• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of functional groups on the self-assembly of liquid crystals

    2021-07-01 05:29:40ShanhaoTanJiayuTaoWendiLuoHaoJiangYuhongLiuHaijunXuQingdaoZengHongyuShib
    Chinese Chemical Letters 2021年3期

    Shanhao Tan,Jiayu Tao,Wendi Luo,Hao Jiang,Yuhong Liu***,Haijun Xu,***,Qingdao Zeng*,Hongyu Shib,**

    a State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,China

    b CAS Key Laboratory of Standardization and Measurement for Nanotechnology,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology(NCNST),Beijing 100190,China

    c Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,College of Chemical Engineering,Nanjing Forestry University,Nanjing 210037,China

    d Laboratory of Theoretical and Computational Nanoscience,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China

    e Center of Materials Science and Optoelectonics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    f Sino-Danish Center for Education and Research,University of Chinese Academy of Sciences,Beijing 100190,China

    ABSTRACT Functional groups in the molecule play an important role in the molecular organization process.To reveal the influence of functional groups on the self-assembly at interface,herein,the self-assembly structures of three liquid crystal molecules,which only differ in the functional groups,are explicitly characterized by using scanning tunneling microscopy(STM).The high-resolution STM images demonstrate the difference between the supramolecular assembly structures of three liquid crystal molecules,which attribute to the hydrogen bonding interaction and π-π stacking interaction between different functional groups.The density functional theory(DFT)results also confirm the influence of these functional groups on the self-assemblies.The effort on the self-assembly of liquid crystal molecules at interface could enhance the understanding of the supramolecular assembly mechanism and benefit the further application of liquid crystals.

    Keywords:Self-assembly Liquid crystal Functional group Hydrogen bond π-π Stacking interaction

    Liquid crystals are basically dynamic functional materials that combine order and mobility at molecular and macroscopic levels[1].Since the discovery by Reinitzer in 1888[2],liquid crystals have been studied in multiple disciplines as prototype self-assembling supramolecular soft materials,because of their involvement of almost all kinds of interactions including van der Walls interaction,hydrogen bonding interaction,dipolar interaction,metal coordination and so on[1,3].Other than the well-known technological applications in the liquid-crystal display(LCD)devices[4–6],liquid crystals can also be used as functional materials for electron and ion transporting[7,8],sensing[9,10],catalysis[11,12],templates[13–15]and biomedicine[16,17],etc.

    Self-assembly is a spontaneous organization of components into regular patterns or structures,which has been extensively investigated for decades with the main goal of providing access to functional materials[18–22].During the molecular organization process,the supramolecular structure is primarily determined by the intermolecular interactions,which correlate with the functional groups to a great extent.Hence the effect of functional groups on self-assembly has drawn more and more attention.Valera et al.[23]investigated the supramolecular assembly of two pyrene derivatives,governed by the C–H···π interactions and the H-bonding interaction between the amide groups and the imidazole moieties.The pyrene-based aggregate preserves the blue-emitting properties of the monomer,showing the potential application in Organic Electronics.Aparicio et al.[24]synthesized three cyano-substituted divinylene arene-based luminogens as fluorescent π-gelators.The donor-acceptor interaction in selfassembly can be modulated by changing the position of cyano groups in the conjugated backbone,thus achieving the modulation of the emission color.Recently,R?dle et al.[25]have also compared the supramolecular polymerization of two liquid crystal molecules that only differ in the linking group to investigate the influence of amide and ester groups on the molecular arrangement.They revealed the rotationally displaced organization for the amide-containing molecules and the parallel arrangement for the ester-containing molecules.However,by using spectroscopic methods,the assembly structures of aggregates were too complicated to be characterized directly and clearly enough.

    Therefore,to further investigate the impact of functional groups on the supramolecular assembly mechanism,herein we report the explicit self-assembly structures of three liquid crystal molecules which are similar in molecular structure.As shown in Scheme 1,we employed three liquid crystal molecules which only differ in the functional groups of backbones as the research objects.The difference between LC-amide-1 and LC-ester is the amide/ester groups at both ends of the backbone,while LC-amide-1 and LC-amide-2 differ in the presence/absence of central BODIPY group.The LC-amide-1,LC-amide-2 and LC-ester are separately dissolved in 1-phenyloctane,wherein the concentrations are less than 10-3mol/L.Then the assembly samples were prepared by depositing a droplet of the corresponding solution(0.1 μL)onto the freshly cleaved highly oriented pyrolytic graphite(HOPG)surface,respectively.Afterwards,the uniform and regular assembly structures were precisely revealed at the HOPG/1-phenyloctane interface by using STM under ambient conditions.The details of sample preparation and STM characterization procedures can be found in Supporting Information.In combination with DFT calculation,the self-assembly mechanism was deeply explored.

    Scheme 1.Chemical structures of(a)LC-amide-1,(b)LC-ester and(c)LC-amide-2.

    First,the assembly structure of LC-amide-1 at the HOPG/1-phenyloctane interface is characterized by using STM.Fig.1a presents the large scale STM image of the assembly structure,in which the bright rods are aligned in parallel and form the uniform linear pattern.The average length of bright rods is measured to be 4.0±0.1 nm,which shows good agreement with the theoretical size of the backbone of LC-amide-1 molecules.And the alkyl chains of LC-amide-1 molecules correspond to the lines distributed in the shade,which cannot be explicitly characterized due to the much lower density of electric states.Further structural details are displayed in high resolution STM image,as shown in Fig.1b,indicating that each rod element is a dimer formed by two closedpacked LC-amide-1 molecules.The two molecules in the dimer can interact with each other through N-H···O hydrogen bonding between amide groups.Besides,the simulated molecular packing structure as shown in Fig.1c indicates that the benzene rings at both ends of the molecule are almost perpendicular to the corresponding benzene rings of another molecule in the dimer,which can form π-π stacking interaction.It can also be distinguished that the alkyl chains are distributed in a staggered form and stretched in different directions.The van der Waals interaction between these alkyl chains,the π-π stacking interaction between corresponding benzene rings and the π-π stacking interaction between two BODIPY moieties in the dimer are the primary assembly motifs of the linear structure.The parameters of the unit cells overlaid in Fig.1a are measured as follows:a=4.8±0.1 nm,b=3.5±0.1 nm,α=85±1°.

    Fig.1.STM images of LC-amide-1 assembly structure at the HOPG/1-phenyloctane interface:(a)Large scale;(b)high resolution.Tunneling conditions:Iset=219.7 pA,Vbias=734.3 mV.(c)The simulated molecular packing structure.

    In the next step,the self-assembly of LC-ester at the HOPG/1-phenyloctane interface is investigated.Fig.2a presents the large scale STM image of LC-ester assembly structure.It can be observed that the butterfly-shaped dimers are arranged in parallel into the linear pattern.And the orientation of dimers is at an angle to the direction of the rows.As shown in the high resolution STM image in Fig.2b,each dimer consists of two parallel bright rods.The average length of bright rods is measured to be 3.8±0.1 nm,which is consistent with the theoretical size of the backbone of LC-ester.Therefore,it can be concluded that the butterfly-shaped dimers are composed of two opposite LC-ester molecules,which mostly interact through π-π stacking interaction between BODIPY moieties and benzene rings.Combined with the simulated molecular packing structure in Fig.2c,it can be concluded that the parallel lines distributed between the neighbor rows are attributed to the alkyl chains of LC-ester molecules.The assembly motif derives from both intermolecular π-π stacking interaction and the van der Waals interaction between alkyl chains.The parameters of the unit cells overlaid in Fig.2b are measured as follows:a=4.3±0.1 nm,b=4.3±0.1 nm,α=105±1°.

    Fig.2.STM images of LC-ester assembly structure at the HOPG/1-phenyloctane interface:(a)Large scale;(b)high resolution.Tunneling conditions:Iset=228.9 pA,Vbias=714.7 mV.(c)The simulated molecular packing structure.

    LC-amide-2 molecules can also form regular self-assembly structure at the HOPG/1-phenyloctane interface.Fig.3a presents the large scale STM image of LC-amide-2 assembly structure,in which the bright rods aligned in parallel can be observed.As shown in the high resolution STM image in Fig.3b,the rods containing two bright spots at both ends are measured to be 2.7±0.1 nm,which shows good agreement with the theoretical size of the backbone of LC-amide-2 molecules.Therefore,it can be inferred that the bright rods correspond to the LC-amide-2 molecules and the bright spots correspond to the benzene rings at both ends of the backbone.The acetylene linkages and alkyl chains cannot be explicitly characterized due to the much lower density of electric states.Combined with the simulated molecular packing structures shown in Fig.3c,it can be inferred that the alkyl chains are aligned into one direction and the amide groups are too far apart to form hydrogen bonds.Therefore,the assembly motif mostly derives from the van der Waals interaction between these alkyl chains.The parameters of the unit cells overlaid in Fig.3b are measured as follows:a=3±0.1 nm,b=2.5±0.1 nm,α=110±2°.

    Fig.3.STM images of LC-amide-2 assembly structure at the HOPG/1-phenyloctane interface:(a)Large scale;(b)high resolution.Tunneling conditions:Iset=222.7 pA,Vbias=693.2 mV.(c)The simulated molecular packing structure.

    To better understand the self-assembly structures of three liquid crystal molecules,the unit cell parameters and interaction energies are calculated by the DFT method based on the STM characterizations.The details of DFTcalculation can be found in the Supporting Information.Table 1 lists the calculated unit cell parameters of three assembly systems,which agree well with the corresponding experimental results.The interaction energies of three self-assemblies are presented in Table 2 and the lower energy indicates the stronger interaction herein.It can be observed that the interaction energy between LC-amide-1 molecules(-149.536 kcal/mol)is lower than that between LC-ester molecules(-134.914 kcal/mol),which is largely due to the extra N-H···O hydrogen bonds between amide groups of LC-amide-1 molecules.And the interaction energy between LC-amide-2 molecules(-16.254 kcal/mol)is much higher because LC-amide-2 molecules mainly interact through the weak van der Waals interaction.Besides the interaction between assembled molecules,the interaction between molecules and substrate also plays a crucial part in the surface assembly.As shown in the second column in Table 2,the interaction energy between LC-amide-1 molecules and substrate(-418.567 kcal/mol)is similar to that between LC-ester molecules and substrate(-421.721 kcal/mol),which are both lower than that between LC-amide-2 molecules and substrate(-152.124 kcal/mol)due to the π-π stacking interaction between BODIPY groups and graphite substrate.The interaction energies between molecules and substrate of three assembly systems are all much lower than the interaction energies between molecules,indicating that the absorption between molecules and HOPG substrate is quite strong.

    Table 1 Experimental(Expt.)and calculated(Cal.)unit cell parameters of the selfassemblies on the HOPG surface.

    The total energies(including the interaction energies between molecules and the interaction energies between molecules and substrate)of three self-assembly systems are presented in Table 2.In general,the total energy can be compared to evaluate the relative thermodynamic stability of different assembly systems with the same unit cell.However,the effect of the unit area should be considered when comparing two systems with different unit cells.For the assembly system with the smaller unit cell,more molecules would be adsorbed on the surface within the same area,thus contributing more interaction energy to the system.[26]Therefore,the total energy per unit area is also calculated to avoid such effect.As displayed in the last column in Table 2,the total energy per unit area of LC-amide-2 system(-0.234 kcal mol-1?-2)is the highest and the total energy per unit area of LC-amide-1 system(-0.338 kcal mol-1?-2)is slightly lower than that of the LCester system(-0.303 kcal mol-1?-2),which suggests that the selfassembly of LC-amide-1 is most thermodynamically stable.

    Table 2 Total energies and energies per unit area of self-assemblies on the HOPG surfacea.

    As mentioned above,the three liquid crystal molecules all assemble into the linear patterns at the HOPG/1-phenyloctane interface.However,the differences in the backbone of molecules lead to different linear structures.As for the self-assembly of LCamide-1 and LC-ester,the linear patterns are both formed by the arrangement of dimers.The two liquid crystal molecules in the dimer can interact through π-π stacking interaction.Moreover,the amide moieties in LC-amide-1 molecules can form hydrogen bonds,while the ester moieties in LC-ester molecules cannot.Therefore,it can be distinguished that the two LC-amide-1 molecules in the dimer are arranged much closer comparing to the arrangement of LC-ester dimer,which agrees well with the result that the interaction energy between LC-amide-1 molecules(-149.536 kcal/mol)is lower than that between LC-ester molecules(-134.914 kcal/mol).As for the self-assembly of LC-amide-2,the linear pattern is formed by the arrangement of molecules instead of dimers.The van der Waals interaction between alkyl chains is the primary assembly motif,and the alkyl chains are arranged into one direction to maximize the van der Waals interaction.Moreover,as shown in Fig.3,the lowermost end of the backbone of the LC-amide-2 molecule is aligned with the uppermost end of the backbone of the lower right molecule to make the alkyl chains be aligned and interact more with each other.Hence the amide groups are too far apart to form the hydrogen bonds.Considering that the only difference between the molecular structures of LCamide-1 and LC-amide-2 is the BODIPY group,it can be inferred that the π-π stacking interaction is also important in forming dimers.Combined with the DFT result that the interaction energy between LC-amide-1 molecules(-149.536 kcal/mol)is much lower than that of LC-amide-2 molecules(-16.254 kcal/mol),it can be inferred that the interaction between LC-amide-2 molecules is not strong enough to form dimers with the absence of π-π stackinginteraction and hydrogen bonding interaction.Considering the experimental results and DFT calculations of three self-assembly systems,it is indicated that the simultaneous presence of N-H···O hydrogen bonding between amide groups,van der Waals interaction between alkyl chains,π-π stacking interaction between BODIPY groups and between benzene rings results in the closest molecular arrangement and the best thermodynamic stability of LC-amide-1 system in three liquid crystal self-assemblies.

    To sum up,by comparing the assembly structures of three liquid crystal molecules that differ in the functional groups at the solid/liquid interface,we have shed light on the influence of these groups on the self-assembly mechanism.The three liquid crystal molecules all form the linear assembly structures and the assembly motifs all include the van der Waals interaction between alkyl chains.However,the other interactions including hydrogen bonding interaction and π-π stacking interaction between molecules containing different functional groups are quite different,leading to the different arrangements of molecules in the linear patterns.The results of the DFT calculation also demonstrate the influence of these functional groups on the self-assembly.This work on the self-assembly of the liquid crystal molecules could enhance our understanding of the supramolecular assembly mechanism and benefit the exploration of the further application of liquid crystals.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.51875303,21773041,21972031),the National Basic Research Program of China(No.2016YFA0200700)and the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,atdoi:https://doi.org/10.1016/j.cclet.2020.09.016.

    尾随美女入室| 国产日韩欧美在线精品| h日本视频在线播放| 亚洲精品亚洲一区二区| 97超视频在线观看视频| 插阴视频在线观看视频| 别揉我奶头 嗯啊视频| 久久精品国产自在天天线| 国产亚洲午夜精品一区二区久久 | 在线观看一区二区三区| 女人十人毛片免费观看3o分钟| 大香蕉97超碰在线| 高清毛片免费看| 久久精品国产亚洲av涩爱| 我的老师免费观看完整版| 国产私拍福利视频在线观看| 国产69精品久久久久777片| 又粗又爽又猛毛片免费看| 欧美又色又爽又黄视频| 舔av片在线| 久久久色成人| 丝袜喷水一区| 高清午夜精品一区二区三区| 久久久久久伊人网av| 一个人观看的视频www高清免费观看| 麻豆成人午夜福利视频| 美女高潮的动态| 99热全是精品| 午夜激情福利司机影院| 国产69精品久久久久777片| 久久久久性生活片| 中文字幕精品亚洲无线码一区| 久久人人爽人人片av| 岛国在线免费视频观看| 色噜噜av男人的天堂激情| 婷婷色麻豆天堂久久 | 久久久久久国产a免费观看| 男人舔女人下体高潮全视频| 波野结衣二区三区在线| 欧美丝袜亚洲另类| 三级国产精品片| or卡值多少钱| 国产一区亚洲一区在线观看| 久久久久久伊人网av| 菩萨蛮人人尽说江南好唐韦庄 | 中文资源天堂在线| 国产熟女欧美一区二区| 老女人水多毛片| 精品久久久久久久久av| 精品不卡国产一区二区三区| 国产av码专区亚洲av| 国产精品不卡视频一区二区| 最近最新中文字幕大全电影3| 男插女下体视频免费在线播放| 超碰av人人做人人爽久久| 国产成人免费观看mmmm| 亚洲不卡免费看| 亚洲成人久久爱视频| 久久精品国产亚洲网站| 最后的刺客免费高清国语| 国产精品人妻久久久影院| 日产精品乱码卡一卡2卡三| 九草在线视频观看| 日韩欧美在线乱码| 色综合色国产| 欧美日本视频| 日韩欧美在线乱码| 国产精品久久久久久久久免| 亚洲国产最新在线播放| 美女大奶头视频| 国产亚洲精品av在线| 看免费成人av毛片| 精品久久久久久久久久久久久| 精品久久久噜噜| 老师上课跳d突然被开到最大视频| 免费人成在线观看视频色| 免费观看精品视频网站| 干丝袜人妻中文字幕| videossex国产| 免费观看人在逋| 国产单亲对白刺激| 久久精品久久久久久久性| 日韩av在线大香蕉| 97超视频在线观看视频| av专区在线播放| 亚洲国产精品成人久久小说| 永久免费av网站大全| 又爽又黄无遮挡网站| 国产在线男女| 国产精品一二三区在线看| 国产一区二区亚洲精品在线观看| 亚洲精品aⅴ在线观看| 免费av毛片视频| 国产精品麻豆人妻色哟哟久久 | 一级爰片在线观看| 级片在线观看| 久久99热6这里只有精品| 国产精品爽爽va在线观看网站| www.色视频.com| ponron亚洲| 大香蕉久久网| 我的老师免费观看完整版| 国产三级中文精品| 国产私拍福利视频在线观看| 人人妻人人澡欧美一区二区| 亚洲中文字幕日韩| 色5月婷婷丁香| 午夜免费男女啪啪视频观看| 欧美激情久久久久久爽电影| 色综合色国产| av福利片在线观看| 黄色配什么色好看| 亚洲欧美日韩东京热| 国内精品美女久久久久久| 久久国产乱子免费精品| 亚洲欧美清纯卡通| 国产精品女同一区二区软件| 精品一区二区免费观看| av天堂中文字幕网| 日本一本二区三区精品| 男人的好看免费观看在线视频| 九草在线视频观看| 国产乱人偷精品视频| 国产大屁股一区二区在线视频| 免费看日本二区| 亚洲av电影不卡..在线观看| 亚洲久久久久久中文字幕| 精品人妻一区二区三区麻豆| 韩国高清视频一区二区三区| 成人无遮挡网站| 日日干狠狠操夜夜爽| 午夜福利在线观看吧| 国产精品国产三级国产专区5o | 国产伦一二天堂av在线观看| 天堂影院成人在线观看| 久久久久久久久中文| 久久精品国产亚洲av涩爱| 亚洲精品日韩av片在线观看| av卡一久久| 亚洲欧美中文字幕日韩二区| 成人亚洲精品av一区二区| 一个人看的www免费观看视频| 黄片无遮挡物在线观看| 狂野欧美激情性xxxx在线观看| 一二三四中文在线观看免费高清| 久久久久网色| 亚洲五月天丁香| 国产精品久久久久久久久免| 久久久久久久久久成人| av在线播放精品| 精品久久久久久成人av| 精品一区二区三区人妻视频| 日日撸夜夜添| 国产在视频线精品| 18+在线观看网站| 亚洲av日韩在线播放| 精品一区二区免费观看| 午夜老司机福利剧场| 黄色欧美视频在线观看| 天堂中文最新版在线下载 | 日韩高清综合在线| 国产精品久久电影中文字幕| 亚洲av二区三区四区| 边亲边吃奶的免费视频| 99在线人妻在线中文字幕| 毛片女人毛片| 91精品一卡2卡3卡4卡| 国内少妇人妻偷人精品xxx网站| 日韩三级伦理在线观看| 国产精品久久久久久精品电影小说 | 热99在线观看视频| 一二三四中文在线观看免费高清| 18禁动态无遮挡网站| 久久久久久久久中文| 日韩欧美 国产精品| 精品人妻偷拍中文字幕| 一二三四中文在线观看免费高清| 欧美高清性xxxxhd video| 免费人成在线观看视频色| 久久99精品国语久久久| 日韩强制内射视频| 99热6这里只有精品| 日韩视频在线欧美| 日本免费在线观看一区| 最近最新中文字幕免费大全7| 丝袜美腿在线中文| 干丝袜人妻中文字幕| 亚洲性久久影院| 日韩欧美 国产精品| 国产一区二区三区av在线| 日本-黄色视频高清免费观看| 九九在线视频观看精品| 日本五十路高清| 爱豆传媒免费全集在线观看| 国产精品国产三级国产av玫瑰| 日本一本二区三区精品| av视频在线观看入口| 亚洲va在线va天堂va国产| 精品欧美国产一区二区三| 简卡轻食公司| 国产视频内射| av黄色大香蕉| 日本-黄色视频高清免费观看| 免费不卡的大黄色大毛片视频在线观看 | 国产av码专区亚洲av| 精品久久久久久电影网 | 91狼人影院| 国产乱人视频| 欧美一区二区国产精品久久精品| 99热全是精品| 人妻夜夜爽99麻豆av| 美女cb高潮喷水在线观看| 在线免费十八禁| 高清视频免费观看一区二区 | av免费观看日本| 国产一区二区在线av高清观看| 毛片女人毛片| 国产精品麻豆人妻色哟哟久久 | 亚洲精品久久久久久婷婷小说 | 最近的中文字幕免费完整| 国产又黄又爽又无遮挡在线| 我的老师免费观看完整版| 中文精品一卡2卡3卡4更新| 一本久久精品| 男女那种视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美三级三区| 男插女下体视频免费在线播放| 久久久久久久久久久丰满| 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 日韩av在线大香蕉| 亚洲美女搞黄在线观看| 在线免费观看的www视频| 18禁在线播放成人免费| 久久99热6这里只有精品| 亚洲性久久影院| 国产三级在线视频| 免费观看性生交大片5| 嘟嘟电影网在线观看| 小蜜桃在线观看免费完整版高清| 天天躁夜夜躁狠狠久久av| 有码 亚洲区| 国产精品久久久久久精品电影小说 | 中文字幕亚洲精品专区| 精品少妇黑人巨大在线播放 | 少妇的逼好多水| 亚洲欧美日韩高清专用| 啦啦啦观看免费观看视频高清| 大话2 男鬼变身卡| 九九热线精品视视频播放| 最近的中文字幕免费完整| 欧美高清成人免费视频www| 男女啪啪激烈高潮av片| 我要搜黄色片| 欧美另类亚洲清纯唯美| 精品不卡国产一区二区三区| 美女黄网站色视频| 久久99热这里只有精品18| 欧美日韩精品成人综合77777| 精品欧美国产一区二区三| 色综合色国产| 长腿黑丝高跟| 免费黄网站久久成人精品| av天堂中文字幕网| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲天堂国产精品一区在线| 国产精品久久久久久久电影| 有码 亚洲区| 精品无人区乱码1区二区| 亚洲欧美成人精品一区二区| 婷婷色综合大香蕉| 久久久色成人| 天堂影院成人在线观看| 国产精品久久久久久久电影| 久久久久久久午夜电影| 久久精品国产亚洲网站| 免费无遮挡裸体视频| 99久久精品国产国产毛片| 一卡2卡三卡四卡精品乱码亚洲| 三级经典国产精品| 99久久精品热视频| 春色校园在线视频观看| 欧美成人午夜免费资源| 亚洲乱码一区二区免费版| av在线天堂中文字幕| 啦啦啦啦在线视频资源| 99久久九九国产精品国产免费| 色5月婷婷丁香| 97人妻精品一区二区三区麻豆| 床上黄色一级片| 亚洲婷婷狠狠爱综合网| 欧美另类亚洲清纯唯美| 波多野结衣巨乳人妻| 免费av不卡在线播放| 蜜臀久久99精品久久宅男| 久久久久久久久久黄片| 性色avwww在线观看| 全区人妻精品视频| 长腿黑丝高跟| 国产精品日韩av在线免费观看| 日韩人妻高清精品专区| 26uuu在线亚洲综合色| 看非洲黑人一级黄片| 狂野欧美激情性xxxx在线观看| 在现免费观看毛片| 中文字幕人妻熟人妻熟丝袜美| 九九爱精品视频在线观看| 久久亚洲国产成人精品v| 黄色配什么色好看| www.av在线官网国产| 欧美成人a在线观看| 久久久欧美国产精品| 亚州av有码| 99热6这里只有精品| 国产成人freesex在线| 亚洲av电影在线观看一区二区三区 | 亚洲丝袜综合中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲国产精品合色在线| 男女边吃奶边做爰视频| 色尼玛亚洲综合影院| 黄片wwwwww| 99九九线精品视频在线观看视频| 99热这里只有精品一区| 亚洲第一区二区三区不卡| 日韩视频在线欧美| 22中文网久久字幕| 国产精品熟女久久久久浪| 色5月婷婷丁香| 日韩中字成人| 免费看日本二区| av.在线天堂| 中国国产av一级| 中文字幕亚洲精品专区| 国产 一区精品| 最近手机中文字幕大全| 国产伦理片在线播放av一区| 国产欧美另类精品又又久久亚洲欧美| 尤物成人国产欧美一区二区三区| 久久热精品热| 日韩成人av中文字幕在线观看| 欧美激情在线99| 91精品一卡2卡3卡4卡| 一级毛片电影观看 | 成年免费大片在线观看| 最近中文字幕2019免费版| 国产亚洲最大av| 国产精品久久久久久久久免| 看非洲黑人一级黄片| 在线免费十八禁| 精品一区二区三区人妻视频| 一二三四中文在线观看免费高清| 尾随美女入室| 美女大奶头视频| 亚洲av熟女| 桃色一区二区三区在线观看| 欧美日本视频| 日本黄大片高清| 高清日韩中文字幕在线| 禁无遮挡网站| 精品国内亚洲2022精品成人| 日韩精品青青久久久久久| 日韩强制内射视频| 麻豆av噜噜一区二区三区| 插逼视频在线观看| 亚洲自偷自拍三级| 免费看av在线观看网站| 人妻少妇偷人精品九色| 九九爱精品视频在线观看| 久久久久免费精品人妻一区二区| 精品一区二区三区人妻视频| 91久久精品国产一区二区三区| 少妇熟女欧美另类| 日本熟妇午夜| 精品国产三级普通话版| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 欧美精品国产亚洲| 免费观看的影片在线观看| kizo精华| 国产精品,欧美在线| 在线免费十八禁| 免费av不卡在线播放| av又黄又爽大尺度在线免费看 | 亚洲天堂国产精品一区在线| 日本五十路高清| a级毛色黄片| 欧美区成人在线视频| 97热精品久久久久久| 熟妇人妻久久中文字幕3abv| 少妇的逼好多水| 日韩一区二区视频免费看| 最新中文字幕久久久久| 久99久视频精品免费| 91午夜精品亚洲一区二区三区| 毛片一级片免费看久久久久| 国产成人freesex在线| 亚洲av熟女| 国产黄色视频一区二区在线观看 | 亚洲欧美成人综合另类久久久 | 三级男女做爰猛烈吃奶摸视频| 99国产精品一区二区蜜桃av| 日韩成人伦理影院| av在线天堂中文字幕| av专区在线播放| 狂野欧美激情性xxxx在线观看| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放| 伦理电影大哥的女人| 久久久久久大精品| 久久久久久久久中文| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产午夜精品一二区理论片| 久久这里只有精品中国| 国产视频内射| 亚洲精品乱码久久久v下载方式| 欧美不卡视频在线免费观看| av.在线天堂| 亚洲伊人久久精品综合 | 丰满乱子伦码专区| 亚洲成人久久爱视频| 免费av不卡在线播放| 国产精品一区二区三区四区久久| 国产老妇伦熟女老妇高清| 久久午夜福利片| av黄色大香蕉| 亚洲欧美精品专区久久| 深爱激情五月婷婷| 日韩视频在线欧美| 婷婷色麻豆天堂久久 | 久久人妻av系列| 亚洲自偷自拍三级| 国产在视频线在精品| 中文欧美无线码| 免费看日本二区| 亚洲av.av天堂| 免费黄网站久久成人精品| 永久网站在线| 国产免费视频播放在线视频 | 午夜视频国产福利| 色吧在线观看| 午夜久久久久精精品| 亚洲国产精品sss在线观看| 精品久久久久久成人av| 亚洲欧美精品专区久久| 一级黄片播放器| 日韩欧美在线乱码| 插逼视频在线观看| av女优亚洲男人天堂| 91精品一卡2卡3卡4卡| 国产伦精品一区二区三区视频9| 免费播放大片免费观看视频在线观看 | 亚洲av.av天堂| 嘟嘟电影网在线观看| 中文亚洲av片在线观看爽| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 伦精品一区二区三区| 国产精品av视频在线免费观看| 一个人免费在线观看电影| 国产91av在线免费观看| 一区二区三区高清视频在线| 在现免费观看毛片| 久久精品91蜜桃| 成人无遮挡网站| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看| 日本色播在线视频| 久久精品夜色国产| 国产精品综合久久久久久久免费| 午夜a级毛片| a级一级毛片免费在线观看| 久久热精品热| 特大巨黑吊av在线直播| 亚洲av免费在线观看| 免费一级毛片在线播放高清视频| 国内揄拍国产精品人妻在线| 国产大屁股一区二区在线视频| 精品国产三级普通话版| 国产精品一二三区在线看| 欧美bdsm另类| 国产v大片淫在线免费观看| 久久久久久九九精品二区国产| 国产精品一二三区在线看| 日韩欧美 国产精品| 日本免费a在线| 最近中文字幕2019免费版| 毛片一级片免费看久久久久| 久久精品国产亚洲av涩爱| 日韩欧美精品免费久久| 成年版毛片免费区| 天天躁日日操中文字幕| 插逼视频在线观看| 性色avwww在线观看| 看片在线看免费视频| 亚洲怡红院男人天堂| 国产精品久久久久久久久免| 成人三级黄色视频| 久久精品国产99精品国产亚洲性色| 欧美日韩在线观看h| 亚洲精品一区蜜桃| 国内揄拍国产精品人妻在线| 啦啦啦啦在线视频资源| 日韩欧美三级三区| 久久久久久久亚洲中文字幕| 偷拍熟女少妇极品色| 中国美白少妇内射xxxbb| 免费搜索国产男女视频| 亚洲经典国产精华液单| 欧美性猛交╳xxx乱大交人| 夫妻性生交免费视频一级片| 精品久久久久久久末码| 国产免费男女视频| 69av精品久久久久久| 日日撸夜夜添| 国产精品永久免费网站| 亚洲精品国产成人久久av| 国产白丝娇喘喷水9色精品| 亚洲国产精品成人久久小说| 看非洲黑人一级黄片| 亚洲在线自拍视频| 一级毛片电影观看 | 国产一区二区三区av在线| 深夜a级毛片| 嘟嘟电影网在线观看| 亚洲av免费在线观看| 最近最新中文字幕大全电影3| 国产免费一级a男人的天堂| 午夜福利视频1000在线观看| 小蜜桃在线观看免费完整版高清| 热99在线观看视频| 久久99热6这里只有精品| 亚洲精品乱码久久久久久按摩| 亚洲综合精品二区| 内射极品少妇av片p| 免费电影在线观看免费观看| 日本黄色视频三级网站网址| 精品久久久久久久末码| av.在线天堂| 精品一区二区三区视频在线| 插逼视频在线观看| 好男人视频免费观看在线| 国产乱来视频区| 日韩人妻高清精品专区| 国产精品美女特级片免费视频播放器| 又粗又爽又猛毛片免费看| 亚洲高清免费不卡视频| 中文字幕人妻熟人妻熟丝袜美| 少妇丰满av| 水蜜桃什么品种好| 少妇熟女aⅴ在线视频| 91午夜精品亚洲一区二区三区| 噜噜噜噜噜久久久久久91| 欧美日本视频| 五月玫瑰六月丁香| 女的被弄到高潮叫床怎么办| 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看| kizo精华| 观看美女的网站| 免费黄色在线免费观看| 一区二区三区高清视频在线| 久久精品久久精品一区二区三区| av在线老鸭窝| 欧美又色又爽又黄视频| 亚洲国产精品成人综合色| 亚洲在久久综合| 国产黄a三级三级三级人| 欧美变态另类bdsm刘玥| 99九九线精品视频在线观看视频| 国产精品99久久久久久久久| 69人妻影院| 国语自产精品视频在线第100页| 国语对白做爰xxxⅹ性视频网站| 亚洲中文字幕一区二区三区有码在线看| 国产片特级美女逼逼视频| 久久久亚洲精品成人影院| 99热这里只有是精品在线观看| 日本午夜av视频| 蜜桃久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 亚洲av成人精品一区久久| 久久精品综合一区二区三区| 国产亚洲精品av在线| 午夜亚洲福利在线播放| 天堂中文最新版在线下载 | 国产一区二区在线观看日韩| 久久人妻av系列| 日本av手机在线免费观看| 免费看光身美女| av女优亚洲男人天堂| 午夜福利在线在线| 亚洲精品影视一区二区三区av| 亚洲国产精品成人久久小说| 91午夜精品亚洲一区二区三区| 国产亚洲一区二区精品| 黄片wwwwww| 久久人人爽人人片av| 国产一区亚洲一区在线观看| 男女下面进入的视频免费午夜| 极品教师在线视频| 蜜臀久久99精品久久宅男| 国产又黄又爽又无遮挡在线| 国产一区二区亚洲精品在线观看| 国产精品人妻久久久久久| 嫩草影院精品99| 久久久欧美国产精品| 视频中文字幕在线观看| 久久精品国产亚洲av涩爱| 日韩av在线大香蕉| 亚洲中文字幕日韩| 午夜福利在线观看吧| 日韩欧美 国产精品| 一本一本综合久久|