• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Porous microtubes of nickel-cobalt double oxides as non-enzymatic hydrogen peroxide sensors

    2021-07-01 05:29:50QinLiJinNiuMeilingDouZhengpingZhangFengWang
    Chinese Chemical Letters 2021年3期

    Qin Li,Jin Niu,Meiling Dou,Zhengping Zhang,*,Feng Wang,*

    a State Key Laboratory of Chemical Resource Engineering,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China

    b Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    ABSTRACT Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H2O2)have attracted more and more concerns.A series of nickel and cobalt double oxides(NixCoy-DO)with the different ratios of Ni/Co have been prepared by a polyol-mediated solvothermal method for H2O2 detection.The obtained products exhibit honeycomb-like open porous microtubes constituted with the low-dimensional nanostructured NixCoy-DO blocks after the calcination treatment.Compared with nickel oxides,the introduced Co ions in NixCoy-DO can induce the production of surficial oxygen vacancies,and further enhance the electrode surface activity.In particular,the NiCo-DO sample(with an atomic ratio of Ni/Co=4:3)shows the richest surficial oxygen vacancies and presents the highest H2O2 detection activity among all the as-prepared samples,demonstrating an excellent sensitivity of 698.60 μA L mmol-1 cm-2(0~0.4 mmol/L),low detection limit(0.28 μmol/L,S/N=3),as well as long stability,high selectivity and good reproducibility.This work lends a new impetus to the potential application of double metal oxides for the next generation of non-enzymatic sensors.

    Keywords:Double metal oxides Porous microtubes Oxygen vacancies Hydrogen peroxide detection Electrochemical sensors

    Hydrogen peroxide(H2O2),as a strong oxidizing agent,not only plays an important role in pharmaceutics,industrial bleaches and clinical medicine[1–3],but also can induce many diseases,such as cardiovascular disease,Alzheimer's,cancer,Parkinson’s disease[4,5].Therefore,it is essential to accurately detect the concentration of H2O2with a simple and cost-effective operation method.Among various detection approaches[6–8],non-enzymatic electrochemical sensors have attracted more and more attention due to their irreplaceable advantages,including low detection limit,high sensitivity,good selectivity and high stability[9,10].Accordingly,a wide variety of non-enzymatic sensor materials have been investigated,such as precious metals(Ag,Au,etc.)[11,12],carbon materials[13],and non-precious metal compounds[14–16].Due to the balance of availability and detection performance,nickel oxides(NiO)have been considered as one of the efficient H2O2sensing materials[17,18].The detection mechanism is based on the increased anodic current responses of Ni(II)O→Ni(III)OOH,attributed to the electron transfer from H2O2to Ni(III)OOH,according to Eqs.1 and 2[19].

    Nevertheless,the utilization of NiO particles directly as the electrochemical sensors is limited by their high electronic resistance,confined surface area and inferior surficial activity.Hence,several featured NiO nanoarchitectures(e.g.,nanoparticles[20],nanofibers[21],nanosheets[22],nanoflower[23],etc.)have been designed to enlarge the electrochemical surface area.In particular,the low-dimensional crosslinked texture with open pores has proved to be favorable for enhancing electronic conductivity and facilitating mass-transfer ability.Besides optimizing nanostructures,introducing other metals into NiO has been investigated to enhance the reactivity by the complementary and synergistic effects of the two types of metal elements[24,25].Among these metal elements,Co has the similar atomic radius to Ni,which is beneficial for incorporating Co into NiO lattice to form well-dispersion Ni–O–Co solid solutions for enhancing the electrochemical reactivity[26].To this end,it is necessary to systematically investigate the role of Ni and Co,but such research has been rarely reported,especially for H2O2detection.

    In this work,we synthesized a series of honeycomb-like open porous nanoarchitecture built of the low-dimensional nickel and cobalt double oxides(NixCoy-DO)blocks for H2O2detection(Supporting information).After two simple synthesis steps,involving of polyol-mediated solvothermal reaction and calcination(Scheme S1 in Supporting information),different contents of Co were successfully incorporated into NiO.The obtained samples were named as Ni2Co-DO,NiCo-DO and NiCo2-DO,respectively,according to the mass ratios of metal precursors(i.e.,Ni/Co chlorides added was 2:1,1:1,and 1:2).The Ni/Co atomic ratios were measured as 5:2(Ni2Co-DO),4:3(NiCo-DO)and 2:3(NiCo2-DO)by inductively coupled plasma(ICP,Table S1 in Supporting information).In comparison with the homemade NiO,the introduced Co ions in NixCoy-DO not only facilitated the construction of honeycomb-like open porous microtubes but also induced the production of surficial oxygen vacancies.As a result,the NixCoy-DO exhibited high detection performance as non-enzymatic H2O2electrochemical sensors.

    The NixCoylayered double hydroxide(NixCoy-LDH)and Ni hydroxide intermediates were firstly characterized by X-ray powder diffraction(XRD)and scanning electron microscopy(SEM).From XRD patterns(Fig.S1 in Supporting information),the characteristic diffraction peaks centered at 10.3°,21.6°,33.8°,60.1°refers to the(003),(006),(101),(110)crystal planes of α-Co/Ni(OH)2[27],suggesting that all the hydroxide intermediates were generated.On the contrary,no solid product was obtained by the same synthetic method in the absence of Ni ions(Fig.S2 in Supporting information).As shown in SEM in Fig.S3(Supporting information),compared with the uniform microspheres of Ni(OH)2intermediate(d=850 nm),NixCoy-LDH presented that the microspheres were assembled in one-dimension structure with the increase of Co content.Since the mass ratio of Ni/Co chlorides added to the system was below 1:1,the microspheres almost disappeared and formed open porous microtubules structure(d=2.6 μm)constituted with a great number of crosslinked and vertically-standing nanoflakes.The morphologic variety of Ni(OH)2and NixCoy-LDH originated from a larger solubility product of Co2+than Ni2+[28],resulting to that the Co2+ions served as“glue”to reconstitute the microtubules with the Ni(OH)2microspheres[29,30].After the calcination treatment,all the final products(i.e.,NixCoy-DO and NiO)still reserved the porous microarchitecture of the hydroxide intermediates with a slight reduction in diameter(NixCoy-DO:d=2.1 μm;NiO:d=770 nm,Figs.1a–d).Meanwhile,the internal structures of these microtubules were clearly discerned by the high-resolution transmission electron microscopy(HR-TEM).As shown in Fig.1e,the NiO was composed of nanoscale but irregular features,and had an interplanar spacing about 0.24 nm,which could be corresponded to the NiO(111)plane.Compared with the NiO,the lattice fringes with 0.24 nm of NixCoy-DO were rougher,indicating that lattice defects increased after Co introducing(Figs.1f–h)[31].In addition,it could be seen that the formation of nanorod was promoted by increasing the Co content in NixCoy-DO(Fig.S4 in Supporting information),and the nanorods resolved lattice fringes with an interplanar spacing of about 0.47 nm.Furthermore,the elemental mapping images of NiCo-DO sample(Fig.S5 in Supporting information)demonstrated that the element Ni,Co and O were evenly distributed in the microtubules.On the basis of the microscopy observation,the illustrations of morphology variety for NiO and NixCoy-DO are summarized in Fig.1i.

    Fig.1.SEM and HR-TEM images of(a,e)NiO,(b,f)Ni2Co-DO,(c,g)NiCo-DO,and(d,h)NiCo2-DO,respectively.(i)Schematic illustration of morphology variety of the above four samples.

    To investigate the porous structure of these as-prepared samples,N2adsorption-desorption measurements were conducted for NiO,Ni2Co-DO,NiCo-DO and NiCo2-DO(Fig.S6 and Table S2 in Supporting information).With the increase of Co content,the NixCoy-DO samples presented the decreased surface area(from 102.9 m2/g to 86.9 m2/g),but increased pore volume(from 0.166 cm3/g to 0.223 cm3/g)and average pore size(from 7.5 nm to 12.2 nm).Owing to the large divergence in the morphologies between NixCoy-DO and NiO samples,the porous parameters of NiO(93.5 m2/g,0.231 cm3/g and 8.3 nm)did not follow this tendency.The larger surface area of NixCoy-DO,than those of previously reported Ni-Co oxides[32,33],could be attributed to the polyol-mediated effect,especially polyethylene glycol[34].

    Fig.2a showed the XRD patterns of NixCoy-DO and NiO samples,and the characteristic diffraction peaks of NiO sample were assigned to the fine cubic rock salt structure(JCPDS No.47-1049).When the Co content was increased,the diffraction peaks of Ni2Co-DO and NiCo-DO became weaker and broader,but mainly maintained the NiO-based crystal structure.However,as for NiCo2-DO,the diffraction peaks ascribed to the spinel structure(JCPDS No.20-0781)were observed due to the NiCo2O4agglomeration.It was worth noting that the NiCo-DO sample exhibited the most weakened and broadened diffraction peaks in comparison with NiO,Ni2Co-DO and NiCo2-DO.It indicated that the incorporation of Co could largely distort the NiO lattice structure to lowcrystalline and amorphous structure,but further facilitate the formation of NiCo2O4nanocrystals.

    Fig.2.(a)XRD patterns and(b)Raman spectra of NiO,Ni2Co-DO,NiCo-DO,and NiCo2-DO.

    To study the chemical structures of NixCoy-DO,Raman analysis was further performed.Fig.2b showed that the one-phonon band(1LO,around 502 cm-1)and two-phonon band(2LO,around 1065 cm-1)in NiO were due to the Ni–O stretching mode.When incorporating Co2+into NiO lattices,the 1LO band became more asymmetric and broader,and the 2LO peak decreased,which can be ascribed to the lattice expansion and structural disorder,along with oxygen vacancies[35].In addition,the F2g,Egand A1gbands at around 182,466 and 642 cm-1,respectively,were observed in both NiCo-DO and NiCo2-DO,which can be attributed to the bridging metal-oxygen bonds(Ni-O and Co-O).The increased A1gband in NiCo2-DO demonstrated the increased concentration of octahedral coordination sites(CoO6,Co3+)in the spinel NiCo2O4structure[36],which was consistent with the XRD results.

    Furthermore,the electronic structures of Ni and Co was studied by X-ray absorption near edge structure(XANES)spectroscopy.The normalized Co K-edge XANES spectra(Fig.S7a in Supporting information)showed that the Ni2Co-DO was close to the CoO reference,but the NiCo-DO and NiCo2-DO samples exhibited the similar pre-edge features with Co3O4,indicating that the Co valences in Ni2Co-DO,NiCo-DO and NiCo2-DO were dominantly Co(II),Co(II/III)and Co(II/III),respectively.On the other hand,all the as-prepared NixCoy-DO and NiO samples presented the similar structure of the standard NiO reference with Ni(II).While NiCo-DO and NiCo2-DO exhibited relatively low white-line intensities,it revealed an increase of Ni(II)species with defects(Fig.S7b in Supporting information).The Fourier-transforms of the extended X-ray absorption fine structure(EXAFS)spectra of Co and Ni were collected to further analyze the NixCoy-DO samples.As shown in Fig.S7c(Supporting information),the peaks of Ni2Co-DO were similar with standard CoO.However,NiCo-DO and NiCo2-DO were close to Co3O4with three characteristic peaks at 1.5,2.5 and 3?,signified the bond distance of Co–O,octahedral Co-octahedral Co/Ni,and tetrahedral Co-octahedral Co,respectively.Meanwhile,the single scattering paths of Ni–O and the closest neighboring metalmetal(i.e.,octahedral Ni-octahedral Ni/Co)were observed at about 1.6 and 2.5?,respectively(Fig.S7d in Supporting information)[37].Particularly,the intensity of Ni–O bonding was firstly reduced and then increased by increasing the Co content.The weakest intensity of Ni–O bonding in NiCo-DO indicated that the NiCo-DO possessed the minimal Ni–O bonding,which could be associated with the oxygen vacancies.Moreover,the bond distances of Ni–O and octahedral Ni-octahedral Ni/Co decreased with the increase of Co content,which was due to the difference of ion radius between Ni(II)and Co(II)[38].

    The surface chemical structure was further measured by X-ray photoelectron spectroscopy(XPS).Fig.3a showed the presence of Ni 2p,Co 2p and O 1s in the NixCoy-DO samples,All the chemical composition of as-prepared NiO and NixCoy-DO was listed in Table S3(Supporting information).In addition,the Co 2p spectra(Fig.3b)showed that Co(III)and Co(II)were found at 779.6 eV/794.9 eV and 781.2 eV/796.4 eV,respectively;meanwhile,the Ni 2p spectra(Fig.3c)were also fitted with Ni(II)(854.3 eV/872.1 eV)and Ni(III)(855.6 eV/873.2 eV)[39].With the increase of Co content,the Co(III)/Co(II)atomic ratio was increased as following:Ni2Co-DO<NiCo-DO<NiCo2-DO,and the trend of Ni(III)/Ni(II)atomic ratio was also increased(i.e.,NiO<Ni2Co-DO<NiCo-DO<NiCo2-DO,Table S3 in Supporting information).The high content of Co(III)and Ni(III)was designated to the partly per-oxidized surface and/or the formation of NiCo2O4from NiO[26,40],both leading to an increase in surficial oxygen content(NiO<Ni2Co-DO<NiCo2-DO).However,it was worth noting that the NiCo-DO possessed the lowest oxygen content among the NixCoy-DO samples.The O 1s spectra(Fig.3d)of the NiO and NixCoy-DO samples were deconvoluted into three fitted peaks centered at 529.2 eV(O1),530.7 eV(O2)and 533.4 eV(O3),corresponding to the typical of lattice metal-oxygen bonds,the surficial oxygen deficient regions,and the multiplicity of hydroxyl physic/chemisorption,respectively[39].The contents of the active O2 and O3 species were increased by introducing Co and increasing Co content(Table S3).Due to the largest structural distortion and the lowest oxygen content,the NiCo-DO exhibited the abundant surficial oxygen vacancies within the highly active surface.Thus,we estimated that the NiCo-DO would have the enhanced electrochemical sensing performance.

    Fig.3.XPS spectra of NiO and NixCoy-DO samples,(a)survey spectrum,(b)Co 2p,(c)Ni 2p,and(d)N 1s for the NiO and NixCoy-DO samples.

    Before evaluating the performance for H2O2detection,the NiO and all NixCoy-DO modified GCEs were activated by cyclic voltammetry(CV)measurement.Fig.4a demonstrated the CV curves of NiO and NixCoy-DO electrodes with and without 1 mmol/L H2O2in 0.1 mol/L NaOH(N2-saturated)solution at a scan rate of 20 mV/s.A pair of redox peaks within 0-0.70 V could be attributed to reversible processes between metal oxides and metal oxyhydroxides in the NaOH electrolyte.Compared with the NiO and Ni2Co-DO(NiO:46 μA;Ni2Co-DO:161 μA,at about 0.45 V),the NiCo-DO and NiCo2-DO electrodes exhibited higher oxidation current(NiCo-DO:415 μA;NiCo2-DO:337 μA)detection at about 0.50 V.Notably,the NiCo-DO exhibited the highest oxidation current responses(Δi=16.7 μA)to 1 mmol/L H2O2solution in comparison with other as-prepared electrodes(NiCo2-DO:12.7 μA;Ni2Co-DO:10.8 μA;NiO:7 μA).Moreover,as the concentration of H2O2increased,the cathodic current of the NiCo-DO sensor was significantly enhanced,indicating a typical representation of the catalytic reduction of H2O2(Fig.4b).The CV curves of NiCo-DO sensor under different scan rates(20~100 mV/s)were carried out to further study the electrochemical mechanism(Fig.4c).The current responses exhibited a pair of redox peaks(the anodic peaks at ca.0.49~0.60 V and the cathodic peaks at ca.0.20~0.26 V).In addition,the redox peak currents maintained proportional to the square root of scan rate(the inset in Fig.4c).The result indicated that the oxidation process of H2O2on the NiCo-DO surface was diffusion controlled.

    Fig.4.(a)CV curves of the NiO and NixCoy-DO electrodes in absence and presence of 1 mmol/L H2O2.(b)CV curves of the NiCo-DO electrode in 0.1 mol/L NaOH with different content of H2O2.(c)CV curves of NiCo-DO at different scan rates,and the inset showed the derived plot of the redox peak vs.the square root of scan rate.(d)The i-t response of NiO and NixCoy-DO electrodes towards the injection of H2O2,and the inset in(d)showed the calibration curve of current response vs.H2O2 concentration.

    The amperometry curve of the NiO and NiCo-DO electrodes were carried upon the successive addition of H2O2at+0.50 V(Fig.4d).The corresponding calibration curves(the inset in Fig.4d)showed that NiCo-DO exhibited a highest sensitivity of 698.605 μA L mmol-1cm-2,with the linear range of 0 to 0.4 mmol/L and 444.84 μA L mmol-1cm-2,with the linear range of 0.4–1.2 mmol/L towards the addition of H2O2,which was consistent with the CV results.Like other metal oxides,the decrease of sensitivity(slope)in the second linear range(higher analyte concentrations)[41,42],which was likely due to the limited specific surface area of NixCoy-DO restricted the diffusion of electrolyte and reactant[34].In the future,we will further enlarge the range of linear region by loading NixCoy-DO on high surface area carriers.Besides,the NiCo-DO sensor also exhibited a low detection limit(0.28 μmol/L,S/N=3).The calculation method of the sensitivity and the detection limit could be found in the Supporting information.In addition,as aliquots of H2O2were added into electrolyte,the response time of NiCo-DO was within 6 s.We also compared the sensing performances of NiCo-DO sensor with other typical non-enzymatic for H2O2sensing.The summarized results showed that the detection performance of the NiCo-DO electrode was comparable even better than previous sensors,especially the sensitivity(Table S4 in Supporting information).

    The excellent sensitivity and outstanding detection limit of NiCo-DO sample had drawn our attention.Based on the identification of the abundant surficial oxygen vacancies,we proposed the oxygen vacancy participated mechanism shown schematically in Scheme 1 in comparison with traditional electron transfer mechanism.Compared with the NiO,the oxygen-vacancy enriched NiCo-DO could enhance the surface activity and show the larger current response.

    Scheme 1.Schematics of the electron transfer mechanism and the oxygen vacancy participated mechanism.

    In addition,some potentially oxidizable compounds such as uric acid(UA),L(+)-cysteine(L-Cys)and ascorbic acid(AA)are the main interfering substances for H2O2detection,for these electroactive species commonly coexisting in the biological fluids,which can also be oxidized at the high potential and their electrochemical signals to severely affect the selectivity of enzymatic sensors.Thus,it is critically important to examine the selectivity analysis of the NiCo-DO electrode towards H2O2sensing.Fig.S8(Supporting information)showed the chronoamperometric responses upon the addition of some possible interfering substances.20 μmol/L additions of these interfering species exhibited negligible current responses,while 200 μmol/L H2O2caused a significant response.It indicated that the NiCo-DO sensor had a good selectivity for H2O2detection.Furthermore,the stability of the NiCo-DO electrode was studied by the five continuous chronoamperometry results in one month(stored at 4°C,Fig.S9 in Supporting information).The attenuation of normalized current was only 14.2%,showing that the NiCo-DO sensor exhibited the excellent stability.The chronoamperometry measurement also showed a good reproducibility of NiCo-DO sensor with the relative standard deviation of only 5.80% in five parallel samples(Fig.S10 in Supporting information).

    In summary,we synthesized a series of honeycomb-like open porous microarchitecture in built of the low-dimensional NixCoy-DO blocks with the different ratios of Ni/Co by a polyol-mediated solvothermal method.The introduced Co in NixCoy-DO not only induced the morphologic and crystalline change but also increased the surficial oxygen vacancies.Thanks to the abundant oxygen vacancies,the NiCo-DO sample presented the high sensitivity and low limit detection,along with the good selectivity,stability and reproducibility.Therefore,this work develops one kind of highperformance non-enzymatic H2O2sensors and lends a new impetus to the potentially application of double metal oxides.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.51432003,51802011 and 51125007),the Start-Up Fund for Talent Introduction of Beijing University of Chemical Technology(No.buctrc201806),and the Fundamental Research Funds for the Central Universities(No.JD2010).The authors are grateful to the Beijing Synchrotron Radiation Facility(BSRF)for the XAFS tests.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.07.045.

    亚洲人成伊人成综合网2020| 国产高清视频在线播放一区| 国产欧美日韩精品亚洲av| 欧美黑人巨大hd| x7x7x7水蜜桃| 国产午夜精品论理片| 99久久久亚洲精品蜜臀av| 亚洲片人在线观看| 男女视频在线观看网站免费| 国产av一区在线观看免费| 内射极品少妇av片p| 好男人电影高清在线观看| 高清日韩中文字幕在线| 亚洲精品影视一区二区三区av| 老司机午夜十八禁免费视频| 欧美乱色亚洲激情| 日本与韩国留学比较| 色综合站精品国产| 亚洲欧美激情综合另类| 特级一级黄色大片| 久久人人精品亚洲av| 亚洲国产欧美人成| 男插女下体视频免费在线播放| 亚洲内射少妇av| 亚洲天堂国产精品一区在线| 久久久国产成人免费| 亚洲国产色片| 很黄的视频免费| 俺也久久电影网| 午夜免费激情av| 亚洲人成电影免费在线| 国产日本99.免费观看| 国产精品永久免费网站| 99热精品在线国产| 久久久久免费精品人妻一区二区| 激情在线观看视频在线高清| 国产精品久久久久久久电影| 久久久久亚洲av毛片大全| 国内揄拍国产精品人妻在线| 久久人人精品亚洲av| 精品乱码久久久久久99久播| 久久6这里有精品| 国产精品久久久久久久久免 | av在线老鸭窝| 99热这里只有是精品50| 蜜桃久久精品国产亚洲av| 成熟少妇高潮喷水视频| 成年女人毛片免费观看观看9| 精品人妻熟女av久视频| 男插女下体视频免费在线播放| 日日干狠狠操夜夜爽| 我要搜黄色片| 亚洲五月婷婷丁香| 最近在线观看免费完整版| 欧美色欧美亚洲另类二区| 日韩欧美在线二视频| av在线老鸭窝| 日韩欧美在线乱码| 国语自产精品视频在线第100页| 久久国产精品影院| 日本黄大片高清| 日本五十路高清| 国产精品久久久久久亚洲av鲁大| 欧美+亚洲+日韩+国产| 国产欧美日韩精品亚洲av| 国产精品日韩av在线免费观看| 日本一二三区视频观看| 国产v大片淫在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区免费欧美| 国产黄片美女视频| 三级国产精品欧美在线观看| 亚洲国产精品sss在线观看| 亚洲精品色激情综合| 少妇裸体淫交视频免费看高清| 国产精品爽爽va在线观看网站| 日本a在线网址| 一级作爱视频免费观看| 在线看三级毛片| 啦啦啦韩国在线观看视频| 免费看光身美女| 夜夜看夜夜爽夜夜摸| 午夜福利18| 亚洲自偷自拍三级| 一个人免费在线观看电影| 久久性视频一级片| 国产单亲对白刺激| 日韩欧美国产在线观看| 欧美日韩黄片免| 亚洲av成人av| 欧美色欧美亚洲另类二区| 特级一级黄色大片| 精品一区二区免费观看| 日韩 亚洲 欧美在线| a级一级毛片免费在线观看| 成人av一区二区三区在线看| av在线天堂中文字幕| 色视频www国产| 国产午夜精品论理片| 一级a爱片免费观看的视频| 国产黄色小视频在线观看| 一级黄片播放器| 韩国av一区二区三区四区| 深夜a级毛片| 日韩av在线大香蕉| 日韩大尺度精品在线看网址| 日本五十路高清| 国产一区二区亚洲精品在线观看| 18禁黄网站禁片免费观看直播| 色视频www国产| 热99re8久久精品国产| 国产中年淑女户外野战色| 午夜福利在线观看吧| 亚洲av.av天堂| 日韩欧美国产一区二区入口| 亚洲乱码一区二区免费版| 欧美黄色片欧美黄色片| 欧美性猛交╳xxx乱大交人| 18美女黄网站色大片免费观看| 亚洲成a人片在线一区二区| 亚洲欧美日韩高清在线视频| 伦理电影大哥的女人| 日韩人妻高清精品专区| 国产欧美日韩一区二区三| 观看美女的网站| 亚洲人成电影免费在线| 尤物成人国产欧美一区二区三区| av天堂中文字幕网| 亚洲精品色激情综合| 欧美xxxx性猛交bbbb| 亚洲成av人片在线播放无| 婷婷色综合大香蕉| 亚洲成av人片免费观看| 欧美绝顶高潮抽搐喷水| 男女床上黄色一级片免费看| 一进一出抽搐动态| 免费无遮挡裸体视频| 国产私拍福利视频在线观看| 久久九九热精品免费| 看片在线看免费视频| 日本与韩国留学比较| 亚洲欧美日韩卡通动漫| 99热这里只有是精品50| 美女免费视频网站| 日韩亚洲欧美综合| 欧美+日韩+精品| 午夜a级毛片| 久久午夜亚洲精品久久| 日本熟妇午夜| 欧美黑人欧美精品刺激| 免费看日本二区| 国产精品98久久久久久宅男小说| 国产男靠女视频免费网站| 欧美zozozo另类| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久精品夜夜夜夜夜久久蜜豆| www.www免费av| 欧美bdsm另类| 国产淫片久久久久久久久 | 91麻豆精品激情在线观看国产| 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添av毛片 | 一区二区三区四区激情视频 | 99国产综合亚洲精品| 国产精品久久电影中文字幕| 成人特级黄色片久久久久久久| 国产欧美日韩精品亚洲av| 麻豆av噜噜一区二区三区| 亚洲av五月六月丁香网| 波多野结衣高清作品| 成人鲁丝片一二三区免费| 变态另类成人亚洲欧美熟女| 精品久久国产蜜桃| 久久久国产成人精品二区| 欧美日本视频| 欧美乱妇无乱码| 久久久久久久精品吃奶| 18禁黄网站禁片午夜丰满| 中文字幕av在线有码专区| 成人毛片a级毛片在线播放| 亚洲av免费在线观看| 欧美成狂野欧美在线观看| 精品久久久久久久久久久久久| 精品福利观看| 精品人妻视频免费看| 综合色av麻豆| 成年免费大片在线观看| 中文字幕av在线有码专区| 亚洲专区中文字幕在线| 麻豆国产97在线/欧美| 午夜老司机福利剧场| bbb黄色大片| 色综合欧美亚洲国产小说| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| 国产精品爽爽va在线观看网站| 一进一出抽搐动态| 麻豆一二三区av精品| 99久久久亚洲精品蜜臀av| 亚洲内射少妇av| 精品人妻熟女av久视频| 免费人成在线观看视频色| 亚洲一区二区三区色噜噜| 97超视频在线观看视频| 18美女黄网站色大片免费观看| 午夜久久久久精精品| av福利片在线观看| 国产黄色小视频在线观看| 淫妇啪啪啪对白视频| 美女大奶头视频| 久久九九热精品免费| 欧美日本视频| 少妇的逼好多水| 亚洲av不卡在线观看| 99久久久亚洲精品蜜臀av| 成人午夜高清在线视频| 人妻丰满熟妇av一区二区三区| 亚洲欧美日韩无卡精品| 可以在线观看的亚洲视频| 一个人看视频在线观看www免费| 88av欧美| 在线播放国产精品三级| 亚洲成人精品中文字幕电影| 成人性生交大片免费视频hd| 国产乱人伦免费视频| 琪琪午夜伦伦电影理论片6080| 国产久久久一区二区三区| 欧美+亚洲+日韩+国产| 一个人观看的视频www高清免费观看| 国产探花在线观看一区二区| 亚洲成人中文字幕在线播放| 午夜精品久久久久久毛片777| 激情在线观看视频在线高清| 制服丝袜大香蕉在线| 国产高清三级在线| 少妇丰满av| 一级作爱视频免费观看| 久久久久国产精品人妻aⅴ院| 国产黄a三级三级三级人| 99热这里只有精品一区| 久久国产乱子伦精品免费另类| 日韩亚洲欧美综合| 在线观看免费视频日本深夜| 超碰av人人做人人爽久久| 亚洲欧美日韩高清在线视频| 国产私拍福利视频在线观看| 国产久久久一区二区三区| av在线观看视频网站免费| 桃红色精品国产亚洲av| av福利片在线观看| 国产精品久久久久久人妻精品电影| 亚洲中文日韩欧美视频| 亚洲精品粉嫩美女一区| 午夜精品一区二区三区免费看| 午夜a级毛片| 国产日本99.免费观看| 国产午夜福利久久久久久| 成人午夜高清在线视频| 特级一级黄色大片| 18禁在线播放成人免费| 午夜免费男女啪啪视频观看 | 亚洲精品在线美女| 一个人观看的视频www高清免费观看| 欧美高清成人免费视频www| 免费电影在线观看免费观看| 一级av片app| 成人毛片a级毛片在线播放| 97热精品久久久久久| 日日摸夜夜添夜夜添av毛片 | 国产淫片久久久久久久久 | 欧美成人性av电影在线观看| 韩国av一区二区三区四区| 欧美精品国产亚洲| 级片在线观看| 国产蜜桃级精品一区二区三区| 三级毛片av免费| 国产极品精品免费视频能看的| 欧美激情在线99| 亚洲中文日韩欧美视频| 久久久久久国产a免费观看| 日韩欧美国产在线观看| 丰满的人妻完整版| 国产精品永久免费网站| 搡女人真爽免费视频火全软件 | 少妇裸体淫交视频免费看高清| av专区在线播放| 色吧在线观看| 丰满人妻熟妇乱又伦精品不卡| 日韩成人在线观看一区二区三区| 日本黄色片子视频| 国产男靠女视频免费网站| 简卡轻食公司| 亚洲成人久久性| 免费搜索国产男女视频| 好看av亚洲va欧美ⅴa在| 精品久久国产蜜桃| 最近最新中文字幕大全电影3| 两个人的视频大全免费| 最后的刺客免费高清国语| 一本综合久久免费| 高清日韩中文字幕在线| 久久草成人影院| 久久欧美精品欧美久久欧美| 热99re8久久精品国产| 人妻夜夜爽99麻豆av| 久久精品影院6| 黄色丝袜av网址大全| 亚洲国产精品999在线| aaaaa片日本免费| 每晚都被弄得嗷嗷叫到高潮| 成年人黄色毛片网站| 国产老妇女一区| 一个人观看的视频www高清免费观看| 中文资源天堂在线| av在线天堂中文字幕| 波多野结衣巨乳人妻| 国产国拍精品亚洲av在线观看| 午夜久久久久精精品| 一区福利在线观看| 国产久久久一区二区三区| 国产一区二区在线观看日韩| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 欧美黄色淫秽网站| 亚洲欧美日韩无卡精品| 99久国产av精品| 人人妻人人澡欧美一区二区| 18禁黄网站禁片午夜丰满| 精品一区二区三区人妻视频| 欧美乱妇无乱码| 亚洲中文字幕日韩| 午夜福利视频1000在线观看| 日韩中文字幕欧美一区二区| 免费观看的影片在线观看| 亚洲专区国产一区二区| 18美女黄网站色大片免费观看| 亚洲av五月六月丁香网| 久久午夜福利片| 国产乱人伦免费视频| 欧美激情在线99| 亚洲最大成人中文| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久成人| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 欧美性感艳星| 伊人久久精品亚洲午夜| 91久久精品国产一区二区成人| 人妻制服诱惑在线中文字幕| 69av精品久久久久久| 日韩精品中文字幕看吧| 观看美女的网站| 国产精品亚洲美女久久久| 欧美性猛交╳xxx乱大交人| netflix在线观看网站| 九九热线精品视视频播放| 天堂av国产一区二区熟女人妻| 精品久久国产蜜桃| 免费av观看视频| 久久久精品欧美日韩精品| 亚洲中文日韩欧美视频| 亚洲狠狠婷婷综合久久图片| 国产熟女xx| 日韩欧美免费精品| 伊人久久精品亚洲午夜| 99久久无色码亚洲精品果冻| 亚洲经典国产精华液单 | 老熟妇仑乱视频hdxx| 久9热在线精品视频| 身体一侧抽搐| 久久久久九九精品影院| 成人高潮视频无遮挡免费网站| 波多野结衣高清作品| 成熟少妇高潮喷水视频| 精品国产亚洲在线| 欧美zozozo另类| 韩国av一区二区三区四区| 有码 亚洲区| 又爽又黄a免费视频| 色在线成人网| 国产真实乱freesex| 国产免费一级a男人的天堂| 99在线视频只有这里精品首页| 亚洲成人久久性| 可以在线观看的亚洲视频| 成人国产一区最新在线观看| 少妇人妻精品综合一区二区 | 99精品久久久久人妻精品| 两个人的视频大全免费| x7x7x7水蜜桃| 美女免费视频网站| 国产成人av教育| 日本成人三级电影网站| 国产高清有码在线观看视频| 中文字幕av在线有码专区| 丰满人妻一区二区三区视频av| 久久久国产成人精品二区| 在线观看av片永久免费下载| 亚洲精品影视一区二区三区av| 99久久99久久久精品蜜桃| 一进一出好大好爽视频| 久久99热6这里只有精品| 日本黄大片高清| 一个人观看的视频www高清免费观看| 国产一区二区激情短视频| 两人在一起打扑克的视频| 亚洲 欧美 日韩 在线 免费| 久久6这里有精品| 午夜日韩欧美国产| 亚洲av美国av| 一级av片app| 在线观看av片永久免费下载| 性色avwww在线观看| 日本熟妇午夜| 综合色av麻豆| 亚洲三级黄色毛片| 久久精品国产清高在天天线| 中文字幕免费在线视频6| 97碰自拍视频| 欧美xxxx黑人xx丫x性爽| 亚洲成av人片在线播放无| 国产一区二区在线观看日韩| 麻豆av噜噜一区二区三区| 悠悠久久av| 久久亚洲真实| 欧美日韩国产亚洲二区| 日韩欧美精品v在线| 一区二区三区免费毛片| 真人做人爱边吃奶动态| АⅤ资源中文在线天堂| 久久久久久久亚洲中文字幕 | 毛片一级片免费看久久久久 | 欧美高清性xxxxhd video| 午夜福利在线在线| 99在线视频只有这里精品首页| av福利片在线观看| 一区二区三区四区激情视频 | 午夜福利在线在线| 亚洲人成电影免费在线| 夜夜看夜夜爽夜夜摸| 夜夜爽天天搞| 免费看光身美女| 嫩草影院精品99| 人妻久久中文字幕网| 久久香蕉精品热| 久久天躁狠狠躁夜夜2o2o| 伊人久久精品亚洲午夜| 免费看美女性在线毛片视频| 熟妇人妻久久中文字幕3abv| 日本 欧美在线| 国产一级毛片七仙女欲春2| 三级毛片av免费| 亚洲精品日韩av片在线观看| 一本精品99久久精品77| 国产一区二区激情短视频| 欧美激情国产日韩精品一区| 中亚洲国语对白在线视频| 国产极品精品免费视频能看的| 51国产日韩欧美| 18禁黄网站禁片免费观看直播| 最近最新免费中文字幕在线| 成人特级黄色片久久久久久久| 欧美日韩福利视频一区二区| 91av网一区二区| 国内久久婷婷六月综合欲色啪| 十八禁网站免费在线| 18+在线观看网站| 狠狠狠狠99中文字幕| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久爱视频| 18禁黄网站禁片午夜丰满| 12—13女人毛片做爰片一| 99在线视频只有这里精品首页| 一区二区三区激情视频| 99riav亚洲国产免费| 国产精品久久久久久久电影| 热99re8久久精品国产| 18禁黄网站禁片免费观看直播| 日韩欧美国产在线观看| 露出奶头的视频| 亚洲欧美日韩东京热| 亚洲欧美清纯卡通| av中文乱码字幕在线| 亚洲avbb在线观看| 变态另类丝袜制服| 成人高潮视频无遮挡免费网站| 夜夜爽天天搞| 国产爱豆传媒在线观看| 成熟少妇高潮喷水视频| 国产欧美日韩精品亚洲av| 欧美+日韩+精品| 日韩高清综合在线| 国产精品影院久久| 在线播放国产精品三级| 午夜福利免费观看在线| 婷婷精品国产亚洲av| 毛片女人毛片| 无遮挡黄片免费观看| 亚洲天堂国产精品一区在线| 中文字幕熟女人妻在线| 又紧又爽又黄一区二区| 少妇人妻精品综合一区二区 | 成人鲁丝片一二三区免费| 欧美午夜高清在线| 欧美高清成人免费视频www| 欧美黑人巨大hd| 久久久久久九九精品二区国产| 非洲黑人性xxxx精品又粗又长| avwww免费| 国产精品电影一区二区三区| 久久6这里有精品| av在线蜜桃| 女人被狂操c到高潮| 黄片小视频在线播放| 18+在线观看网站| 色精品久久人妻99蜜桃| 波多野结衣高清无吗| 内地一区二区视频在线| 国产一区二区在线av高清观看| 成人高潮视频无遮挡免费网站| 午夜精品在线福利| 美女免费视频网站| 中文字幕久久专区| 亚洲七黄色美女视频| 欧美日韩黄片免| 蜜桃亚洲精品一区二区三区| 十八禁网站免费在线| 99国产精品一区二区三区| 午夜精品在线福利| 婷婷色综合大香蕉| 欧美潮喷喷水| 老鸭窝网址在线观看| 久久热精品热| 国产精品永久免费网站| 中文字幕熟女人妻在线| 亚洲精品一卡2卡三卡4卡5卡| 禁无遮挡网站| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 午夜免费成人在线视频| 女人被狂操c到高潮| 亚洲国产精品999在线| 亚洲男人的天堂狠狠| 美女黄网站色视频| 欧美潮喷喷水| 欧美性猛交╳xxx乱大交人| 91在线观看av| 夜夜爽天天搞| 欧美又色又爽又黄视频| 老女人水多毛片| 欧美日韩乱码在线| 人妻夜夜爽99麻豆av| 欧美极品一区二区三区四区| 国产精品三级大全| 变态另类成人亚洲欧美熟女| 久久99热6这里只有精品| 99热只有精品国产| 国产精品99久久久久久久久| 好男人在线观看高清免费视频| eeuss影院久久| a级一级毛片免费在线观看| 最近最新免费中文字幕在线| 亚洲真实伦在线观看| 十八禁国产超污无遮挡网站| 51午夜福利影视在线观看| 国产免费一级a男人的天堂| 亚洲人成网站在线播| 久久久久久大精品| 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 亚洲av免费在线观看| 黄色配什么色好看| 18禁黄网站禁片午夜丰满| 亚洲综合色惰| 欧美乱色亚洲激情| 简卡轻食公司| 国产欧美日韩一区二区三| 久久久久久久久久成人| av女优亚洲男人天堂| 亚洲片人在线观看| 欧美日本视频| 日韩亚洲欧美综合| 搡女人真爽免费视频火全软件 | 欧美中文日本在线观看视频| 亚洲熟妇熟女久久| 一级黄色大片毛片| 欧美3d第一页| 亚洲熟妇熟女久久| 一级黄色大片毛片| 亚洲精品456在线播放app | 狂野欧美白嫩少妇大欣赏| www.色视频.com| 欧美+日韩+精品| 一级作爱视频免费观看| 一区福利在线观看| 国产熟女xx| 一级作爱视频免费观看| 亚洲综合色惰| 天天一区二区日本电影三级| 国产成人av教育| 亚州av有码| 精品福利观看| 色视频www国产| 国产一区二区在线av高清观看| 日本成人三级电影网站| 老司机午夜福利在线观看视频| 亚洲国产欧美人成| 亚洲国产高清在线一区二区三| 欧美日韩亚洲国产一区二区在线观看| 长腿黑丝高跟| 免费看光身美女| 国产亚洲精品久久久com| 亚洲精品一区av在线观看| 极品教师在线视频| 国产成年人精品一区二区|