• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TiO2/CuPc/NiFe-LDH photoanode for efficient photoelectrochemical water splitting

    2021-07-01 05:29:46YnfeiLiRuikngZhngJinmingLiJinghoLiuYuongMioJinGuoMingfeiSho
    Chinese Chemical Letters 2021年3期

    Ynfei Li,Ruikng Zhng*,Jinming Li,Jingho Liu,Yuong Mio,Jin Guo,Mingfei Sho,*

    a State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    b College of Chemistry and Material Science,Hebei Normal University,Shijiazhuang 050024,China

    c Petroleum Geology Research and Laboratory Center,Research Institute of Petroleum Exploration & Development(RIPED),PetroChina,Beijing 100083,China

    ABSTRACT Photoelectrochemical(PEC)water splitting is a promising approach for renewable hydrogen production.However,the practical PEC solar-to-fuel conversion efficiency is still low owing to poor light absorption and rapid recombination of charge carriers in photoelectrode.In this work,we report a ternary photoanode with simultaneously enhancement of light absorption and water oxidation efficiency by introducing copper phthalocyanine(CuPc)and nickel iron-layered double hydroxide(NiFe-LDH)on TiO2(denoted as TiO2/CuPc/NiFe-LDH).An experimental study reveals that CuPc loading on TiO2 bring strong visible light absorption;NiFe-LDH as an oxygen evolution reaction catalyst efficiently accelerates the surface water oxidation reaction.This synergistic effect of CuPc and NiFe-LDH gives enhanced photocurrent density(2.10 mA/cm2 at 0.6 V vs.SCE)and excellent stability in the ternary TiO2/CuPc/NiFe-LDH photoanode.

    Keywords:Photoelectrochemical Water splitting TiO2 photoanode Layered double hydroxide Photosensitizer

    Photoelectrochemical(PEC)water splitting is a promising technology to provide hydrogen fuel,which integrates solar energy conversion and water electrolysis into a single photoelectrode[1–3].Particularly,photoanode has a core effect on the PEC water splitting system owing to the multiple electron transfer process in water oxidation[4–6].The PEC water splitting on photoanodes involves the following process:the generation of electron–hole pairs after photo excitation;the charge separation and holes migration to the photoanode surface;and the water oxidation reaction in the photoanode/electrolyte interface[7–10].Because of low price and high stability,TiO2etc.metal oxide semiconductors have attracted considerable attention to make the continuous breakthroughs in solar to hydrogen conversion efficiency[11,12].For TiO2photoanode,weak light absorption under solar light and slow surface water oxidation kinetics usually result in unsatisfied photoconversion efficiency.

    It have been reported that the integration of water oxidation catalysts with photocatalyst can improve the reaction dynamics by reducing the overpotential of water oxidation and improving charge separation ability of semiconductor[13,14].Layered double hydroxides(LDHs)show extraordinary oxygen evolution reaction(OER)performances with low overpotential and high stability,therefore also attracted intensive attention as water oxidation cocatalysts in PEC water splitting[15–20].We discovered that the modification of ZnFe-LDH or NiFe-LDH on TiO2can efficiently improve the charge separation efficiency and surface OER kinetic process[19,20].The interface structure and the matched band position in these TiO2/LDHs photoanodes play a key role in the final photoanodes activity.In spite of all this progress,the PEC solar-tofuel conversion efficiency still cannot satisfy the requirement in practice due to the ultralow utilization of light,which makes it highly necessary to further exploration of TiO2photoanodes with visible light absorption.Phthalocyanine copper(CuPc)is one of organic semiconductors with high charge-transport properties,excellent thermal and chemical stability,which inspires great interest in PEC photoelectrode synthesis[21–23].When combined with TiO2,CuPc may act as an efficient photosensitizer which derives in high photo-absorption and thereby gives high PEC performance.

    Taking advantage of electronegative phthalocyanine ligands and positive LDH nanosheets,we successfully demonstrate the construction of a ternary TiO2/CuPc/NiFe-LDH photoanode,which involves the assembling of CuPc molecules and NiFe-LDH nanosheets on TiO2by a facile layer-by-layer(LBL)method.It is shown that the CuPc and NiFe-LDH were uniformly anchored onto TiO2nanorods,and the loading mass can be fine controlled by the cycle numbers.The optimal TiO2/CuPc/NiFe-LDH photoanode shows a photocurrent density of 2.10 mA/cm2at 0.6 V vs.SCE,which is 5.7 times higher than that of pristine TiO2.An integrated studies reveal that CuPc loading on TiO2bring strong visible light absorption;NiFe-LDH as a cocatalyst accelerates the surface water oxidation reaction.

    As shown in Fig.1a,the synthesis of TiO2/CuPc/NiFe-LDH photoanode involves the TiO2alternately immersed in copper(II)phthalocyanine(CuPc)and exfoliated NiFe-LDH nanosheets solution through LBL method(see details in the experimental sections in Supporting information).The TiO2nanorods were vertically grown on FTO substrate by hydrothermal method,with rather rough surface and diameter of 100–150 nm,length of 2.5μm(Fig.1b and Fig.S1 in Supporting information).The TiO2nanorods became much smooth after CuPc(negatively-charged ligand)absorbed on the TiO2surface(denoted as TiO2/CuPc,Fig.1c).Then positively-charged NiFe-LDH nanosheets were further adhered on TiO2/CuPc by electrostatic interaction.Finally,TiO2nanorods were cross links with CuPc and NiFe-LDH after 6 times cycle in CuPc and NiFe-LDH solution(Fig.1d).The crosssection SEM images show that the introduced CuPc and NiFe-LDH are distributed uniformly on these TiO2samples(Fig.S2 in Supporting information).In addition,TiO2/NiFe-LDH sample was fabricated to give a comparison study(Fig.1e).

    Fig.1.(a)Schematic illustration for the fabrication of TiO2/CuPc/NiFe-LDH.SEM images of(b)TiO2,(c)TiO2/CuPc,(d)TiO2/CuPc/NiFe-LDH and(e)TiO2/NiFe-LDH,respectively.

    The composition and phase structure of obtained TiO2,TiO2/CuPc,TiO2/NiFe-LDH and TiO2/CuPc/NiFe-LDH were investigated by X-ray diffraction(XRD),UV–vis diffuse reflection and Raman spectra.XRD patterns of four prepared samples(Fig.2a)show two sharp reflections at 2θ=36.1°and 62.8°,corresponding to the(101)and(002)diffraction peaks of rutile TiO2,respectively[24].But the signals of CuPc and NiFe-LDH are missed in TiO2/CuPc/NiFe-LDH,which can be attributed to the low concentration of CuPc and NiFe-LDH.In the UV–vis diffuse reflection spectroscopy(Fig.2b),pristine TiO2sample shows strong absorption in the UV light region.Slightly enhanced absorption at 400–500 nm was observed in TiO2/NiFe-LDH,originating from NiFe-LDH[25].The visible light absorption of exfoliated NiFe-LDH was confirmed by the UV–vis absorption spectrum(Fig.S3 in Supporting information).In case of TiO2/CuPc and TiO2/CuPc/NiFe-LDH,the absorbance in the visible light region was significantly enhanced.CuPc has absorption edge at~530 nm and the calculated bandgap through the Tauc analyses is 2.35 eV(Fig.S4 in Supporting information).The Raman spectra of the four samples show three peaks at 240 cm-1,445 cm-1and 608 cm-1,which can be attributed to the second order effect of vibration mode in rutile TiO2[26].The signals of CuPc at 1340 cm-1,1450 cm-1and 1530 cm-1can be observed in TiO2/CuPc and TiO2/CuPc/NiFe-LDH[27].Fe 2p and Ni 2p XPS spectra of TiO2/CuPc/NiFe-LDH were further investigated,confirming the successfully loading of NiFe-LDH in the composite photoanode(Fig.S5 in Supporting information).Compare with exfoliated NiFe-LDH,no shift of the Fe 2p and Ni 2p peaks in TiO2/CuPc/NiFe-LDH were observed,suggesting weak interaction between NiFe-LDH and CuPc.The above results demonstrated the successful loading of CuPc and NiFe-LDH in TiO2/CuPc/NiFe-LDH by the LBL method.

    Fig.2.(a)XRD patterns,(b)UV–vis diffuse reflectance spectra and(c)Raman spectra of TiO2,TiO2/CuPc,TiO2/NiFe-LDH and TiO2/CuPc/NiFe-LDH,respectively.

    The PEC measurements were carried out using TiO2,TiO2/CuPc,TiO2/NiFe-LDH and TiO2/CuPc/NiFe-LDH samples as photoanodes in 0.5 mol/L Na2SO4aqueous solution.In dark condition,electrochemical water splitting cannot react for these four samples at bias<1.2 V vs.SCE(Fig.3a).Under illumination,pristine TiO2displays a relatively low photocurrent density of 0.37 mA/cm2at 0.6 V vs.SCE.In contrast,the TiO2/NiFe-LDH and TiO2/CuPc photoanodes exhibit an enhanced photocurrent density of 0.97 mA/cm2and 1.06 mA/cm2,respectively.The photocurrent density of TiO2/CuPc/NiFe-LDH further increased to 2.10 mA/cm2at 0.6 V vs.SCE.It can be found that the fabricated TiO2/CuPc/NiFe-LDH has superior photocurrent density than most reported TiO2-based works(Table S1 in Supporting information).Amperometric I–t curves of four samples were measured under chopped light illumination(Fig.3b).It can be observed that these photoanodes exhibited rapid and reproducible photocurrent response,corresponding to the ONOFF signals of the light.Moreover,it is found that the TiO2and TiO2/CuPc/NiFe-LDH show excellent photocurrent stability while the photocurrent of TiO2/CuPc and TiO2/NiFe-LDH has a decrease.The PEC measurements under visible light were further measured(Fig.S6 in Supporting information).Comparing with TiO2/NiFe-LDH(21.4μA/cm2at 0.6 V vs.SCE)or TiO2/CuPc(25.9μA/cm2at 0.6 V vs.SCE),the ternary photoanode TiO2/CuPc/NiFe-LDH showed more significant improvement with the photocurrent density of 52.3μA/cm2at same applied bias.Incident photon to current efficiency(IPCE)results of four samples was shown in Fig.3c,displaying high photocatalytic activity in the UV light region.The maximum IPCEs are obtained at 375 nm,which are 7.94%,12.48%,11.59%,and 14.97% for TiO2,TiO2/CuPc,TiO2/NiFe-LDH,and TiO2/CuPc/NiFe-LDH samples,respectively.In the visible light region,the IPCE of TiO2/CuPc/NiFe-LDH is much higher than TiO2(Fig.3c inset),which is consistent with the PEC performance under visible light illumination.The IPCE of TiO2/NiFe-LDH shows small improvement in the range of 450–650 nm,which can be attributed to the photocatalytic properties of NiFe-LDH.In order to confirm the water splitting products,the photocurrent and produced H2were both monitored during the photoelectrolysis measurements.By comparing the theoretical and actual H2yield,the average Faraday efficiency was calculated to be 99%,97%,98%and 99% for TiO2,TiO2/CuPc,TiO2/NiFe-LDH and TiO2/CuPc/NiFe-LDH samples,respectively(Fig.3d and Table S2 in Supporting information).The durability test shows that TiO2/CuPc/NiFe-LDH samples give a relatively stable photocurrent density under illumination for 5 h(<5% current decay,Fig.S7 in Supporting information).However,the photocurrent density of the TiO2/NiFe-LDH and TiO2/CuPc has a significant decrease along with the time.The results above demonstrate that introduction of CuPc or NiFe-LDH can improve the PEC performance of TiO2photoanode and the obtained ternary TiO2/CuPc/NiFe-LDH photoanode shows more superior stability and sunlight utilization efficiency.

    Fig.3.(a)Current-voltage curves,(b)amperometric I-t curves at potential of 1.23 V vs.RHE under chopped light illumination,(c)IPCEs measured at 1.23 V vs.RHE and(d)total H2 production of TiO2,TiO2/CuPc,TiO2/NiFe-LDH and TiO2/CuPc/NiFe-LDH,respectively.

    The PEC performance of TiO2/CuPc/NiFe-LDH with different loading mass of CuPc and NiFe-LDH was also investigated.The loading mass onto TiO2can be tuned by the cycle numbers of CuPc and NiFe-LDH in LBL process(denoted as TiO2/CuPc/NiFe-LDH-n,where n is the bilayer numbers).The LBL process of TiO2/CuPc/NiFe-LDH-n was monitored by UV–vis spectra(Fig.4a),where visible light absorption intensities at 600 cm-1increased from 0.78 to 1.37 along with the bilayer numbers increase from 2 to 8.In addition,Raman spectra at~1340 cm-1,1450 cm-1and 1530 cm-1also has a gradually enhancement as the bilayer numbers increase(Fig.4b).SEM images show that the surface of TiO2is completely covered by CuPc and NiFe-LDH as the bilayer numbers increase to 6(Fig.S8 in Supporting information).The peaks of CuPc or NiFe-LDH cannot be observed in the XRD of TiO2/CuPc/NiFe-LDH-8,suggesting that the loading mass of CuPc and NiFe-LDH was relative low(Fig.S9 in Supporting information).The PEC measurements for TiO2/CuPc/NiFe-LDH-n photoanodes are shown in Fig.4c.The photocurrent density gradually increases from 0.75 mA/cm2(n=2)to 2.10 mA/cm2(n=6)at 0.6 V vs.SCE,but decreases to 1.44 mA/cm2in TiO2/CuPc/NiFe-LDH-8.Therefore,6 bilayers numbers is more suitable in the series of TiO2/CuPc/NiFe-LDH samples.Moreover,the photocurrent density of TiO2/CuPc/NiFe-LDH-6 showed the largest photocurrent density under visible light in these samples(Fig.S10 in Supporting information).In addition,it is worth mention that all the TiO2/CuPc/NiFe-LDH samples in other parts were discussed with TiO2/CuPc/NiFe-LDH-6.

    Fig.4.(a)UV–vis diffuse reflectance spectra,(b)Raman spectra and(c)current-voltage curves of TiO2,TiO2/CuPc/NiFe-LDH-2,TiO2/CuPc/NiFe-LDH-4,TiO2/CuPc/NiFe-LDH-6,TiO2/CuPc/NiFe-LDH-8,respectively.

    To give deep insights into the effect of CuPc and NiFe-LDH in TiO2/CuPc/NiFe-LDH,Mott-Schottky measurements was used to investigate the semiconducting properties of obtained four photoanodes[28].The Mott-Schottky plots of four samples show positive slope,suggesting an n-type TiO2semiconductor properties(Fig.5a).The charge carrier density was assessed according to the Mott-Schottky equation,which were 6.62×1016,1.13×1017,1.59×1017and 6.92×1017cm-3for TiO2,TiO2/CuPc,TiO2/NiFe-LDH and TiO2/CuPc/NiFe-LDH,respectively(see details in the experimental sections in Supporting information).This demonstrates that CuPc or LDH can increase the carrier density of TiO2surface,and the enhancement is more significant in TiO2/CuPc/NiFe-LDH sample.By extrapolating the Mott–Schottky plot,the intercept of TiO2/CuPc/NiFe-LDH sample is shift from-0.60 V to-0.48 V compared with that of TiO2.The positive shift suggests a decrease of the upward bending in band edge,which facilitates the charge transfer in the semiconductor/electrolyte interface[29].The electrochemical impedance spectroscopy(EIS)studies for these four samples were carried out(Fig.5b).After incorporation of CuPc or NiFe-LDH,the arc diameters decreased slightly in TiO2/CuPc and TiO2/NiFe-LDH,representing the smaller charge transfer resistance[30].The minimal arc radius in TiO2/CuPc/NiFe-LDH indicates the synergetic effect of CuPc and NiFe-LDH.The photoluminescence(PL)behaviors were measured(Fig.S11 in Supporting information),reflecting the recombination of electron and hole in the surface of semiconductors[31].The PL emission spectra of TiO2photoanode display strong PL emission peaks at 409 and 454 nm.By introducing of CuPc or NiFe-LDH,decreased PL emission intensity can be observed in TiO2/CuPc and TiO2/NiFe-LDH.Finally the lowest PL emission intensity in TiO2/CuPc/NiFe-LDH suggests a suppressed radiative recombination of generated charge carriers.In addition,the surface charge injection efficiency was calculated by photocurrent measured in the electrolyte with or without H2O2(see details in the experimental sections in Supporting information).The charge injection efficiency of TiO2/CuPc at 0.6 V vs.SCE is 60.0%,which is comparable with that of TiO2(58.0%).A giant improvement is obtained in TiO2/NiFe-LDH(79.2%)and TiO2/CuPc/NiFe-LDH 82.1%),suggesting the highly OER catalytic activity of NiFe-LDH in the photoanodes(Fig.S12 in Supporting information).

    Fig.5.(a)Mott-Schottky plots collected at a frequency of 1 kHz in dark,(b)EIS measured at 0 V vs.SCE under illumination for the sample of TiO2,TiO2/CuPc,TiO2/NiFe-LDH and TiO2/CuPc/NiFe-LDH,respectively.(c)Schematic illustration of the PEC water oxidation process in the TiO2/CuPc/NiFe-LDH photoanode.

    Given the above discussions,a mechanism for the enhanced PEC water splitting performance in this TiO2/CuPc/NiFe-LDH photoanode is proposed and shown in Fig.5c.The photoexcited electron–hole pairs of TiO2are generated under UV light illumination while CuPc can be excited under the visible light.The difference in band position for TiO2and CuPc induce photogenerated electrons and holes transfer oppositely:electrons from CuPc to TiO2,while holes from TiO2to CuPc and finally capture by NiFe-LDH[32,33].CuPc can broaden the spectral response and NiFe-LDH acts as the active site for water oxidation.The rapid transmissions and utilization of charge carriers suppress the recombination of electrons and holes generated by TiO2and CuPc.The enhanced charge separation and injection efficiency was confirmed by the EIS and electrochemical testing.Consequently,by the synergetic effect of photosensitizer CuPc and cocatalyst NiFe-LDH,effective PEC water oxidation is performed in the TiO2/CuPc/NiFe-LDH photoanode with improved light absorption and charge utilization efficiency.

    In summary,a ternary TiO2/CuPc/NiFe-LDH photoanode has been successfully prepared by a stepwise modificaiton of CuPc and exfoliated NiFe-LDH nanosheets onto TiO2by LBL method.Due to the synergetic effect of photosensitizer and cocatalyst,the wellaligned TiO2/CuPc/NiFe-LDH significantly improves the light absorption ability and charge utilization efficiency.A deeper understanding based on the spectroscopy and electrochemical studies imply that the CuPc and NiFe-LDH can serve as photosensitizer and cocatalyst respectively,thereby improving the PEC water oxidation efficiency.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Beijing Natural Science Foundation(No.2192040),the National Natural Science Foundation of China(Nos.21922501,21871021,21521005 and 21902042)and the Science Foundation of Hebei Normal University(No.L2019B14).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,atdoi:https://doi.org/10.1016/j.cclet.2020.09.037.

    亚洲av成人精品一区久久| 在线观看舔阴道视频| 精品人妻一区二区三区麻豆 | 97人妻精品一区二区三区麻豆| 亚洲 欧美 日韩 在线 免费| 99久久九九国产精品国产免费| 99久久精品一区二区三区| 99久久成人亚洲精品观看| 亚洲精品456在线播放app | 精品久久久久久久久久久久久| 国产综合懂色| av专区在线播放| 99久久99久久久精品蜜桃| 窝窝影院91人妻| 日日摸夜夜添夜夜添小说| 少妇熟女aⅴ在线视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 小说图片视频综合网站| 日本熟妇午夜| 国产伦精品一区二区三区四那| 亚洲午夜理论影院| 一个人看视频在线观看www免费| 中文亚洲av片在线观看爽| av天堂中文字幕网| 99久久久亚洲精品蜜臀av| 91在线观看av| 欧美最新免费一区二区三区 | 亚洲熟妇熟女久久| 久久人人爽人人爽人人片va | 国产私拍福利视频在线观看| 亚洲av日韩精品久久久久久密| 国产精品爽爽va在线观看网站| 男人的好看免费观看在线视频| 中亚洲国语对白在线视频| 亚洲av熟女| 亚洲精品久久国产高清桃花| 日韩高清综合在线| 亚洲av免费高清在线观看| 嫩草影院精品99| 俄罗斯特黄特色一大片| 乱人视频在线观看| 最后的刺客免费高清国语| 可以在线观看的亚洲视频| 欧美日韩福利视频一区二区| 18禁黄网站禁片午夜丰满| 麻豆av噜噜一区二区三区| 亚洲精品乱码久久久v下载方式| 天堂影院成人在线观看| 国产激情偷乱视频一区二区| 国产精品乱码一区二三区的特点| 亚洲经典国产精华液单 | 18禁在线播放成人免费| 亚洲精品粉嫩美女一区| 亚洲黑人精品在线| 男人和女人高潮做爰伦理| 内地一区二区视频在线| 国产色婷婷99| 欧美日本视频| 变态另类成人亚洲欧美熟女| 亚洲精品在线观看二区| 久久中文看片网| 亚洲成人中文字幕在线播放| 91午夜精品亚洲一区二区三区 | 91麻豆精品激情在线观看国产| 久久婷婷人人爽人人干人人爱| 人人妻,人人澡人人爽秒播| 国产男靠女视频免费网站| eeuss影院久久| 99久久精品热视频| 90打野战视频偷拍视频| 极品教师在线免费播放| 日韩成人在线观看一区二区三区| 草草在线视频免费看| 亚洲av美国av| 日本与韩国留学比较| 久久久成人免费电影| 精品久久久久久久久av| 嫩草影院精品99| 丝袜美腿在线中文| 亚洲成av人片免费观看| 美女 人体艺术 gogo| 蜜桃亚洲精品一区二区三区| 久久99热6这里只有精品| 亚洲人与动物交配视频| 亚洲人成伊人成综合网2020| 婷婷丁香在线五月| 国产亚洲精品综合一区在线观看| 久久精品91蜜桃| 国产极品精品免费视频能看的| 国产高潮美女av| 97碰自拍视频| 久久久成人免费电影| АⅤ资源中文在线天堂| 18禁黄网站禁片免费观看直播| 午夜福利18| 国产av在哪里看| 亚洲国产精品合色在线| 亚洲国产精品合色在线| 亚洲色图av天堂| 亚洲无线观看免费| 少妇的逼水好多| 国产精品国产高清国产av| 黄色配什么色好看| 亚洲国产高清在线一区二区三| 亚洲国产高清在线一区二区三| 男人舔女人下体高潮全视频| 国产精品三级大全| 性插视频无遮挡在线免费观看| 首页视频小说图片口味搜索| 日韩欧美国产在线观看| 欧美日韩瑟瑟在线播放| 欧美区成人在线视频| 久久精品国产自在天天线| 国产精品爽爽va在线观看网站| 午夜福利视频1000在线观看| 中出人妻视频一区二区| 国产熟女xx| 欧美最新免费一区二区三区 | 日本五十路高清| 国产免费av片在线观看野外av| 90打野战视频偷拍视频| 一级作爱视频免费观看| 日韩有码中文字幕| 国产69精品久久久久777片| 99久国产av精品| 国产在线男女| 国产伦在线观看视频一区| 网址你懂的国产日韩在线| 久久精品国产亚洲av涩爱 | 桃色一区二区三区在线观看| 日本一二三区视频观看| 老鸭窝网址在线观看| 欧美色视频一区免费| 尤物成人国产欧美一区二区三区| 亚洲无线观看免费| 欧美日韩黄片免| 村上凉子中文字幕在线| 日本黄色视频三级网站网址| 老熟妇乱子伦视频在线观看| 永久网站在线| 九九久久精品国产亚洲av麻豆| 国产黄a三级三级三级人| 午夜福利在线观看吧| 99热这里只有是精品在线观看 | 高清日韩中文字幕在线| а√天堂www在线а√下载| x7x7x7水蜜桃| 亚洲av成人精品一区久久| 国产视频一区二区在线看| 久久精品国产自在天天线| 国产黄a三级三级三级人| 色精品久久人妻99蜜桃| 极品教师在线视频| netflix在线观看网站| 永久网站在线| 天堂动漫精品| 中亚洲国语对白在线视频| 99久国产av精品| 亚洲中文日韩欧美视频| 特级一级黄色大片| 身体一侧抽搐| av国产免费在线观看| 精品久久久久久久久亚洲 | 欧美bdsm另类| 亚洲av成人av| 99riav亚洲国产免费| 亚洲美女搞黄在线观看 | 亚洲男人的天堂狠狠| 99热这里只有精品一区| 麻豆一二三区av精品| 亚洲午夜理论影院| 国产白丝娇喘喷水9色精品| 亚洲第一区二区三区不卡| 亚洲精品成人久久久久久| 久久人人爽人人爽人人片va | 真实男女啪啪啪动态图| 欧美激情久久久久久爽电影| 久久亚洲精品不卡| 欧美在线一区亚洲| 国产淫片久久久久久久久 | 麻豆久久精品国产亚洲av| 香蕉av资源在线| 一区二区三区免费毛片| 欧洲精品卡2卡3卡4卡5卡区| 免费看光身美女| 日韩欧美精品v在线| 亚洲av电影在线进入| 亚洲欧美清纯卡通| 美女 人体艺术 gogo| 波多野结衣巨乳人妻| 91字幕亚洲| 亚洲熟妇中文字幕五十中出| 国产人妻一区二区三区在| 欧美一级a爱片免费观看看| 国内精品美女久久久久久| 久久这里只有精品中国| 18禁在线播放成人免费| 成人性生交大片免费视频hd| 观看免费一级毛片| 欧美潮喷喷水| 全区人妻精品视频| 99热只有精品国产| 国产一区二区三区在线臀色熟女| 日韩有码中文字幕| 免费人成在线观看视频色| 一区二区三区激情视频| 国产男靠女视频免费网站| 国产高清视频在线观看网站| 久久九九热精品免费| 中文字幕人妻熟人妻熟丝袜美| 国产精品1区2区在线观看.| 3wmmmm亚洲av在线观看| 色哟哟·www| 美女cb高潮喷水在线观看| 亚洲精品456在线播放app | 国产激情偷乱视频一区二区| 久久精品91蜜桃| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 一级作爱视频免费观看| 天堂网av新在线| 9191精品国产免费久久| 亚洲色图av天堂| 搡女人真爽免费视频火全软件 | 精品一区二区三区人妻视频| 在线观看一区二区三区| 欧美成人性av电影在线观看| 特大巨黑吊av在线直播| 久久久久国产精品人妻aⅴ院| 深夜a级毛片| 亚洲性夜色夜夜综合| 很黄的视频免费| 91狼人影院| 成人av一区二区三区在线看| 国产精品免费一区二区三区在线| 亚洲狠狠婷婷综合久久图片| 亚洲av一区综合| 日本 欧美在线| 成人鲁丝片一二三区免费| 在线播放无遮挡| 国产午夜福利久久久久久| 深夜精品福利| 一级作爱视频免费观看| 成人精品一区二区免费| 精品人妻偷拍中文字幕| 亚洲国产欧美人成| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| 18禁黄网站禁片免费观看直播| 亚洲国产精品成人综合色| 成年女人毛片免费观看观看9| 国产毛片a区久久久久| avwww免费| 老鸭窝网址在线观看| 又爽又黄a免费视频| 亚洲国产高清在线一区二区三| 国产av不卡久久| 美女 人体艺术 gogo| 成人永久免费在线观看视频| 亚洲av.av天堂| 亚洲人成伊人成综合网2020| 午夜福利高清视频| 1024手机看黄色片| 成年女人看的毛片在线观看| 日韩av在线大香蕉| 欧美绝顶高潮抽搐喷水| 成人特级av手机在线观看| 午夜久久久久精精品| 欧美在线黄色| 久久草成人影院| 在线观看av片永久免费下载| 午夜精品在线福利| 国产精品1区2区在线观看.| av在线天堂中文字幕| 精品一区二区三区av网在线观看| 18禁黄网站禁片免费观看直播| 国产真实乱freesex| 亚洲色图av天堂| av在线天堂中文字幕| 午夜精品一区二区三区免费看| 欧美bdsm另类| 日韩亚洲欧美综合| 免费无遮挡裸体视频| 国产黄a三级三级三级人| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久亚洲av鲁大| 久9热在线精品视频| h日本视频在线播放| 欧美一区二区国产精品久久精品| 最近在线观看免费完整版| av专区在线播放| 99久久久亚洲精品蜜臀av| 床上黄色一级片| 很黄的视频免费| 黄色配什么色好看| 久久中文看片网| 成人性生交大片免费视频hd| 国产成人影院久久av| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 啦啦啦观看免费观看视频高清| 婷婷亚洲欧美| 91麻豆精品激情在线观看国产| 在线看三级毛片| 麻豆成人av在线观看| 欧美性猛交黑人性爽| 精品午夜福利视频在线观看一区| 小说图片视频综合网站| 亚洲国产欧美人成| 亚洲一区高清亚洲精品| 波野结衣二区三区在线| 国产av不卡久久| 精品日产1卡2卡| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看| 成人一区二区视频在线观看| 3wmmmm亚洲av在线观看| 亚洲最大成人手机在线| 美女被艹到高潮喷水动态| 欧美日本亚洲视频在线播放| a级毛片免费高清观看在线播放| 成年免费大片在线观看| 老熟妇乱子伦视频在线观看| 天堂动漫精品| 一级av片app| 又紧又爽又黄一区二区| 90打野战视频偷拍视频| 校园春色视频在线观看| 波野结衣二区三区在线| 国产亚洲欧美在线一区二区| 老司机午夜福利在线观看视频| av福利片在线观看| 一个人免费在线观看的高清视频| 亚洲精品乱码久久久v下载方式| 一区二区三区高清视频在线| 超碰av人人做人人爽久久| 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 欧美性感艳星| 国产在视频线在精品| 国产精品久久久久久亚洲av鲁大| 日本 欧美在线| 搡老熟女国产l中国老女人| 国产精品,欧美在线| aaaaa片日本免费| 亚洲人成网站在线播放欧美日韩| 精品国产三级普通话版| 亚洲黑人精品在线| 国内精品久久久久精免费| 91字幕亚洲| АⅤ资源中文在线天堂| 女人十人毛片免费观看3o分钟| 国产麻豆成人av免费视频| 韩国av一区二区三区四区| 嫩草影视91久久| 欧美激情在线99| 久久久久久久亚洲中文字幕 | 国产国拍精品亚洲av在线观看| 在线免费观看不下载黄p国产 | 国产一区二区三区视频了| 俄罗斯特黄特色一大片| 国产精品一区二区免费欧美| 99久久久亚洲精品蜜臀av| 欧美在线一区亚洲| 十八禁国产超污无遮挡网站| 1000部很黄的大片| 亚洲aⅴ乱码一区二区在线播放| 直男gayav资源| 好男人电影高清在线观看| 性插视频无遮挡在线免费观看| 精品久久久久久久人妻蜜臀av| www.色视频.com| 国产麻豆成人av免费视频| 欧美三级亚洲精品| 国产精品久久久久久人妻精品电影| 女人被狂操c到高潮| 国产精品久久电影中文字幕| 午夜两性在线视频| 精品久久国产蜜桃| 最新在线观看一区二区三区| 在线a可以看的网站| 十八禁网站免费在线| 91麻豆av在线| 熟女电影av网| 69人妻影院| 日日夜夜操网爽| 国产三级在线视频| 日韩高清综合在线| 熟妇人妻久久中文字幕3abv| 亚洲,欧美精品.| x7x7x7水蜜桃| 动漫黄色视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 色综合婷婷激情| 亚洲美女视频黄频| 热99re8久久精品国产| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 亚洲在线自拍视频| 精华霜和精华液先用哪个| 成人av在线播放网站| 小说图片视频综合网站| 国产伦人伦偷精品视频| 日日摸夜夜添夜夜添小说| 18禁黄网站禁片免费观看直播| 无人区码免费观看不卡| 国产黄片美女视频| 午夜亚洲福利在线播放| 小蜜桃在线观看免费完整版高清| 美女黄网站色视频| 精品99又大又爽又粗少妇毛片 | 人人妻人人澡欧美一区二区| 国产精品女同一区二区软件 | 99久久成人亚洲精品观看| 精品人妻偷拍中文字幕| 精品久久久久久久末码| 免费av观看视频| 久久久久久久久久黄片| 国产精品伦人一区二区| 亚洲精品亚洲一区二区| 日韩欧美精品免费久久 | 成人午夜高清在线视频| 看黄色毛片网站| 亚洲18禁久久av| 成人鲁丝片一二三区免费| 老司机深夜福利视频在线观看| 十八禁网站免费在线| 直男gayav资源| 97人妻精品一区二区三区麻豆| 无人区码免费观看不卡| 又紧又爽又黄一区二区| 我要看日韩黄色一级片| 首页视频小说图片口味搜索| 国内少妇人妻偷人精品xxx网站| 一区二区三区四区激情视频 | 国产野战对白在线观看| 三级毛片av免费| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 在线a可以看的网站| 男人和女人高潮做爰伦理| 日韩欧美 国产精品| 日本撒尿小便嘘嘘汇集6| 深夜a级毛片| 亚洲人成伊人成综合网2020| 成人三级黄色视频| xxxwww97欧美| 我的老师免费观看完整版| 免费人成视频x8x8入口观看| 两性午夜刺激爽爽歪歪视频在线观看| 精品国产亚洲在线| 国产亚洲av嫩草精品影院| 婷婷亚洲欧美| 久久午夜亚洲精品久久| 亚洲av免费在线观看| 99国产极品粉嫩在线观看| 日韩欧美免费精品| 少妇的逼水好多| 麻豆国产97在线/欧美| 精品一区二区三区av网在线观看| 日韩欧美精品v在线| 很黄的视频免费| 亚洲专区中文字幕在线| 精品一区二区三区视频在线| 一区二区三区激情视频| 18禁裸乳无遮挡免费网站照片| 日韩精品中文字幕看吧| 偷拍熟女少妇极品色| 午夜视频国产福利| 亚洲av成人av| 一本精品99久久精品77| 搡女人真爽免费视频火全软件 | 一区二区三区高清视频在线| 午夜福利视频1000在线观看| 永久网站在线| 熟女人妻精品中文字幕| 久久国产乱子伦精品免费另类| 亚洲avbb在线观看| 天堂√8在线中文| 欧美+日韩+精品| 99久久无色码亚洲精品果冻| 精品一区二区三区视频在线观看免费| 97超级碰碰碰精品色视频在线观看| avwww免费| 人妻丰满熟妇av一区二区三区| 90打野战视频偷拍视频| h日本视频在线播放| 真人一进一出gif抽搐免费| 欧美+亚洲+日韩+国产| 欧美极品一区二区三区四区| 国产欧美日韩精品亚洲av| 亚洲午夜理论影院| 一区二区三区免费毛片| 欧美+亚洲+日韩+国产| 中文字幕免费在线视频6| 婷婷六月久久综合丁香| 久久久精品大字幕| 少妇裸体淫交视频免费看高清| 小说图片视频综合网站| 国内精品久久久久久久电影| 黄色女人牲交| 看黄色毛片网站| 亚洲黑人精品在线| 欧美一区二区精品小视频在线| 蜜桃亚洲精品一区二区三区| 男女床上黄色一级片免费看| 欧美日本视频| 丝袜美腿在线中文| 91久久精品电影网| 一级黄片播放器| 美女大奶头视频| 乱码一卡2卡4卡精品| or卡值多少钱| 欧美日韩综合久久久久久 | 麻豆成人午夜福利视频| av天堂在线播放| 亚洲第一欧美日韩一区二区三区| eeuss影院久久| 精品日产1卡2卡| 搡女人真爽免费视频火全软件 | 九九在线视频观看精品| 欧美一区二区亚洲| 18+在线观看网站| 成人特级av手机在线观看| 男女那种视频在线观看| 精品午夜福利在线看| 日本一本二区三区精品| 国产欧美日韩一区二区三| 成年免费大片在线观看| 97人妻精品一区二区三区麻豆| 91麻豆av在线| 一a级毛片在线观看| 日韩欧美在线二视频| 日韩欧美一区二区三区在线观看| 国产精品永久免费网站| 一区福利在线观看| 亚洲人成电影免费在线| 国产白丝娇喘喷水9色精品| 欧美成人一区二区免费高清观看| 日本成人三级电影网站| 欧美日韩黄片免| 精品人妻熟女av久视频| 亚洲真实伦在线观看| 少妇人妻精品综合一区二区 | eeuss影院久久| 亚洲国产精品久久男人天堂| 少妇丰满av| 日韩欧美在线二视频| 黄色女人牲交| 中文字幕人妻熟人妻熟丝袜美| 波多野结衣高清作品| 国产欧美日韩一区二区精品| 亚洲国产日韩欧美精品在线观看| 男女之事视频高清在线观看| 国产乱人伦免费视频| a在线观看视频网站| 一区二区三区高清视频在线| 日本黄色片子视频| 久久精品国产自在天天线| 十八禁人妻一区二区| 夜夜躁狠狠躁天天躁| 十八禁网站免费在线| 老司机午夜福利在线观看视频| 日韩欧美 国产精品| 丝袜美腿在线中文| 亚洲电影在线观看av| 国产精品久久视频播放| 国产 一区 欧美 日韩| 亚洲18禁久久av| av专区在线播放| 88av欧美| 可以在线观看毛片的网站| 久久久久久久午夜电影| 亚洲精品乱码久久久v下载方式| 久久精品国产自在天天线| 精品人妻一区二区三区麻豆 | 久久亚洲真实| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 国产精品一区二区性色av| 少妇人妻精品综合一区二区 | 精品一区二区三区视频在线观看免费| 精品欧美国产一区二区三| 国产乱人视频| 一级av片app| 日本黄大片高清| 精品免费久久久久久久清纯| 亚洲最大成人中文| 国产精品自产拍在线观看55亚洲| 91狼人影院| 最近最新免费中文字幕在线| 757午夜福利合集在线观看| 18禁裸乳无遮挡免费网站照片| 人妻丰满熟妇av一区二区三区| 色综合站精品国产| 窝窝影院91人妻| 欧美性猛交╳xxx乱大交人| 啦啦啦观看免费观看视频高清| 黄色视频,在线免费观看| 亚洲av二区三区四区| 在线观看美女被高潮喷水网站 | 亚洲,欧美精品.| 精品久久久久久久人妻蜜臀av| 观看美女的网站| 一个人看的www免费观看视频| 香蕉av资源在线| 日本撒尿小便嘘嘘汇集6| 少妇被粗大猛烈的视频| 久久人妻av系列| 久久久久久大精品| 欧美激情久久久久久爽电影| 国产精品嫩草影院av在线观看 | 国产乱人伦免费视频| 一级作爱视频免费观看| 亚洲乱码一区二区免费版|