• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Monitoring the mechanical properties of the solid electrolyte interphase(SEI)using electrochemical quartz crystal microbalance with dissipation

    2021-07-01 05:29:38YingungChiWenshnJiZhiqiuHuSongJinHonghngJinHunxinJuXinginYnHengxingJiLiJunWn
    Chinese Chemical Letters 2021年3期

    Yingung Chi,Wenshn Ji,Zhiqiu Hu,Song Jin,Honghng Jin,Hunxin Ju,Xingin Yn,Hengxing Ji,*,Li-Jun Wn,d

    a Hefei National Laboratory for Physical Sciences at the Microscale,Department of Applied Chemistry,University of Science and Technology of China,Hefei 230026,China

    b PHI China Analytical Laboratory,CoreTech Integrated Limited,Nanjing 211102,China

    c Laboratory of Clean Energy Chemistry and Materials,State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese of Academy of Sciences,Lanzhou 730000,China

    d CAS Key Laboratory of Molecular Nanostructure and Nanotechnology,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    ABSTRACT Stable solid electrolyte interphase(SEI)has been well established to be critical for the reversible operation of Li(ion)batteries,yet our understanding of its mechanical properties currently remains incomplete.Here,we used an electrochemical quartz crystal microbalance combined with dissipation monitoring(EQCM-D)to investigate SEI formation.By quantitatively estimating in-situ,the change in mass,shear modulus,and viscosity of the SEI,we show that the SEI formation in propylene carbonate(PC)-and ethylene carbonate/diethyl carbonate(EC/DEC)-based electrolytes involves the growth of a rigid layer followed by a viscoelastic layer,whereas a distinct“one-layer”rigid model is applicable to the SEI formulated in tetraethylene glycol dimethyl ether(TEGDME)-based electrolyte.With the continuous formation of the SEI,its shear modulus decreases accompanied by an increase in viscosity.In TEGDME,the lightest/thinnest SEI(mass lower than in PC by a factor of nine)yet having the greatest stiffness(more than five times that in PC)is obtained.We attribute this behavior to differences in the chemical composition of the SEIs,which have been revealed by tracking the mass-change-per-mole-of-electrontransferred using EQCM-D and further confirmed by X-ray photoelectron spectroscopy.

    Keywords:Lithium metal batteries Solid electrolyte interphase EQCM-D Solvent Mechanical properties

    The solid-electrolyte interphase(SEI)is a passivation layer formed on the surface of a Li(ion)battery anode generated by the decomposition of the electrolyte at low reductive potentials of the anode[1].An ideal SEI should be mechanically robust and electrically insulating while being ionically conductive,to inhibit further electrolyte decomposition and loss of anode capacity.The presence of a stable SEI is thus indispensable to the reversible and stable cycling performance of a battery[2].For Li metal anodes,a stable SEI is even more critical due to the extremely low reductive potential of Li(-3.045 V versus the standard hydrogen electrode),which makes it highly reactive towards electrolytes.Moreover,the very high theoretical capacity of the Li metal anode(3860 mAh/g)is invariably associated with significant volume change,which can break the SEI and expose fresh Li to the electrolyte triggering the formation of a new SEI and dead Li,causing dendritic Li growth and rapid capacity decay.Considerable efforts have been made in recent times to achieve an optimal SEI.For example,it was noted that the introduction of some inorganic salts as additives to the electrolyte increased the chemical stability of the SEI by changing its composition and inhibiting side reactions to significantly improve the cycling performance of Li metal anodes[3,4].Recently,more approaches have been proposed to obtain a thinner and more stable SEI layer,such as the employment of special anions and highly concentrated electrolyte[5–7].Moreover,artificial SEIs composed of carbon materials,polymers,inorganic conductive compounds,and electrochemically active metals have been reported to suppress parasitic reactions of Li metal in liquid electrolytes[8–11].

    To obtain a stable SEI,it is vital to understand how its structure,composition,and more importantly,its mechanical properties evolve on an active anode surface.In this context,significant efforts have been made over the last few decades to elucidate the role of solvents and additives in the formation and evolution of SEI on different anode materials[12,13].However,understanding the SEI is very challenging due to its complexity in structure and composition,which are not fixed but evolve over time and during cycling.Although a variety of methods have been used to characterize the nature of the SEI[14,15],much less is known about how its mechanical properties change during battery cycles,which is extremely important for its stability and consequently for the cycling stability of the electrode.

    Electrochemical quartz-crystal microbalance with dissipation monitoring(EQCM-D)is a powerful tool for the in-situ measurement of interfacial behavior.This technique,although used initially for the quantitative characterization of the viscoelastic properties of polymeric coatings,has great potential for interface analysis in Li(ion)batteries[16].When adsorbates begin to form on a test substrate(a Cu coated quartz plate in this case),the mass change(Δm)of the adsorbates on the substrate surface can be converted to change in resonant frequency(Δf)of the quartz crystal through the piezoelectric effect.The change in mass can be measured with an accuracy as high as nanogram per square centimeter[17].This technique can thus be used to monitor the change in mass of a thin film without damaging it.In addition,by monitoring the energy dissipation(ΔD),which is essentially a physical quantity related to the rate of decay of the oscillation amplitude of the wafer once the applied electric field is turned off,a series of viscoelastic properties(including shear modulus and viscosity)can be measured[18].Previous studies have demonstrated the efficacy of EQCM-D as an effective and reliable tool to detect changes in mechanical properties of battery electrodes[19–21].

    In this work,we employed EQCM-D to in-situ monitor SEI formation when the electrode potential was decreased from opencircuit voltage(OCV)to 0 V(versus Li/Li+).The mass,shear modulus,and viscosity of the SEI were recorded in a time-resolved manner in three electrolytes and the results were compared.The masses of the SEIs formed in propylene carbonate(PC)-,ethylene carbonate/diethyl carbonate(EC/DEC)-,and tetraethylene glycol dimethyl ether(TEGDME)-based electrolytes were quantitatively measured to be 20.9,4.7 and 2.4 μg/cm2,respectively,indicating the highly reactive nature of PC and the much more inert nature of TEGDME.The calculated values of the mass-change-per-mole-ofelectron-transferred(mpe)point to the deposition of lithium carbonate and long-chain organic carbonates in PC-and EC/DECbased electrolytes,while lithium oxide,lithium formate,and shortchain polyethers with-OLi edge groups are the major components in the TEGDME-based electrolytes;these results are in accordance with X-ray photoelectron spectroscopy(XPS)analysis.In PC-and EC/DEC-based electrolytes,SEI formation involves the initial deposition of a rigid layer followed by the growth of a viscoelastic layer on top.This is considerably different from the SEI formed in a TEGDME-based electrolyte,which remains rigid during the entire process.The estimated shear moduli of the SEIs formed in PC-,EC/DEC-and TEGDME-based electrolytes are 20,26 and>100 GPa,respectively.The thin yet much stiffer SEI formed in TEGDME or other ether-based electrolytes should be responsible for the improved electrochemical performance of Li metal anodes in these media.

    To study the effect of solvent on the SEI,EQCM-Danalyses were performed in a two-electrode cell with copper coated quartz plate(Cu/quartz)as the working electrode and a Li coated stainless steel plate functioned as the counter electrode(Fig.S1 in Supporting Information).TheΔf andΔD signals were generated due to the piezoelectric effect of the quartz substrate during the generation of the SEI at the Cu surface.EC/DEC mixture(1:1,v/v)is a widely used solvent in commercial Li-ion batteries as it can form a nearly ideal SEI on a graphite anode,while PC,though differing by only one methyl group from EC,does not form a protective SEI[22].TEGDME,being relatively non-flammable,is a promising etherbased solvent for high-energy Li metal batteries to ensure safe long-term operation[23].All the three solvents containing 1.0 mol/L LiClO4were tested to study the effect of solvent on the formation of SEI.LiClO4is applied instead of the LiPF6,a salt more widely used in commercial electrolytes,to avoid the formation of HF,which can etch away the 100 nm-thick Cu coating from the quartz substrate,leading to the electrode failure in about tens of minutes.Electrochemical measurements were performed in the voltage range from the open-circuit voltage(OCV)of the cell,which was then discharged to 0 V at a low current density(0.1 mA/cm2)to generate an initial SEI layer on the Cu/quartz substrate.The SEI formed in the initial discharge plays a key role in the electrode performance[24].Fig.1 presents the time dependence of the change in dissipation(ΔDn)and the normalized frequency shift(Δfn/n)of the Cu/quartz electrode forvariousharmonics(n=5,7,9)along with the potential of the Cu/quartz electrode.ΔDnandΔfn/n are closely related to the elasticity and viscosity of the film deposited at the Cu/quartz substrate and are key parameters in the analysis of the physical properties of the SEI on the electrode surface.It is worth noting that theΔDnandΔfn/n values measured at lower overtones(n=1,3)were not selected for analysis due to their testing ranges being close to the boundary of the quartz plate,which may introduce uncertainties in the measured values.In Fig.1,it is observed thatΔfn/n curves traced in different electrolytes show a downward trend with discharge time,indicating a monotonous increase in the mass deposited on the Cu/quartz surface.TheΔDnvalues measured in carbonate-based electrolytes(PC and EC/DEC)increase considerably toΔDn>10×10-6,while that measured in the ether-based electrolyte(TEGDME)shows only a very small variation.CombingΔDn,Δfn/n,and the discharge potential(V),we can further analyze the mechanical properties of the SEI formed on the Cu/quartz electrodes.

    Fig.1.Plots showing the shift in energy dissipationΔDn and the normalized frequency shiftΔfn/n acquired by EQCM-D,and the working electrode potential during the first discharge process at 0.1 mA/cm2 from OCV to 0 V in electrolytes containing(a)PC,(b)EC/DEC and(c)TEGDME as solvent and 1.0 mol/L LiClO4 as salt.

    Two different models were applied to analyze the mechanical properties of the films deposited on the Cu/quartz surface in the different electrolytes.For a dense thin film that is rigid,we can use the Sauerbrey equation(Δf=-CfΔm),where Cfis the sensitivity factor of the crystal(Cf=0.056 Hz ng-1cm-2),to describe the linear relationship between the frequency change(Δf)and the mass increase(Δm)of the thin film from which,the specific mass change can be estimated[25].In contrast,a viscoelastic film on the quartz substrate has to be modeled using the Kelvin-Voigt model which combines viscous and elastic components in parallel usingΔf and ΔD as input data.This analysis,after curve fitting,gives information on the mass,shear elasticity,and viscosity of the film[18].There are various explanations for how to determine whether the viscoelastic model fits to the film deposited on the quartz surface in previous reports[19,26].One of the accepted methods is that a rigid film on a vibrating quartz substrate results inΔfn/n overΔDn(n=5)of<-40×106Hz[19].On the contrary,if Δfn/n overΔDn(n=5)is>-40×106Hz,the film can be analyzed using the viscoelastic model(Fig.S2 in Supporting information).For the SEIs formed in the two carbonate-based electrolytes(Figs.1a and b),a rigid layer is observed prior to the deposition of a viscoelastic layer,which is in accordance with previous reports on the two-layer structure of the SEI formed on a graphite anode in carbonate-based electrolytes[27].However,in the ether-based electrolyte(Fig.1c),a distinctly different process takes place with the formation of only a rigid layer.

    Fig.2 shows the mass change of the Cu/quartz electrode with discharge time in PC-,EC/DEC-and TEGDME-based electrolytes,which are derived from the Sauerbrey equation and Kelvin-Voigt model for the rigid and viscoelastic layer,respectively.The details of the fitting parameters and results by Kelvin-Voigt model are given in Table S1 and Fig.S3(Supporting information)to get optimized fitting results by minimizing the χ2.

    In PC-based electrolytes(Fig.2a),the electrode potential decreases from OCV to 1.4 V in 82 s.During this stage,the adsorbates on the electrode surface can be modeled as a rigid layer,which has an areal mass density of 1.4 μg/cm2and mpe of 15 g/mol calculated using the Sauerbrey equation.The detailed mpe calculation methods are shown in Note 1(Supporting information).This low mpe detected by EQCM-D at potential>1.4 V can be ascribed to the formation of lithium oxides on the surface of the copper substrate accompanied by the reduction of copper oxide[28].When the electrode potential is<1.4 V,the coating on the electrode surface changes to a viscoelastic layer,indicating that a“soft”SEI starts to be generated,the mass of which increases rapidly with discharge time to reach 19.5 μg/cm2at the electrode potential of 0 V;this behavior is consistent with a previously reported conclusion that the SEI formation process starts from 1.4 V in PC[29].The viscoelastic layer formation in the PC-based electrolyte(potential range of 1.4–0 V)can be divided into two regions according to the different mpe values(Fig.2a).In the range of 1.4–0.54 V,the decomposition of PC generates high molecular weight species with mpe of 74,which we attribute to the formation of organic carbonates,e.g.,(CH3)2CHOCO2Li.In contrast,in the voltage range of 0.54–0 V,low molecular weight species(mpe of 40),for example,lithium carbonate(Li2CO3),are the main reduction products[29].Overall,the total mass of the rigid and viscoelastic layers formed at the electrode surface in the PC-based electrolyte is 20.9 μg/cm2.

    In EC/DEC-based electrolyte(Fig.2b),a rigid layer with an areal mass of 2.1 μg/cm2and mpe of 17 is first formed(potential range of OCV–0.6 V),followed by the generation of a viscoelastic layer during the subsequent discharge process(potential<0.6 V).The formation of the viscoelastic SEI layer in EC/DEC starts at the electrode potential of 0.6 V,which is much lower than the value(1.4 V)observed in the PC-based electrolyte,indicating delayed electrolyte decomposition.Furthermore,in the potential range of 0.6–0 V,the mpe value remains at about 28 g/mol,indicating that the chemical reaction occurring on the electrode surface is different from that in PC.Considering the conclusions from previous research of other groups,this process should involve the reduction of EC,and the formation of lithium ethylene dicarbonate(LEDC)and Li2CO3[29,30].Note that the total mass of the rigid and viscoelastic layers formed in the EC/DEC-based electrolyte is 4.7 μg/cm2,which is only 22.5% of that formed in the PC-based electrolyte(20.9 μg/cm2),indicating a greatly reduced decomposition of EC/DEC than PC.Moreover,monitoring the change in mpe,we find that in PC,the principal component of the SEI is formed in the potential range of 1.4–0.54 V with a large mpe(Fig.2a),which is absent in EC/DEC(Fig.2b).

    Fig.2.Mass changes estimated from EQCM-D data modeling results during the first discharge process from OCV to 0 V in(a)PC-,(b)EC/DEC-and(c)TEGDME-based electrolytes.The first layer closest to the Cu electrode was fitted to the Sauerbrey equation and the second layer was fitted using the Kelvin-Voigt model;the values of mpe are shown along with for clarity.SEM images of the SEI cross sections on the copper electrode in(d)PC-,(e)EC/DEC-and(f)TEGDME-based electrolytes when charged to 0 V and held at 0 V for 10 min.The discharge current density was 0.1 mA/cm2 in all cases.

    When the ether-based electrolyte TEGDME replaced the carbonate-based electrolyte,a completely different profile is observed in the mass-time curve(Fig.2c).Dissipation(ΔDn)continuously approached zero during the whole discharge process,showing a rigid electrode surface throughout the SEI deposition process.When the electrode potential is reduced to 0 V,the overall increase in electrode mass is only~2.4 μg/cm2,which is much smaller than those obtained in the PC-(20.9 μg/cm2)and EC/DEC-(4.7 μg/cm2)based electrolytes.Moreover,the lower average mpe in all the regions as compared to PC and EC/DEC shows that the degree of electrolyte decomposition is relatively low and the products are mostly small molecular compounds with short chains.These different SEI formation processes in ether and carbonate electrolytesresult in significant differences in the final SEI composition and mass.The mass ratio of the SEIs generated in PC-,EC/DEC-,and TEGDME-based electrolytes is 9:2:1.Considering that these predicted possible SEI products have similar density(around 2 g/cm3)[19,31],we infer that the SEI is the thickest in PC and the thinnest in TEGDME.To obtain the cross sectional-thickness of the SEI,the electrode potential was reduced from OCV to 0 V and held at 0 V for 10 min to yield a thick SEI that is visible in SEM.The crosssectional thicknesses of the SEI in PC-,EC/DEC-and TEGDME-based electrolytesare~870,~250and~110 nm,respectively.Thistrendof thickness variation is in accordance with the EQCM-D results.

    About the viscoelastic properties,fitting parameters are included only for PC and EC/DEC(Supporting Information Table S1),because the film in TEGDME is rigid enough to be characterized as a Sauerbrey layer.As shown in Fig.3,in PC-and EC/DEC-based electrolytes,with the formation of SEI,the shear modulus(μ)continues to decrease and the viscosity(η)continues to increase,indicating the formation of a“soft material”at the electrode/electrolyte interface[32].The initial shear modulus derived from the viscoelastic model is~100 GPa,indicating that prior to the deposition of the viscoelastic layer,the stiff SEI that covered the electrode still behaves like a rigid structure.It also means the shear modulus of SEI generated in TEGDME is larger than 100 GPa.When the potential is down to 0 V,the SEI in PC still preserves a certain rigidity(μ=20 GPa)and the shear modulus is higher than the previously reported value,which could be due to the non-uniform distribution of Li2CO3[33].Besides,in the PC-based electrolyte,the viscosity increases to 11×10-3kg m-1s-1with SEI formation(Fig.3a).In contrast,using an EC/DEC-based electrolyte results in an SEI with a slightly higher shear modulus(μ=26 GPa)and much lower viscosity(η=3.7×10-3kg m-1s-1)than in a PC-based electrolyte,indicating the greater rigidity of the SEI formed in this electrolyte(Fig.3b).It is worth noting that the mechanical properties as measured by QCM are averaged over the whole electrode interface.The actual SEI may not be homogeneous and the shear modulus in some regions may be relatively small.

    Fig.3.The change in viscoelastic properties,shear modulus(μ)and viscosity(η)in real-time during SEI formation in(a)PC-and(b)EC/DEC-based electrolytes calculated using the Kelvin-Voigt model.

    To understand the difference in mechanical properties of the SEIs formed in carbonate and ether-based electrolytes,the chemical compositions of the SEIs were analyzed by XPS(Fig.4).The specimens for XPS analysis were transferred in an argon-filled tube to avoid exposure to moisture or oxygen.The atom ratios of the Li,C,O and Cl elements in the SEI formed in different electrolytes are shown in Table S2.The atom ratios of Cl detected from the SEI are about two orders of magnitude lower than Li,C and O,indicating that the SEI mass originated from the decomposition of LiClO4is very low.Note that the SEI films formed in both PC-and EC/DEC-based electrolytes comprise a rigid layer covered by a viscoelastic layer.Though the total areal mass(thickness)of the SEI formed in PC is much larger than that in EC/DEC,the shear modulus of the SEI formed in the carbonate-based electrolytes are quite close(20 and 26 GPa for the SEIs formed in PC and EC/DEC,respectively).The C 1s(Fig.4a)and O 1s(Fig.4b)spectra of the SEIs formed in PC and EC/DEC are also very close,both presenting pronounced signals that can be assigned to Li2CO3(289.8 eV in C 1s and 531.5 eV in O 1s),Li2O(528.1 eV in O 1s),and lithium alkyl carbonate(ROCO2Li,288.6 eV in C 1s and 533.5 eV in O 1s spectra),which are commonly observed in carbonate-based electrolytes[34,35].Notably,a CuO peak(529.8 eV in O 1s)also appears(Fig.4b),probably due to the partial oxidation of the Cu electrode.However,for the SEI formed in TEGDME-based electrolyte,small molecular species,such as Li formate(HCO2Li,289.1 eV in C 1s and 531.3 eV in O 1s),short-chain polyethers with-OLi edge groups(530.8 and 533.0 eV in O 1s)and Li2O are the main components[36,37].These conclusions on the chemical composition of SEIs as revealed by XPS analysis are consistent with those determined from mpe analysis using the EQCM-D technique.Thus,the considerable difference in chemical composition between the SEIs formed in the carbonate-and ether-based electrolytes should be the reason for their different mechanical properties.

    Fig.4.XPS of the SEIs on Cu surface in different electrolytes.(a)C 1s,(b)O 1s XPS spectra of the SEI at 0 V.

    In conclusion, the mechanical properties of SEIswere monitoredin-situ using EQCM-D, which provides quantitative values of theareal mass, shear modulus, and viscosity. The different trends infrequency (Δf) and dissipation changes (ΔD) as measured by EQCM Dindicatethat SEIs in PC-andEC/DEC-basedelectrolytes are formedinitially bygrowing a rigid layer followed bya viscoelastic overlayer.In contrast, a distinct “one-layer” rigid model is found to beapplicable for the analysis of the SEI formed in the TEGDME-based electrolyte.This implies that the structure and composition of the SEIs formed in the TEGDME-based electrolyte cannot be reliably modeled using the widely accepted two-layer model.Moreover,SEI masses reached 20.9 and 4.7 μg/cm2in PC-and EC/DEC-based electrolytes,respectively,compared to 2.4 μg/cm2of SEI in TEGDME-based electrolyte.However,the shear modulus of the SEI inTEGDME is more than five times that in PC-and EC/DEC-based electrolytes and the shear modulus decreased and viscosity increasedcontinuously during the formation of the SEI.This in-situ technique will thus serve to advance our understanding of the SEI formation and its stability in other types of Li(ion)batteries and provide new ideas for SEI and electrolyte design in the future.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We appreciate funding from the Natural Science Foundation of China(Nos.51761145046,21975243 and 51672262),support from the 100 Talents Program of the Chinese Academy of Sciences,the National Program for Support of Top-notch Young Professionals,and iChEM.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.09.008.

    成人毛片60女人毛片免费| 在现免费观看毛片| 亚洲第一区二区三区不卡| 韩国精品一区二区三区| 国产精品久久久久久精品电影小说| 精品少妇久久久久久888优播| 亚洲,欧美,日韩| 建设人人有责人人尽责人人享有的| www.熟女人妻精品国产| 亚洲av欧美aⅴ国产| 成年动漫av网址| 亚洲精品国产av成人精品| e午夜精品久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 国产在线一区二区三区精| 精品国产国语对白av| 制服诱惑二区| 精品国产一区二区三区久久久樱花| 老司机靠b影院| 亚洲精品日本国产第一区| 我的亚洲天堂| 亚洲av福利一区| 久久99精品国语久久久| 国产伦人伦偷精品视频| 久久久久久久国产电影| 成人18禁高潮啪啪吃奶动态图| 国产 一区精品| av网站免费在线观看视频| 纯流量卡能插随身wifi吗| 高清不卡的av网站| 中文字幕高清在线视频| 久久免费观看电影| 亚洲,欧美,日韩| 亚洲精品久久成人aⅴ小说| 日本欧美国产在线视频| 综合色丁香网| 国产精品免费大片| 两性夫妻黄色片| 高清黄色对白视频在线免费看| 蜜桃在线观看..| 精品亚洲成国产av| 亚洲精品第二区| 亚洲国产中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o | 一级毛片电影观看| 久久性视频一级片| 欧美日本中文国产一区发布| 丝瓜视频免费看黄片| 一二三四中文在线观看免费高清| 欧美日韩福利视频一区二区| 老司机影院毛片| 男女无遮挡免费网站观看| 一级a爱视频在线免费观看| 校园人妻丝袜中文字幕| 日本一区二区免费在线视频| 成年美女黄网站色视频大全免费| 国产精品久久久人人做人人爽| 18禁动态无遮挡网站| 咕卡用的链子| 多毛熟女@视频| 波多野结衣一区麻豆| 叶爱在线成人免费视频播放| 另类亚洲欧美激情| 18禁观看日本| 超碰97精品在线观看| 国产精品偷伦视频观看了| 日韩熟女老妇一区二区性免费视频| kizo精华| av视频免费观看在线观看| 久久婷婷青草| 久热这里只有精品99| av电影中文网址| 亚洲一级一片aⅴ在线观看| 日韩大码丰满熟妇| 成人毛片60女人毛片免费| 久久精品国产亚洲av涩爱| 韩国av在线不卡| 欧美日韩国产mv在线观看视频| av国产精品久久久久影院| 成人国产av品久久久| 韩国av在线不卡| 亚洲欧美清纯卡通| 日本猛色少妇xxxxx猛交久久| 操美女的视频在线观看| 又大又爽又粗| 免费女性裸体啪啪无遮挡网站| 男人添女人高潮全过程视频| 黄网站色视频无遮挡免费观看| 日韩欧美精品免费久久| 一级毛片电影观看| 久久99精品国语久久久| 免费观看人在逋| 免费在线观看完整版高清| 一级爰片在线观看| 日韩欧美精品免费久久| 在线观看三级黄色| 成人国语在线视频| 国产国语露脸激情在线看| 99精品久久久久人妻精品| 欧美xxⅹ黑人| 免费黄频网站在线观看国产| 欧美成人午夜精品| 国产 精品1| 五月天丁香电影| 成人漫画全彩无遮挡| 亚洲av男天堂| 亚洲天堂av无毛| 久久精品亚洲av国产电影网| 中文字幕人妻熟女乱码| 在线观看免费日韩欧美大片| 制服丝袜香蕉在线| 国产免费福利视频在线观看| 免费观看av网站的网址| 色94色欧美一区二区| 亚洲国产精品成人久久小说| 伦理电影免费视频| 国产精品免费大片| 日本一区二区免费在线视频| 国产黄频视频在线观看| 亚洲国产精品一区二区三区在线| 成年人免费黄色播放视频| 在线观看免费视频网站a站| 久久久久网色| 丰满少妇做爰视频| 青青草视频在线视频观看| 色综合欧美亚洲国产小说| 视频在线观看一区二区三区| av有码第一页| 国产成人一区二区在线| h视频一区二区三区| 国产亚洲精品第一综合不卡| 亚洲国产成人一精品久久久| 欧美日韩精品网址| 好男人视频免费观看在线| 久久综合国产亚洲精品| 国产亚洲欧美精品永久| 又大又黄又爽视频免费| 男的添女的下面高潮视频| www.av在线官网国产| 美女中出高潮动态图| 18禁观看日本| 国产爽快片一区二区三区| 午夜精品国产一区二区电影| 超碰97精品在线观看| 欧美亚洲日本最大视频资源| 亚洲精品国产av成人精品| 十分钟在线观看高清视频www| 亚洲精品乱久久久久久| 各种免费的搞黄视频| 免费高清在线观看视频在线观看| 亚洲七黄色美女视频| 精品亚洲成国产av| 精品亚洲成国产av| 日本欧美国产在线视频| 国产亚洲午夜精品一区二区久久| 国产精品av久久久久免费| videosex国产| 亚洲情色 制服丝袜| 国产男女内射视频| 国产麻豆69| 十八禁人妻一区二区| 欧美在线一区亚洲| 亚洲欧美精品自产自拍| 五月开心婷婷网| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区三区在线| 亚洲精品国产区一区二| 侵犯人妻中文字幕一二三四区| 欧美日韩精品网址| 久久久久精品性色| 欧美 亚洲 国产 日韩一| 欧美中文综合在线视频| 在线观看国产h片| 国产1区2区3区精品| 亚洲色图综合在线观看| 国产精品熟女久久久久浪| 黄色视频在线播放观看不卡| 水蜜桃什么品种好| 激情视频va一区二区三区| 男人舔女人的私密视频| 国产日韩欧美在线精品| 亚洲国产毛片av蜜桃av| 涩涩av久久男人的天堂| 涩涩av久久男人的天堂| 午夜福利视频在线观看免费| 亚洲欧美成人精品一区二区| 不卡视频在线观看欧美| 日本黄色日本黄色录像| 亚洲av日韩精品久久久久久密 | svipshipincom国产片| 亚洲欧洲日产国产| 国产视频首页在线观看| 啦啦啦在线免费观看视频4| 日韩欧美精品免费久久| av卡一久久| 在线观看免费高清a一片| 在线观看免费高清a一片| 大片免费播放器 马上看| 精品国产国语对白av| 国产精品久久久久成人av| 亚洲欧美一区二区三区国产| 日本91视频免费播放| 丝袜喷水一区| tube8黄色片| 国产精品久久久av美女十八| 亚洲欧美色中文字幕在线| 国产色婷婷99| 久久精品aⅴ一区二区三区四区| 99国产精品免费福利视频| videosex国产| 大话2 男鬼变身卡| 免费人妻精品一区二区三区视频| 日韩一卡2卡3卡4卡2021年| 欧美国产精品一级二级三级| 王馨瑶露胸无遮挡在线观看| 亚洲精品日本国产第一区| 国产爽快片一区二区三区| 考比视频在线观看| 久久鲁丝午夜福利片| 天天添夜夜摸| 国产成人精品久久二区二区91 | 精品一区二区三区四区五区乱码 | 国产淫语在线视频| 一区福利在线观看| 亚洲成色77777| 汤姆久久久久久久影院中文字幕| 91aial.com中文字幕在线观看| 色吧在线观看| 国产精品女同一区二区软件| 亚洲情色 制服丝袜| 99久久综合免费| 曰老女人黄片| 一区二区三区激情视频| 日日啪夜夜爽| 尾随美女入室| 精品少妇黑人巨大在线播放| 天天躁夜夜躁狠狠久久av| 国产女主播在线喷水免费视频网站| 中文天堂在线官网| 色精品久久人妻99蜜桃| 亚洲美女黄色视频免费看| 操出白浆在线播放| 99久久精品国产亚洲精品| 2018国产大陆天天弄谢| √禁漫天堂资源中文www| 黑人猛操日本美女一级片| 欧美少妇被猛烈插入视频| 人人澡人人妻人| 久久精品久久精品一区二区三区| 99九九在线精品视频| 啦啦啦视频在线资源免费观看| 天天躁日日躁夜夜躁夜夜| 丝袜脚勾引网站| 日韩一区二区三区影片| 狠狠精品人妻久久久久久综合| 久久久久视频综合| 欧美国产精品一级二级三级| 精品一区二区三区av网在线观看 | 国产熟女欧美一区二区| 久久久亚洲精品成人影院| 国产国语露脸激情在线看| 久久久久精品国产欧美久久久 | 国产日韩欧美视频二区| 国产淫语在线视频| 精品国产露脸久久av麻豆| 精品国产乱码久久久久久小说| av一本久久久久| 亚洲四区av| 我要看黄色一级片免费的| 国产精品一二三区在线看| 天天影视国产精品| 国产精品.久久久| 国产精品一国产av| 中国三级夫妇交换| 久久久久人妻精品一区果冻| 欧美日韩国产mv在线观看视频| 一区二区三区激情视频| 国产又色又爽无遮挡免| 国产女主播在线喷水免费视频网站| 最黄视频免费看| 久久综合国产亚洲精品| 最近2019中文字幕mv第一页| 日韩电影二区| 夫妻性生交免费视频一级片| 免费人妻精品一区二区三区视频| 啦啦啦在线观看免费高清www| 久久99热这里只频精品6学生| 97人妻天天添夜夜摸| 日韩制服丝袜自拍偷拍| 国产一卡二卡三卡精品 | 国产成人精品久久二区二区91 | 亚洲精品国产一区二区精华液| av在线播放精品| av女优亚洲男人天堂| 中文字幕制服av| 午夜免费观看性视频| 老司机影院毛片| 国产精品成人在线| 午夜老司机福利片| 国产精品一区二区在线不卡| 一本大道久久a久久精品| 亚洲国产欧美日韩在线播放| 日韩,欧美,国产一区二区三区| 国产熟女午夜一区二区三区| 中文精品一卡2卡3卡4更新| 精品第一国产精品| 中文乱码字字幕精品一区二区三区| 国产一级毛片在线| 美女中出高潮动态图| 久久久久久久久久久免费av| 欧美日韩成人在线一区二区| 最新在线观看一区二区三区 | 在线天堂最新版资源| 久久性视频一级片| 中国三级夫妇交换| 日日摸夜夜添夜夜爱| 一边摸一边做爽爽视频免费| 亚洲成人免费av在线播放| 久久精品aⅴ一区二区三区四区| 国产亚洲av片在线观看秒播厂| 免费在线观看完整版高清| 亚洲av电影在线进入| 亚洲欧美精品自产自拍| 日本色播在线视频| 欧美中文综合在线视频| 天天躁日日躁夜夜躁夜夜| 最近2019中文字幕mv第一页| 免费黄网站久久成人精品| 青春草视频在线免费观看| 99国产综合亚洲精品| 久久久亚洲精品成人影院| 久久久国产一区二区| 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线| 国产老妇伦熟女老妇高清| 国产成人免费无遮挡视频| 五月天丁香电影| 高清在线视频一区二区三区| 99国产精品免费福利视频| 久久毛片免费看一区二区三区| 男女床上黄色一级片免费看| 中文天堂在线官网| 精品一区二区三区四区五区乱码 | 天天躁狠狠躁夜夜躁狠狠躁| 国产成人午夜福利电影在线观看| 51午夜福利影视在线观看| 午夜老司机福利片| 国产激情久久老熟女| 中文字幕高清在线视频| 亚洲精品成人av观看孕妇| 一个人免费看片子| 99国产精品免费福利视频| 国产精品成人在线| 免费在线观看黄色视频的| 国产成人av激情在线播放| 亚洲欧美一区二区三区久久| 久久久久国产精品人妻一区二区| 亚洲av成人不卡在线观看播放网 | 汤姆久久久久久久影院中文字幕| 婷婷色麻豆天堂久久| e午夜精品久久久久久久| 久久ye,这里只有精品| 国产成人a∨麻豆精品| 最近2019中文字幕mv第一页| 亚洲图色成人| 久久毛片免费看一区二区三区| 成人亚洲欧美一区二区av| 日本av免费视频播放| av天堂久久9| 免费日韩欧美在线观看| 国产精品久久久久久久久免| 精品一区二区三卡| 国产伦人伦偷精品视频| 美女主播在线视频| 欧美国产精品一级二级三级| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网 | 人成视频在线观看免费观看| av福利片在线| 亚洲情色 制服丝袜| 一级黄片播放器| 少妇精品久久久久久久| 国产在线免费精品| 国产黄色免费在线视频| www.精华液| 亚洲色图综合在线观看| 久久久久久免费高清国产稀缺| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 国产精品秋霞免费鲁丝片| 中文字幕高清在线视频| 美女视频免费永久观看网站| 亚洲欧美成人精品一区二区| 满18在线观看网站| 久久久国产一区二区| 欧美日韩国产mv在线观看视频| 国产精品99久久99久久久不卡 | 这个男人来自地球电影免费观看 | 久久久久精品国产欧美久久久 | 国产成人a∨麻豆精品| 女人被躁到高潮嗷嗷叫费观| 99re6热这里在线精品视频| 高清黄色对白视频在线免费看| 国产成人欧美在线观看 | 18禁观看日本| 国产成人午夜福利电影在线观看| 街头女战士在线观看网站| 亚洲精品国产一区二区精华液| 亚洲综合精品二区| 国产亚洲精品第一综合不卡| 亚洲成人av在线免费| 自拍欧美九色日韩亚洲蝌蚪91| av电影中文网址| 伊人久久国产一区二区| 成人免费观看视频高清| 亚洲国产av影院在线观看| 久久久久久久精品精品| 国产精品国产三级国产专区5o| 亚洲国产看品久久| 男女免费视频国产| 欧美中文综合在线视频| 在现免费观看毛片| 乱人伦中国视频| 欧美激情极品国产一区二区三区| 亚洲一区二区三区欧美精品| 国产视频首页在线观看| a级毛片黄视频| 搡老岳熟女国产| 国产熟女欧美一区二区| 少妇人妻 视频| 美国免费a级毛片| 国产乱人偷精品视频| 五月开心婷婷网| 免费少妇av软件| 精品国产超薄肉色丝袜足j| 天天影视国产精品| 亚洲男人天堂网一区| 欧美亚洲 丝袜 人妻 在线| 激情五月婷婷亚洲| 免费看av在线观看网站| 女人久久www免费人成看片| 日本wwww免费看| 午夜福利视频精品| 美女中出高潮动态图| 午夜福利网站1000一区二区三区| 多毛熟女@视频| 精品卡一卡二卡四卡免费| 欧美亚洲日本最大视频资源| 国产在线免费精品| 街头女战士在线观看网站| 一边亲一边摸免费视频| 国产无遮挡羞羞视频在线观看| 男女免费视频国产| svipshipincom国产片| 久久久久精品性色| 国产精品国产av在线观看| 街头女战士在线观看网站| 黑人猛操日本美女一级片| 最近的中文字幕免费完整| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 久久久久精品国产欧美久久久 | 一二三四中文在线观看免费高清| 中文字幕亚洲精品专区| 日韩熟女老妇一区二区性免费视频| 操出白浆在线播放| 高清欧美精品videossex| 少妇精品久久久久久久| 免费女性裸体啪啪无遮挡网站| 久久久国产一区二区| 久久久久久久国产电影| 欧美最新免费一区二区三区| 精品国产乱码久久久久久小说| 黄色毛片三级朝国网站| 亚洲国产毛片av蜜桃av| 中文天堂在线官网| 日日撸夜夜添| 美女国产高潮福利片在线看| 欧美激情 高清一区二区三区| 欧美日韩成人在线一区二区| 嫩草影院入口| 亚洲三区欧美一区| 欧美黄色片欧美黄色片| 日韩大码丰满熟妇| 99久久综合免费| 赤兔流量卡办理| 哪个播放器可以免费观看大片| 亚洲,一卡二卡三卡| 9热在线视频观看99| 欧美黄色片欧美黄色片| 少妇被粗大猛烈的视频| 亚洲,一卡二卡三卡| 国产野战对白在线观看| 香蕉丝袜av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲自偷自拍图片 自拍| 亚洲人成网站在线观看播放| 七月丁香在线播放| 久久精品亚洲熟妇少妇任你| 久久毛片免费看一区二区三区| 精品一区二区免费观看| 亚洲精品久久午夜乱码| 精品亚洲成国产av| 亚洲中文av在线| 欧美国产精品一级二级三级| 亚洲欧美激情在线| 精品少妇黑人巨大在线播放| 亚洲国产av影院在线观看| 国产精品一二三区在线看| 在线天堂中文资源库| 国产男人的电影天堂91| 久久久久久久国产电影| 国产熟女欧美一区二区| 卡戴珊不雅视频在线播放| 精品少妇黑人巨大在线播放| 男女国产视频网站| 伊人久久国产一区二区| 人体艺术视频欧美日本| 国产精品欧美亚洲77777| 精品国产超薄肉色丝袜足j| 久久鲁丝午夜福利片| 国产97色在线日韩免费| 一二三四在线观看免费中文在| 亚洲成色77777| 高清av免费在线| 悠悠久久av| 电影成人av| 亚洲,一卡二卡三卡| 精品人妻一区二区三区麻豆| 最新的欧美精品一区二区| 色视频在线一区二区三区| 亚洲成人免费av在线播放| 日韩熟女老妇一区二区性免费视频| 亚洲一级一片aⅴ在线观看| 一区二区三区乱码不卡18| 精品亚洲乱码少妇综合久久| 免费高清在线观看视频在线观看| 亚洲婷婷狠狠爱综合网| 亚洲第一青青草原| 久久精品久久久久久噜噜老黄| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 国产亚洲午夜精品一区二区久久| 婷婷成人精品国产| 亚洲人成77777在线视频| 久久久久视频综合| 中文字幕制服av| 视频在线观看一区二区三区| 久久国产亚洲av麻豆专区| 久久毛片免费看一区二区三区| 看非洲黑人一级黄片| 国产精品熟女久久久久浪| 国产精品一区二区在线观看99| 日本av手机在线免费观看| 丁香六月天网| 婷婷色综合大香蕉| 韩国av在线不卡| 成人亚洲欧美一区二区av| 女人精品久久久久毛片| 韩国高清视频一区二区三区| 免费观看av网站的网址| 男女边吃奶边做爰视频| 美女视频免费永久观看网站| 中文天堂在线官网| 色婷婷久久久亚洲欧美| av有码第一页| av天堂久久9| kizo精华| 大码成人一级视频| 韩国精品一区二区三区| 如日韩欧美国产精品一区二区三区| 亚洲四区av| 国产免费现黄频在线看| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 69精品国产乱码久久久| 亚洲精品国产区一区二| 亚洲av欧美aⅴ国产| svipshipincom国产片| 国产日韩欧美在线精品| 欧美日韩一级在线毛片| 最近2019中文字幕mv第一页| 看十八女毛片水多多多| 青青草视频在线视频观看| 免费看不卡的av| 色吧在线观看| 国产爽快片一区二区三区| 最新的欧美精品一区二区| 中文字幕精品免费在线观看视频| 成年人免费黄色播放视频| 青青草视频在线视频观看| 久久国产精品男人的天堂亚洲| 少妇被粗大猛烈的视频| 九色亚洲精品在线播放| 亚洲人成77777在线视频| 日韩成人av中文字幕在线观看| kizo精华| 可以免费在线观看a视频的电影网站 | 欧美日韩亚洲国产一区二区在线观看 | 母亲3免费完整高清在线观看| 老司机亚洲免费影院| 日韩熟女老妇一区二区性免费视频| svipshipincom国产片| 在线观看人妻少妇| 看非洲黑人一级黄片| 老司机靠b影院| a级毛片在线看网站| 热99国产精品久久久久久7| 中文字幕另类日韩欧美亚洲嫩草| 久久青草综合色| 一级爰片在线观看| 777米奇影视久久| 亚洲成人免费av在线播放| 十分钟在线观看高清视频www| 另类精品久久|