding relationship between devices performance and domain size,too large or too small domain sizes are not beneficial for the efficient exciton dissociation and charge transport.The AFM and TEM results all indicate that an appropriate phase separation and domain size are useful to improve devices performance.

    In conclusion,in order to study the fluorination effects on IDTbased SMAs,three IDT-based SMA series IDIC-nF are designed and synthesized with n=0,2,4 fluorine atom(s).The absorption edge of IDIC-nF red-shifts with the improved π-π stacking and crystallinity,and the energy level of IDIC-nF downshifts with increasing n.Due to the higher Jscand FF as well as acceptable Voc,the difluorinated IDIC-2F acceptor based OSCs achieve the highest PCE of 13% in comparison with the OSC devices based on IDIC and IDIC-4F.And the photovoltaic performance of the OSCs based on PTQ10:IDIC-2F is insensitive to the active layer thickness:PCE of the PTQ10:IDIC-2F OSCs still keep high values of 12.00%and 11.46%with active layer thickness of 80 and 354 nm,respectively.The results indicate that fine and delicate modulation of SMAs molecular structure is an effective way to improve photovoltaic performance of the OSCs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work was supported by the Natural Science Foundation of China(Nos.51820105003,51863002 and 51973042),Excellent young scientific and technological talents of Guizhou,China(No.QKHPTRC[2019]5652).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.08.051.

    国产深夜福利视频在线观看| 久久久久久久久大av| 中文字幕最新亚洲高清| 免费黄色在线免费观看| 欧美97在线视频| 十八禁网站网址无遮挡| 免费观看a级毛片全部| 2018国产大陆天天弄谢| 亚洲精品日本国产第一区| videos熟女内射| 女性生殖器流出的白浆| 国产一区二区在线观看av| 校园人妻丝袜中文字幕| 久久久久久久大尺度免费视频| 亚洲精品一二三| 91久久精品电影网| 欧美少妇被猛烈插入视频| 亚洲精品日本国产第一区| 免费黄频网站在线观看国产| 午夜福利在线观看免费完整高清在| 国产伦精品一区二区三区视频9| 久久青草综合色| 曰老女人黄片| h视频一区二区三区| 夜夜看夜夜爽夜夜摸| 草草在线视频免费看| 久久99热这里只频精品6学生| 一边摸一边做爽爽视频免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲人成网站在线播| 十八禁网站网址无遮挡| 3wmmmm亚洲av在线观看| 在线观看免费高清a一片| 91精品国产九色| 伦精品一区二区三区| 久久99精品国语久久久| 国产日韩一区二区三区精品不卡 | 久久久久久久久久人人人人人人| 99热网站在线观看| 亚洲av免费高清在线观看| 丁香六月天网| 中文天堂在线官网| 18禁在线播放成人免费| 欧美日韩亚洲高清精品| 免费av不卡在线播放| 亚洲欧美成人综合另类久久久| 黄色毛片三级朝国网站| 国产亚洲精品第一综合不卡 | 桃花免费在线播放| 国内精品宾馆在线| 久热这里只有精品99| 欧美精品一区二区大全| 成人18禁高潮啪啪吃奶动态图 | 中文字幕人妻丝袜制服| 日韩av免费高清视频| 国产精品嫩草影院av在线观看| 少妇精品久久久久久久| 国产有黄有色有爽视频| 国产一区二区在线观看日韩| 亚洲精品乱久久久久久| 最近最新中文字幕免费大全7| 精品国产乱码久久久久久小说| 国产午夜精品久久久久久一区二区三区| 国产熟女午夜一区二区三区 | 乱码一卡2卡4卡精品| 国产精品不卡视频一区二区| 亚洲成色77777| 这个男人来自地球电影免费观看 | 99久久综合免费| 最近的中文字幕免费完整| 亚洲图色成人| 日韩在线高清观看一区二区三区| 成人亚洲欧美一区二区av| 日韩不卡一区二区三区视频在线| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 一级毛片黄色毛片免费观看视频| 国产精品欧美亚洲77777| 国产精品99久久99久久久不卡 | 91精品国产国语对白视频| 亚洲不卡免费看| 人人妻人人澡人人爽人人夜夜| 亚洲伊人久久精品综合| 老司机影院成人| 成年女人在线观看亚洲视频| 91国产中文字幕| 久久99热这里只频精品6学生| 久久久久久久大尺度免费视频| 色94色欧美一区二区| 色婷婷av一区二区三区视频| 简卡轻食公司| 高清视频免费观看一区二区| 日韩精品有码人妻一区| 精品卡一卡二卡四卡免费| 极品少妇高潮喷水抽搐| 亚洲国产精品一区二区三区在线| 国国产精品蜜臀av免费| 999精品在线视频| 亚洲中文av在线| 国产伦精品一区二区三区视频9| 人妻人人澡人人爽人人| 中文字幕久久专区| 国产 一区精品| 中文字幕av电影在线播放| 久久精品国产亚洲av天美| 国产高清不卡午夜福利| 国国产精品蜜臀av免费| 欧美xxxx性猛交bbbb| 亚洲人成网站在线观看播放| 视频区图区小说| 一级毛片我不卡| 在线观看一区二区三区激情| 日韩av在线免费看完整版不卡| 在线观看国产h片| 国产无遮挡羞羞视频在线观看| 免费看光身美女| 免费播放大片免费观看视频在线观看| 亚洲精品久久午夜乱码| 老女人水多毛片| 伊人亚洲综合成人网| 激情五月婷婷亚洲| 18禁观看日本| 国产成人精品无人区| 男女国产视频网站| 欧美 日韩 精品 国产| 免费av不卡在线播放| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 日韩熟女老妇一区二区性免费视频| 亚洲av男天堂| 水蜜桃什么品种好| 亚洲人成网站在线观看播放| 一区二区av电影网| 亚洲国产精品成人久久小说| 国产午夜精品一二区理论片| 人人妻人人澡人人看| 久久国内精品自在自线图片| 国产成人一区二区在线| 久久久久视频综合| 国产精品一二三区在线看| 黄色一级大片看看| 少妇的逼好多水| 国产精品国产三级国产专区5o| 精品酒店卫生间| 女人精品久久久久毛片| 99热这里只有是精品在线观看| 国产在线免费精品| 少妇的逼好多水| 成人二区视频| 午夜福利在线观看免费完整高清在| 男女国产视频网站| videos熟女内射| 久久热精品热| 亚洲高清免费不卡视频| 免费看不卡的av| 看非洲黑人一级黄片| 性色avwww在线观看| 免费人成在线观看视频色| 免费人妻精品一区二区三区视频| videossex国产| 又黄又爽又刺激的免费视频.| 天天躁夜夜躁狠狠久久av| 人人妻人人添人人爽欧美一区卜| 伊人久久国产一区二区| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 色5月婷婷丁香| 少妇人妻 视频| 久久久久网色| 岛国毛片在线播放| 欧美精品国产亚洲| 在线亚洲精品国产二区图片欧美 | 秋霞在线观看毛片| 看十八女毛片水多多多| 欧美另类一区| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲欧美精品永久| 美女视频免费永久观看网站| 精品国产一区二区三区久久久樱花| 2018国产大陆天天弄谢| 中文字幕免费在线视频6| 欧美日韩一区二区视频在线观看视频在线| 视频中文字幕在线观看| 成年女人在线观看亚洲视频| 亚洲国产精品专区欧美| 啦啦啦啦在线视频资源| 国产女主播在线喷水免费视频网站| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| 日本午夜av视频| 国产亚洲精品久久久com| 一区二区日韩欧美中文字幕 | 亚洲国产欧美在线一区| 久久久久久人妻| 人妻夜夜爽99麻豆av| 亚洲欧洲精品一区二区精品久久久 | 国产成人freesex在线| 亚洲av中文av极速乱| 在线观看免费高清a一片| 日韩精品免费视频一区二区三区 | 日韩大片免费观看网站| 如何舔出高潮| 日韩人妻高清精品专区| 91精品国产国语对白视频| 在线观看免费视频网站a站| 少妇被粗大猛烈的视频| 少妇熟女欧美另类| 一级毛片黄色毛片免费观看视频| 啦啦啦视频在线资源免费观看| 精品久久久噜噜| 亚洲美女黄色视频免费看| 大香蕉97超碰在线| 久久精品人人爽人人爽视色| 夫妻午夜视频| videos熟女内射| 免费人妻精品一区二区三区视频| 亚洲综合精品二区| 女性生殖器流出的白浆| 国国产精品蜜臀av免费| 午夜影院在线不卡| 国产伦精品一区二区三区视频9| 欧美xxxx性猛交bbbb| 国产男女超爽视频在线观看| 日本av手机在线免费观看| 黄色欧美视频在线观看| 久久久久久伊人网av| 国产亚洲一区二区精品| 伊人亚洲综合成人网| 精品少妇内射三级| 日本黄色日本黄色录像| 亚洲欧洲精品一区二区精品久久久 | 久久久国产精品麻豆| 精品久久国产蜜桃| 国产成人精品一,二区| 亚洲精品日韩av片在线观看| 99热6这里只有精品| 人体艺术视频欧美日本| 国产av国产精品国产| 午夜视频国产福利| 精品久久蜜臀av无| 熟妇人妻不卡中文字幕| 亚洲天堂av无毛| 亚洲国产精品成人久久小说| 免费观看av网站的网址| 毛片一级片免费看久久久久| 欧美人与善性xxx| 五月玫瑰六月丁香| av电影中文网址| 免费人成在线观看视频色| 亚洲天堂av无毛| 一区二区三区四区激情视频| 午夜免费观看性视频| 精品一区二区免费观看| 欧美日韩亚洲高清精品| 亚洲美女黄色视频免费看| 少妇人妻精品综合一区二区| 伦理电影大哥的女人| 成人影院久久| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 久热久热在线精品观看| 超色免费av| 亚洲av免费高清在线观看| 少妇高潮的动态图| 国产男人的电影天堂91| 高清在线视频一区二区三区| 五月伊人婷婷丁香| 国产亚洲一区二区精品| 婷婷色麻豆天堂久久| 亚洲精品国产av成人精品| 日韩,欧美,国产一区二区三区| 精品久久久久久久久av| 一级爰片在线观看| 中国三级夫妇交换| 国产在线一区二区三区精| 国产精品偷伦视频观看了| 老司机影院成人| 老司机影院毛片| 久久99热这里只频精品6学生| 考比视频在线观看| 国产成人免费观看mmmm| 熟妇人妻不卡中文字幕| 久久精品国产自在天天线| 少妇 在线观看| 国产成人精品久久久久久| 卡戴珊不雅视频在线播放| 亚洲国产精品999| 国产精品免费大片| 国产日韩欧美亚洲二区| 国产伦精品一区二区三区视频9| 妹子高潮喷水视频| 久久99蜜桃精品久久| 久久久久精品性色| 国产成人精品久久久久久| 99久久综合免费| 日本黄色日本黄色录像| 亚洲精品久久午夜乱码| 中国美白少妇内射xxxbb| 午夜激情久久久久久久| 在线观看人妻少妇| 亚洲国产精品专区欧美| 久久精品国产a三级三级三级| 亚洲天堂av无毛| 久久精品国产亚洲网站| 18在线观看网站| 美女国产高潮福利片在线看| 欧美xxⅹ黑人| 99久国产av精品国产电影| videosex国产| 一二三四中文在线观看免费高清| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 免费看不卡的av| 一级a做视频免费观看| 久久久久久久亚洲中文字幕| 一级毛片 在线播放| 内地一区二区视频在线| 视频区图区小说| 嘟嘟电影网在线观看| 18在线观看网站| 熟女人妻精品中文字幕| 成人毛片a级毛片在线播放| 插阴视频在线观看视频| 美女脱内裤让男人舔精品视频| 一区二区三区四区激情视频| 九草在线视频观看| 高清不卡的av网站| 精品酒店卫生间| xxxhd国产人妻xxx| 国产欧美亚洲国产| 国产免费视频播放在线视频| 国产一区二区三区综合在线观看 | 丰满饥渴人妻一区二区三| 美女大奶头黄色视频| 免费观看的影片在线观看| 亚洲成人av在线免费| 黄色毛片三级朝国网站| videosex国产| 国模一区二区三区四区视频| 一级毛片黄色毛片免费观看视频| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 最近手机中文字幕大全| 大话2 男鬼变身卡| 下体分泌物呈黄色| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 伊人亚洲综合成人网| 男人爽女人下面视频在线观看| 日本免费在线观看一区| 在现免费观看毛片| 欧美精品人与动牲交sv欧美| 午夜激情av网站| 成人毛片a级毛片在线播放| 老司机影院成人| 日本黄大片高清| 一本大道久久a久久精品| 99精国产麻豆久久婷婷| 国内精品宾馆在线| 中文天堂在线官网| 一级黄片播放器| 制服丝袜香蕉在线| 高清毛片免费看| 亚洲欧美一区二区三区黑人 | 国产男女超爽视频在线观看| 色哟哟·www| 精品99又大又爽又粗少妇毛片| 国产免费一级a男人的天堂| 最近中文字幕高清免费大全6| 成人综合一区亚洲| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 免费av不卡在线播放| 一级毛片电影观看| 亚洲精品一二三| 丰满迷人的少妇在线观看| 国产极品粉嫩免费观看在线 | 精品人妻偷拍中文字幕| 国产日韩欧美视频二区| 亚洲精品,欧美精品| 国产69精品久久久久777片| 免费高清在线观看视频在线观看| 婷婷成人精品国产| 亚洲欧洲国产日韩| 国产日韩欧美亚洲二区| 777米奇影视久久| 国产色婷婷99| 亚洲欧洲日产国产| 亚洲欧美成人精品一区二区| 天堂8中文在线网| 一个人看视频在线观看www免费| 免费大片18禁| 大香蕉久久网| 热re99久久国产66热| 亚洲成人av在线免费| 日韩免费高清中文字幕av| 夜夜看夜夜爽夜夜摸| 99久国产av精品国产电影| 在线看a的网站| 人妻少妇偷人精品九色| 一区二区三区精品91| 欧美丝袜亚洲另类| 哪个播放器可以免费观看大片| 国产精品蜜桃在线观看| 亚洲怡红院男人天堂| 国产亚洲精品第一综合不卡 | 国产老妇伦熟女老妇高清| 永久免费av网站大全| 最近2019中文字幕mv第一页| 国产精品成人在线| 亚洲av综合色区一区| 成人黄色视频免费在线看| 欧美日韩亚洲高清精品| 亚洲av.av天堂| 国产精品麻豆人妻色哟哟久久| 大片电影免费在线观看免费| 国产午夜精品一二区理论片| 黄色怎么调成土黄色| 日韩,欧美,国产一区二区三区| 在线观看免费高清a一片| 亚洲成人av在线免费| av不卡在线播放| 男的添女的下面高潮视频| 国产黄色视频一区二区在线观看| 日本与韩国留学比较| 999精品在线视频| 视频区图区小说| 乱码一卡2卡4卡精品| 久久精品国产a三级三级三级| 色吧在线观看| 久久婷婷青草| 99九九线精品视频在线观看视频| 人妻制服诱惑在线中文字幕| 精品久久久精品久久久| 国产永久视频网站| 国产亚洲一区二区精品| 人人妻人人澡人人看| 丝袜喷水一区| 一级片'在线观看视频| 18+在线观看网站| 精品少妇久久久久久888优播| 成人免费观看视频高清| 热99国产精品久久久久久7| 91午夜精品亚洲一区二区三区| 久久99热6这里只有精品| 精品久久久久久久久亚洲| 亚洲国产精品国产精品| 又粗又硬又长又爽又黄的视频| 两个人免费观看高清视频| 9色porny在线观看| 日韩熟女老妇一区二区性免费视频| 99热6这里只有精品| 91国产中文字幕| 亚洲人成网站在线播| 日韩大片免费观看网站| 午夜视频国产福利| 亚洲色图综合在线观看| 你懂的网址亚洲精品在线观看| 人妻少妇偷人精品九色| 免费观看a级毛片全部| 高清在线视频一区二区三区| 亚洲欧洲日产国产| 日本黄色日本黄色录像| 高清欧美精品videossex| 一级,二级,三级黄色视频| 999精品在线视频| www.色视频.com| 国产淫语在线视频| 青青草视频在线视频观看| 国产成人精品在线电影| 久久久久精品性色| 国产熟女午夜一区二区三区 | 国产视频首页在线观看| 国产欧美亚洲国产| 免费日韩欧美在线观看| 免费高清在线观看视频在线观看| 国产深夜福利视频在线观看| 有码 亚洲区| 久久久久久久久久成人| 一级毛片我不卡| 日韩av在线免费看完整版不卡| 丝袜在线中文字幕| 久久久久视频综合| 亚洲性久久影院| 一区二区三区免费毛片| 母亲3免费完整高清在线观看 | 亚洲,一卡二卡三卡| 国产精品久久久久久久电影| 在线免费观看不下载黄p国产| 最黄视频免费看| 国产成人精品一,二区| 亚洲国产精品一区三区| 最近中文字幕2019免费版| 国产成人aa在线观看| 69精品国产乱码久久久| 欧美一级a爱片免费观看看| 亚洲情色 制服丝袜| 亚洲成人av在线免费| 国产黄色视频一区二区在线观看| 26uuu在线亚洲综合色| 又黄又爽又刺激的免费视频.| 久久久久人妻精品一区果冻| 国产高清不卡午夜福利| 在线免费观看不下载黄p国产| 国产欧美日韩综合在线一区二区| 精品一区二区三卡| 久久精品久久精品一区二区三区| 中文字幕人妻丝袜制服| 国产亚洲一区二区精品| 一级毛片 在线播放| 97超碰精品成人国产| 王馨瑶露胸无遮挡在线观看| 亚洲精品亚洲一区二区| 99久久人妻综合| 一级a做视频免费观看| 九草在线视频观看| 久久久久精品性色| 久久久久精品久久久久真实原创| 亚洲丝袜综合中文字幕| 少妇猛男粗大的猛烈进出视频| 永久免费av网站大全| 欧美 日韩 精品 国产| 自拍欧美九色日韩亚洲蝌蚪91| 中国美白少妇内射xxxbb| 最后的刺客免费高清国语| 一级,二级,三级黄色视频| 亚洲美女搞黄在线观看| 久久久精品94久久精品| 看十八女毛片水多多多| 51国产日韩欧美| 搡女人真爽免费视频火全软件| 一区二区日韩欧美中文字幕 | 国产精品久久久久久精品电影小说| 91aial.com中文字幕在线观看| tube8黄色片| 99九九线精品视频在线观看视频| 国产精品久久久久久久电影| 免费看av在线观看网站| 精品午夜福利在线看| 伊人久久精品亚洲午夜| 中文乱码字字幕精品一区二区三区| 日本午夜av视频| 国产淫语在线视频| 国产成人a∨麻豆精品| 中文天堂在线官网| 九九爱精品视频在线观看| 一级毛片电影观看| 大陆偷拍与自拍| 亚洲精品成人av观看孕妇| 日本wwww免费看| 久久久精品免费免费高清| 99久久综合免费| 国产极品天堂在线| 涩涩av久久男人的天堂| 青青草视频在线视频观看| 亚洲欧美精品自产自拍| 国产 精品1| 91午夜精品亚洲一区二区三区| 51国产日韩欧美| 这个男人来自地球电影免费观看 | 国产欧美日韩一区二区三区在线 | 亚洲不卡免费看| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 国产精品免费大片| 国产成人午夜福利电影在线观看| 天堂8中文在线网| 五月开心婷婷网| 亚洲综合精品二区| 男的添女的下面高潮视频| 国产日韩欧美视频二区| 免费观看a级毛片全部| 亚洲美女搞黄在线观看| 亚洲一级一片aⅴ在线观看| 亚洲丝袜综合中文字幕| 欧美性感艳星| 看免费成人av毛片| 2021少妇久久久久久久久久久| 69精品国产乱码久久久| 久久久精品免费免费高清| 欧美日韩国产mv在线观看视频| 中文欧美无线码| 欧美97在线视频| 丝袜美足系列| 成人手机av| 精品久久久噜噜| 毛片一级片免费看久久久久| 蜜臀久久99精品久久宅男| 亚洲欧美色中文字幕在线| 中文字幕av电影在线播放| 婷婷色麻豆天堂久久| 欧美精品高潮呻吟av久久| 国精品久久久久久国模美| 国产黄色免费在线视频| 国产色爽女视频免费观看| 国产av国产精品国产| 这个男人来自地球电影免费观看 | 丰满迷人的少妇在线观看| 亚洲av日韩在线播放| 亚洲精品乱码久久久v下载方式| 成人影院久久| 亚洲国产精品一区二区三区在线| 欧美成人午夜免费资源| 国产精品女同一区二区软件| 男女免费视频国产| 久久久久久久大尺度免费视频| 伦理电影免费视频| 午夜福利在线观看免费完整高清在| 99热这里只有精品一区| 99九九线精品视频在线观看视频| 我的老师免费观看完整版| 伊人久久国产一区二区| 亚洲精品久久午夜乱码| 视频在线观看一区二区三区| 国产日韩欧美在线精品|