• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relationships between the activities and Ce3+concentrations of CeO2(111)for CO oxidation:A first-principle investigation

    2021-07-01 05:29:36JiyuanLiuXueqingGong
    Chinese Chemical Letters 2021年3期

    Jiyuan Liu,Xueqing Gong*

    Key Laboratory for Advanced Materials,Centre for Computational Chemistry and Research Institute of Industrial Catalysis,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China

    ABSTRACT CO oxidation at ceria surfaces has been studied for decades,and many efforts have been devoted to understanding the effect of surface reduction on the catalytic activity.In this work,we theoretically studied the CO oxidation on the clean and reduced CeO2(111)surfaces using different surface cells to determine the relationships between the reduction degrees and calculated reaction energetics.It is found that the calculated barrier for the direct reaction between CO and surface lattice O drastically decreases with the increase of surface reduction degree.From electronic analysis,we found that the surface reduction can lead to the occurrence of localized electrons at the surface Ce,which affects the charge distribution at surface O.As the result,the surface O becomes more negatively charged and therefore more active in reacting with CO.This work then suggests that the localized 4f electron reservoir of Ce can act as the“pseudo-anion”at reduced CeO2 surfaces to activate surface lattice O for catalytic oxidative reactions.

    Keywords:CO oxidation CeO2(111)Mars-van krevelen mechanism DFT+U Surface reduction

    Metal oxides are important functional materials and they are widely used in various applications such as catalysis,batteries,optical devices etc.,mainly due to their relatively low costs,good stabilities,high activities and favorable redox properties[1].As one of the most common rare earth metal oxides,cerium dioxide(CeO2)can work as the key component of the catalyst in vehicle emission control,water-gas shift reactions,solid oxide fuel cells and steam reforming[2].Because of its unique electronic structure,as well as the existence of various types of defects,CeO2is also often taken as a model material for experimental and theoretical studies in surface chemistry and heterogeneous catalysis[3].

    CO oxidation is an important process in the control of vehicle emission and many other catalytic reactions.In particular,CeO2based catalysts have been found to be very active in promoting CO oxidation,which is also a classical process to illustrate the activity and theo xygen storage capacity(OSC)performance of such catalysts.The highly active surface lattice oxygen(Os)species at CeO2is determined to play a crucial role in this process,as it generally obeys the Mars-van Krevelen(MvK)[4]mechanism[5,6].The whole catalytic cycle follows the following processes:

    where*stands for a surface oxygen vacancy.Beyond that,the surface lattice oxygen was also found to be able to participate in CO oxidation on the supported metal clusters by directly interacting with adsorbed CO at the metal/CeO2interface or spilling over to the metal clusters[7].Therefore,such high activity also leads to the facile removal of Osand formation of reduced CeO2with Ce3+.During the past few decades,many studies have revealed the relationship between the CO oxidation activity and the concentration of Ce3+and illustrated that the CeO2catalyst with a higher Ce3+concentration usually exhibits a better CO oxidation performance[8].Some work has concluded this for the high oxygen migration rate provided by oxygen vacancies.However,the detailed connection between the catalytic activity for CO oxidation and the reduction degree of the catalyst is still not clear.Moreover,recent studies suggested that the surface hydroxyls formed by dissociated water at the oxygen vacancy can enhance the activity of CO oxidation,which may also contribute to the high activity of reduced CeO2catalysts[9].In fact,besides the findings of the improvement of catalytic activity by surface hydroxyls[10],it is also expected that surface oxygen vacancies can be readily healed by oxygen molecules[11]and therefore they may not be the key species for the enhanced activities in reduced ceria.Accordingly,how the surface Ce3+itself can affect the catalytic activities of reduced CeO2toward CO oxidation is still worth studying.

    In this work, we conducted density functional theory calculations corrected by on-site Coulomb interaction (DFT+U)to theoretically investigate the effect of the concentrations of Ce3+[12], which were induced by surface hydroxyls (H at Os) on the catalytic activities toward CO oxidation at CeO2(111), the main facet exposed at CeO2nano-catalysts. In particular, we mainly focused on the process of direct reaction between CO and surface oxygens to reveal their reactivities at the stoichiometric and various reduced surfaces, though the interaction between adsorbed H or OH and CO on the CeO2surfaces may be also important [13]. All the calculation details can be found in the Supporting information.

    On the pristine CeO2(111) surface, CO can be exothermically adsorbed with the calculated adsorption energy of 0.33 eV(Fig.1).Then,the CO can react with the Osthrough the transition state(TS),in which the distance between C and Os(dC-Os) was calculated to decrease from 2.835 ? in the adsorption state to 1.665 ? (TS) and the ∠OCOswas determined to be 115.81°. The stretching vibration between C and Osin the transition state along this reaction pathway was determined with the imaginary frequency of 268.76 cm-1. The carbon atom in CO would bind with the Osafterwards to form an adsorbed bent CO2* intermediate species with the activation energy of 0.38 eV and the reaction energy of-0.31 eV. The bent CO2* is not stable and prefers to evolve to the straight one by releasing the energy as large as 1.07 eV.The straight CO2molecule can be easily released from the surface with the desorption energy of 0.46 eV only. These results are largely consistent with those reported in previous theoretical studies of CO oxidation at ceria surfaces [14].

    Fig.1. Calculated energy profile of CO oxidation on the pristine CeO2(111)surface.CO(g) and CO2(g) stand for the CO and CO2 in gas phase, respectively. CO(a) and CO2(a)refer to the adsorbed CO and CO2.CO2*denotes the bent CO2 intermediate.The ivory, red and grey spheres represent the Ce, O and C atoms, respectively.

    In general, corresponding to the different reaction steps discussed in the above, four important energetic components are involved in the whole CO oxidation process, namely the adsorption energy of CO (Eads), the activation energy (Ea), the reaction energy (Er) and the bending energy (Eb), as shown in Scheme S1 (Supporting information).

    Scheme 1. Sketch of the different surface cells and relative positions of the different surface species on the CeO2(111)surface.The black circles filled with green and red stand for the hydroxyl and the reactive Os, respectively.

    The reduced CeO2(111) surfaces with different concentrations of Ce3+were constructed by adjusting the coverages of surface hydroxyls (adsorbed hydrogens). A series of surface cells with different sizes involving one adsorbed H were applied as shown in Scheme 1 and Fig. S1 (Supporting information). Accordingly, the coverages (θ) of the adsorbed H are 1/16, 1/9, 1/7, 1/4, 1/3 and 1 monolayer(ML)(with respect to the number of Os)depending on the sizes of surface cells. The calculated H adsorption energies on the CeO2(111) surface under the above different coverages are listed in Table 1.One can see that under low coverages(θ ≤1/3 ML),the average H adsorption energy is 1.46 eV,while under the highest coverage of 1 ML, the calculated adsorption energy is lower by~0.1 eV. According to the spin charge difference analysis, the whole injected electron from the adsorbed H is localized at the nearest Ce beside the hydroxyl, which suggests that the varying coverages of adsorbed H can indeed modify the concentrations of Ce3+on the surface. The occupation of the Ce 4f orbital was also confirmed by the calculated density of states (DOS) (Fig. S2 in Supporting information).It should be noticed that the adsorbed H is introduced to adjust the concentration of Ce3+, which will not directly participate in CO oxidation reaction.

    Table 1 Calculated adsorption energies of hydrogen(Eads(H),with respect to 1/2 H2)on the CeO2(111) surfaces with different surface cells, calculated corresponding average negative charges of Os ((Os) and the band gap (Egap).

    Table 1 Calculated adsorption energies of hydrogen(Eads(H),with respect to 1/2 H2)on the CeO2(111) surfaces with different surface cells, calculated corresponding average negative charges of Os ((Os) and the band gap (Egap).

    θ (ML)Eads(H) (eV)Δq(Os) (e-)Egap (eV)1 1.35N / A2.822 1/31.481.2462.277 1/41.401.2412.219 1/71.481.2222.131 1/91.461.2112.069 1/161.481.2062.029

    Then, at the surfaces with the hydroxyls under the coverages from 1/16 ML to 1/3 ML,we calculated the reaction between one CO and the neighboring Osof the hydroxyl(Scheme 1),and the various energetic components involved in the whole process of the reaction are plotted in Fig. 2 and listed in Table S1 (all corresponding structures and the detailed results of the transition states can be found in Figs. S3-S7 and Table S2 in Supporting information). One can see that the Eadsdecreases with the increasing Ce3+concentration. The adsorption energy of CO is 0.35 eV at θ=1/16 ML, which is slightly higher than that on the pristine surface,while it becomes 0.29 eV when the θ increases to 1/3 ML. The calculated Bader charges of adsorbed CO (ΔqIS(CO))showed that the CO molecule accepts more negative charges at the surface with the increasing reduction degree (Table S3 in Supporting information). In other words, higher concentrations of localized electrons (Ce3+) at CeO2(111) can make the adsorbed CO more negatively charged, though its adsorption strength becomes slightly worse.

    Interestingly,both Eaand Erof CO oxidation apparently decrease with the coverages of surface hydroxyl (Fig. 2). In particular, the calculated Eadrops from 0.43 eV at θ=1/16 ML to 0.31 eV at θ=1/3 ML,and the change of the calculated Eralso indicates that more heat can be released through combination of CO and Oson thesurface with higher reduction degree.At the same time,in consistence with what was reported in our previous study[6],the Bader charge analysis showed that(ΔqIMS(CO2)in Table S3)the CO2*intermediate formed directly after the combination of CO and Osis actually a negatively charged CO2-species.In this process,the electron-rich Osprefers to attack the partially positively charged C in the CO molecule,and the electron transferred from surface to the CO molecule can be also found from the Bader charge analysis(ΔqTS(CO)–ΔqIS(CO))in Table S3).Then,one may expect that the localized electrons at Ce3+on the reduced surface slab can effectively increase the amount of negative charge of the surface Ce layer,which will then affect the charge distribution within the Ce-Osbonds and push the charges toward Osto increase their(Os).Accordingly,one can indeed see from Table 1 that more negatively charged Oscan occur at the surface with a higher concentration of surface hydroxyl,which will surely make it more active to be involved in CO oxidation.The activation energy as a function of the(Os)was plotted in Fig.S8(Supporting information),and one can clearly see that there is a good linear relationship with the R2of 0.97.The corresponding calculated imaginary frequencies are shown in Table S4(Supporting information).

    Fig.2.Calculated energetic components(Eads,Ea,Er and Eb)within CO oxidation as a function of the hydroxyl coverages.The detailed results and structures can be found in Table S1 and Figs.S3-S7.

    The evolvement of the bent CO2-intermediate to a straight CO2molecule then occurs following the combination of CO and Os,giving rise to the final formation and desorption of the molecular CO2.In this process,the CO2-species leaves one electron to the surface,and it can be confirmed by the calculated charge difference between the FS and IMS(ΔqFS(CO2)–ΔqIMS(CO2))in Table S3.Accordingly,one may expect that on the reduced CeO2(111)surfaces,the released electron from the CO2-intermediate leads to the occurrence of one more Ce3+,and it is obvious that the energy cost by the occupation of the empty 4f orbitals of Ce4+by the released electron would affect the bending energy.According to our calculated results,the band gap increases with the increasing concentrations of Ce3+(Table 1),which indeed suggests that a larger energy is needed to accept the released electron from the CO2-intermediate for the surface with a higher coverage of hydroxyls.Therefore,the corresponding total released energy,Eb,becomes lower.Our previous study[6]suggested that the competitive pathway to form the surface carbonate species rather than the gas phase CO2may occur at CeO2due to the high stability of the carbonate,which means that the less Ebwould result in the favorable formation of carbonate species.Even though highly reduced ceria catalyst brings a high activity for the combination between CO and Os,the corresponding low selectivity to generate CO2caused by the Ebwould like to cause undesirable effects to the catalyst.

    To further verify the effect of surface reduction degree on the catalytic activity,CO oxidationwas also calculated on the CeO2(111)-(3×3)surface involving two adsorbed hydrogens(Fig.S9 in Supportinginformation),andtheresults andstructures are reported in Fig.3,Fig.S10 and Table S1(Supporting information).Compared with the CeO2(111)-(3×3)surface involving only one adsorbed H(Fig.S11 in Supporting information),it is then more heavily reduced as two Ce3+now occur in each surface cell.As one can see,the calculated CO adsorption energy slightly reduces to 0.27 eV and the activation energy also reduces to 0.34 eV,which is 0.08 eV lower than that on the surface with one H(θ=1/9 ML).In addition,the corresponding reaction energy was found to be 0.09 eV lower and the calculated bending energy is 0.18 eV less than those on the surface with only one hydroxyl.These effects can be also related to the surface electronic structures.According to our calculations,the average negative charges of Oson the CeO2(111)-(3×3)surface with two H(θ=2/9 ML)is 1.230 e-.Interestingly,this value is located between those on the surface atθ=1/4 and 1/7 ML(Table 1)and the corresponding activation energy(0.34 eV)is also between those at these two surfaces(Table S1),in agreement with the relationship between the(Os)and the activation energy mentioned above.Therefore,one can indeed see that the surface reduction degree can tune the concentrations of localized electrons at the surface Ce,which in turn modify the charge distributions at the Osand affect their negative charges and activity toward reaction with CO.

    Fig.3.Calculated energy profiles of CO oxidation on the reduced CeO2 (111)-(3×3)surfaces with 1/9 and 2/9 ML of surface hydroxyl.

    Finally,it needs to be noted that CO oxidation on the pristine CeO2(111)surfaces with different surface cells was also calculated and the results are listed in Table S5.No obvious trend of the energy changes can be recognized,suggesting that the size of the surface cell,i.e.,CO coverage,itself may have neglectable effect on the calculated energetics.

    In summary,CO oxidations on the CeO2(111)surfaces with different reduction degrees implemented by forming surface hydroxyls were theoretically investigated by DFT+U calculations in this work.Energetic components involved in this process,including the adsorption,activation,reaction and bending energies,were determined on the various pristine and reduced surfaces,which largely exhibit linear relationships with the surface reduction degree.In particular,the calculated barrier for the direct reaction between CO and surface lattice O drastically decreases with the increase of surface reduction degree.From electronic analysis,we found that the surface reduction can lead to the occurrence of localized electrons at the surface Ce and affect the charge distribution at surface O.As the result,they become more negatively charged and therefore more active in reacting with CO.We can tentatively suggest that the localized 4f electron reservoir of Ce can act as the“pseudo-anion”at reduced CeO2surfaces to activate surface lattice O for catalytic oxidative reactions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for financial support from the National Key R&D Program of China(No.2018YFA0208602)and National Natural Science Foundation of China(No.21825301).The authors also thank the National Super Computing Center in Jinan for computing time.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.08.033.

    kizo精华| 久久国产乱子免费精品| 六月丁香七月| 久久久精品94久久精品| 看非洲黑人一级黄片| 亚洲熟女精品中文字幕| 永久免费av网站大全| 男人舔奶头视频| 欧美三级亚洲精品| 久久久亚洲精品成人影院| 边亲边吃奶的免费视频| 人妻夜夜爽99麻豆av| 看十八女毛片水多多多| 内射极品少妇av片p| 成人亚洲欧美一区二区av| 99视频精品全部免费 在线| 九草在线视频观看| 国产淫语在线视频| 久久精品国产亚洲av天美| av专区在线播放| 成人无遮挡网站| 只有这里有精品99| 亚洲欧美日韩无卡精品| 中国三级夫妇交换| 自拍欧美九色日韩亚洲蝌蚪91 | 美女国产视频在线观看| 国产高清国产精品国产三级 | 精品少妇黑人巨大在线播放| 黑丝袜美女国产一区| 免费高清在线观看视频在线观看| 亚洲av.av天堂| 国产精品女同一区二区软件| av国产精品久久久久影院| 51国产日韩欧美| 高清毛片免费看| 成人综合一区亚洲| 十八禁网站网址无遮挡 | 亚洲欧美精品自产自拍| 免费播放大片免费观看视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲精品久久午夜乱码| 欧美成人一区二区免费高清观看| 欧美精品亚洲一区二区| 国产精品国产三级国产专区5o| 国产69精品久久久久777片| 99热这里只有精品一区| 又黄又爽又刺激的免费视频.| 精品99又大又爽又粗少妇毛片| 十八禁网站网址无遮挡 | 久久精品久久精品一区二区三区| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 亚洲国产av新网站| 日韩欧美精品免费久久| 成人美女网站在线观看视频| 国产高潮美女av| 国产成人精品婷婷| 亚洲欧美一区二区三区国产| 日日摸夜夜添夜夜添av毛片| 黄片wwwwww| 亚洲色图综合在线观看| 国产精品蜜桃在线观看| 久久鲁丝午夜福利片| 一区在线观看完整版| 精品少妇久久久久久888优播| 亚洲精品中文字幕在线视频 | av.在线天堂| 一本—道久久a久久精品蜜桃钙片| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 两个人的视频大全免费| a级毛片免费高清观看在线播放| 精品人妻熟女av久视频| 国产精品不卡视频一区二区| 自拍偷自拍亚洲精品老妇| 国产高清国产精品国产三级 | 亚洲av.av天堂| 亚洲精品国产av成人精品| 观看免费一级毛片| 男的添女的下面高潮视频| 国产亚洲午夜精品一区二区久久| 国产乱来视频区| 亚洲无线观看免费| 亚洲美女黄色视频免费看| 校园人妻丝袜中文字幕| 亚洲av不卡在线观看| 精品酒店卫生间| 搡女人真爽免费视频火全软件| 美女内射精品一级片tv| 亚洲人成网站高清观看| 亚洲精品日韩在线中文字幕| 日本爱情动作片www.在线观看| 18禁动态无遮挡网站| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 在线免费十八禁| 国产伦精品一区二区三区四那| 久久久亚洲精品成人影院| 青春草亚洲视频在线观看| 国产亚洲一区二区精品| 久久鲁丝午夜福利片| 搡女人真爽免费视频火全软件| 18禁裸乳无遮挡免费网站照片| 少妇精品久久久久久久| 久久精品人妻少妇| 啦啦啦中文免费视频观看日本| 丝瓜视频免费看黄片| 一级毛片黄色毛片免费观看视频| 有码 亚洲区| 亚洲精品成人av观看孕妇| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品乱久久久久久| 久久人人爽人人片av| 国产精品99久久久久久久久| 久久99热这里只有精品18| 性色avwww在线观看| 大又大粗又爽又黄少妇毛片口| 欧美成人一区二区免费高清观看| 青春草视频在线免费观看| 精品人妻偷拍中文字幕| 嫩草影院新地址| 国产深夜福利视频在线观看| 成人毛片60女人毛片免费| 91久久精品国产一区二区三区| 色视频www国产| 久久久久国产网址| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 亚洲无线观看免费| 国产精品一及| 99热全是精品| 免费av不卡在线播放| 亚洲一级一片aⅴ在线观看| 18禁裸乳无遮挡免费网站照片| 美女中出高潮动态图| 亚洲精品日韩在线中文字幕| 国产精品久久久久久av不卡| 国产色婷婷99| 日本av免费视频播放| 国产精品久久久久久av不卡| 在线观看免费视频网站a站| freevideosex欧美| 18禁在线无遮挡免费观看视频| 亚洲人成网站高清观看| 国产精品无大码| 精品久久久久久久末码| 精品视频人人做人人爽| av播播在线观看一区| 美女内射精品一级片tv| 亚洲人成网站在线观看播放| 免费播放大片免费观看视频在线观看| 简卡轻食公司| 国产白丝娇喘喷水9色精品| 我的女老师完整版在线观看| 天堂俺去俺来也www色官网| 五月开心婷婷网| 日韩大片免费观看网站| 秋霞在线观看毛片| 久久久久久久久久人人人人人人| 欧美另类一区| 国产乱人偷精品视频| 纵有疾风起免费观看全集完整版| 免费大片18禁| 国产在线一区二区三区精| 中文天堂在线官网| 免费观看无遮挡的男女| 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 丰满少妇做爰视频| 日日摸夜夜添夜夜添av毛片| 亚洲精品乱久久久久久| 极品教师在线视频| av网站免费在线观看视频| 综合色丁香网| 中文字幕久久专区| 又大又黄又爽视频免费| 国产精品一区www在线观看| 精品少妇黑人巨大在线播放| 一边亲一边摸免费视频| 国产一级毛片在线| 亚洲欧美一区二区三区黑人 | 国产一级毛片在线| 男女免费视频国产| 国产成人免费无遮挡视频| 亚洲av成人精品一区久久| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频| 国产色婷婷99| 搡女人真爽免费视频火全软件| 亚洲欧美中文字幕日韩二区| 少妇高潮的动态图| 色哟哟·www| 久久久久久久大尺度免费视频| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 熟妇人妻不卡中文字幕| 国内少妇人妻偷人精品xxx网站| 校园人妻丝袜中文字幕| 久热这里只有精品99| 尾随美女入室| 国产亚洲欧美精品永久| 韩国av在线不卡| 黄色日韩在线| 免费av中文字幕在线| 亚洲人成网站在线播| 日本黄大片高清| 超碰av人人做人人爽久久| 97在线人人人人妻| 亚洲真实伦在线观看| 性色avwww在线观看| 久久亚洲国产成人精品v| 色婷婷av一区二区三区视频| 久久久久性生活片| 身体一侧抽搐| 大片免费播放器 马上看| 国产伦精品一区二区三区四那| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | 国产精品99久久久久久久久| 少妇的逼好多水| 狠狠精品人妻久久久久久综合| 高清黄色对白视频在线免费看 | 在线亚洲精品国产二区图片欧美 | 欧美xxⅹ黑人| 六月丁香七月| 午夜激情福利司机影院| 国产免费福利视频在线观看| 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 丰满乱子伦码专区| 少妇精品久久久久久久| 草草在线视频免费看| 国产美女午夜福利| 肉色欧美久久久久久久蜜桃| 久久 成人 亚洲| 男人添女人高潮全过程视频| 一级毛片 在线播放| 亚洲av综合色区一区| 亚洲av日韩在线播放| 久久97久久精品| 秋霞伦理黄片| 18禁裸乳无遮挡动漫免费视频| 男人狂女人下面高潮的视频| 亚洲av在线观看美女高潮| 国产女主播在线喷水免费视频网站| 91在线精品国自产拍蜜月| 大又大粗又爽又黄少妇毛片口| 国内揄拍国产精品人妻在线| 99热这里只有是精品在线观看| 熟女电影av网| 亚洲高清免费不卡视频| 一个人看视频在线观看www免费| 亚洲精品色激情综合| 国产精品蜜桃在线观看| 自拍偷自拍亚洲精品老妇| 五月天丁香电影| 亚洲成色77777| 免费大片黄手机在线观看| 水蜜桃什么品种好| 男人添女人高潮全过程视频| 亚洲一级一片aⅴ在线观看| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 婷婷色综合www| www.av在线官网国产| 一边亲一边摸免费视频| 成人美女网站在线观看视频| 成人国产av品久久久| 国产男人的电影天堂91| 免费黄频网站在线观看国产| 观看av在线不卡| 国产人妻一区二区三区在| 美女脱内裤让男人舔精品视频| 精品少妇久久久久久888优播| 人妻 亚洲 视频| 日日撸夜夜添| 蜜桃久久精品国产亚洲av| 22中文网久久字幕| 毛片女人毛片| 欧美区成人在线视频| 最近中文字幕高清免费大全6| 亚洲av中文字字幕乱码综合| 一级a做视频免费观看| 国产日韩欧美亚洲二区| 日本wwww免费看| 成年免费大片在线观看| 国内少妇人妻偷人精品xxx网站| 国产在视频线精品| 欧美区成人在线视频| 欧美zozozo另类| 麻豆成人av视频| 成人特级av手机在线观看| 免费少妇av软件| 久久久成人免费电影| 成人二区视频| 亚洲av国产av综合av卡| 少妇 在线观看| 午夜福利网站1000一区二区三区| 毛片女人毛片| 免费观看在线日韩| 国产精品久久久久成人av| .国产精品久久| 精品少妇久久久久久888优播| 欧美老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 青春草视频在线免费观看| 色吧在线观看| 高清在线视频一区二区三区| 亚洲伊人久久精品综合| 狠狠精品人妻久久久久久综合| av播播在线观看一区| 97精品久久久久久久久久精品| 日本-黄色视频高清免费观看| 18禁在线无遮挡免费观看视频| 亚洲国产日韩一区二区| 女人十人毛片免费观看3o分钟| 日韩成人伦理影院| 深爱激情五月婷婷| 蜜桃在线观看..| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| 亚洲精品色激情综合| 涩涩av久久男人的天堂| 97超视频在线观看视频| 日本欧美视频一区| 中文精品一卡2卡3卡4更新| 老师上课跳d突然被开到最大视频| 亚洲成人中文字幕在线播放| 晚上一个人看的免费电影| 国产午夜精品久久久久久一区二区三区| 欧美精品亚洲一区二区| 欧美精品一区二区大全| 国产美女午夜福利| 亚洲av中文av极速乱| 日韩 亚洲 欧美在线| 国产免费一级a男人的天堂| 日韩免费高清中文字幕av| av天堂中文字幕网| 亚洲高清免费不卡视频| 国产av精品麻豆| 六月丁香七月| 99视频精品全部免费 在线| 亚洲婷婷狠狠爱综合网| 精品国产露脸久久av麻豆| 久久午夜福利片| 亚洲色图av天堂| 国精品久久久久久国模美| 日本黄色日本黄色录像| 免费观看无遮挡的男女| 五月开心婷婷网| 久久精品久久精品一区二区三区| 国产精品一区二区三区四区免费观看| 久久 成人 亚洲| 大香蕉久久网| 亚洲婷婷狠狠爱综合网| 你懂的网址亚洲精品在线观看| 六月丁香七月| 一级毛片黄色毛片免费观看视频| 久久久色成人| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站 | 国产亚洲精品久久久com| 你懂的网址亚洲精品在线观看| 亚洲综合精品二区| 国产免费福利视频在线观看| 黄色视频在线播放观看不卡| 久久精品人妻少妇| 国产精品一二三区在线看| 国产极品天堂在线| 欧美丝袜亚洲另类| 哪个播放器可以免费观看大片| 国产精品久久久久久久久免| 搡女人真爽免费视频火全软件| 国产深夜福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 国产一区有黄有色的免费视频| 成人国产av品久久久| 极品教师在线视频| 草草在线视频免费看| 亚洲av在线观看美女高潮| 日本vs欧美在线观看视频 | 在线观看免费视频网站a站| 99久久人妻综合| 91狼人影院| 亚洲国产av新网站| 女性被躁到高潮视频| 成人一区二区视频在线观看| 国产极品天堂在线| 卡戴珊不雅视频在线播放| 精品久久久噜噜| 日本与韩国留学比较| 久久午夜福利片| 小蜜桃在线观看免费完整版高清| 国产一区二区三区av在线| 我要看黄色一级片免费的| 午夜免费男女啪啪视频观看| 久久久久久伊人网av| 国内精品宾馆在线| 人人妻人人看人人澡| 国产亚洲5aaaaa淫片| 99久久精品国产国产毛片| 99国产精品免费福利视频| 日本猛色少妇xxxxx猛交久久| 欧美高清性xxxxhd video| 熟女电影av网| 噜噜噜噜噜久久久久久91| 女的被弄到高潮叫床怎么办| 亚洲电影在线观看av| 视频中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| av网站免费在线观看视频| 美女内射精品一级片tv| 九草在线视频观看| 一级毛片我不卡| 人体艺术视频欧美日本| 久久久久精品性色| 2022亚洲国产成人精品| 欧美 日韩 精品 国产| 亚洲av成人精品一二三区| videos熟女内射| 亚洲精品乱久久久久久| 成人午夜精彩视频在线观看| 深爱激情五月婷婷| 国产白丝娇喘喷水9色精品| 一级毛片我不卡| 色5月婷婷丁香| 激情 狠狠 欧美| 亚洲无线观看免费| 午夜福利视频精品| 亚洲欧美一区二区三区黑人 | 欧美极品一区二区三区四区| 丰满人妻一区二区三区视频av| 丰满乱子伦码专区| 久久这里有精品视频免费| av一本久久久久| 国产成人午夜福利电影在线观看| 国产黄片视频在线免费观看| 欧美区成人在线视频| 成年人午夜在线观看视频| 亚洲精品乱码久久久久久按摩| 涩涩av久久男人的天堂| 大码成人一级视频| 久久亚洲国产成人精品v| 久久青草综合色| 国产在线免费精品| 春色校园在线视频观看| 男女啪啪激烈高潮av片| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 亚洲精品一区蜜桃| 久久久国产一区二区| kizo精华| 亚洲精品久久午夜乱码| 黄色日韩在线| 色婷婷久久久亚洲欧美| 在线观看av片永久免费下载| 国产乱来视频区| 免费观看a级毛片全部| 亚洲不卡免费看| 久久久久久久久大av| 97在线人人人人妻| 2018国产大陆天天弄谢| 亚洲无线观看免费| 午夜福利视频精品| 午夜福利在线观看免费完整高清在| 简卡轻食公司| 亚洲欧美精品专区久久| 欧美高清性xxxxhd video| 亚洲综合色惰| 精品一品国产午夜福利视频| 激情五月婷婷亚洲| 五月开心婷婷网| 日韩免费高清中文字幕av| 边亲边吃奶的免费视频| 蜜桃亚洲精品一区二区三区| 高清日韩中文字幕在线| 久久婷婷青草| 少妇裸体淫交视频免费看高清| 亚洲经典国产精华液单| 中文乱码字字幕精品一区二区三区| 午夜福利在线在线| 欧美极品一区二区三区四区| av又黄又爽大尺度在线免费看| 久热这里只有精品99| 嫩草影院新地址| 欧美区成人在线视频| 黄色视频在线播放观看不卡| 观看av在线不卡| 少妇精品久久久久久久| 偷拍熟女少妇极品色| 老司机影院毛片| 黄色视频在线播放观看不卡| 美女主播在线视频| 一个人免费看片子| 亚洲国产精品一区三区| 国产av精品麻豆| 少妇 在线观看| 在线观看一区二区三区| 亚洲三级黄色毛片| 色视频在线一区二区三区| 国产熟女欧美一区二区| 国产视频内射| 高清日韩中文字幕在线| 国产精品不卡视频一区二区| 欧美日韩国产mv在线观看视频 | 亚洲精品中文字幕在线视频 | 伦理电影免费视频| 看十八女毛片水多多多| 欧美精品亚洲一区二区| 亚洲欧洲国产日韩| 99久久精品一区二区三区| 国产av国产精品国产| 亚洲av日韩在线播放| 亚洲av综合色区一区| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美成人精品一区二区| 99久久综合免费| 国产高潮美女av| 亚洲av不卡在线观看| 午夜激情久久久久久久| 欧美人与善性xxx| 春色校园在线视频观看| 中文欧美无线码| 精品人妻一区二区三区麻豆| 伦理电影免费视频| 老司机影院毛片| 免费黄色在线免费观看| 国内揄拍国产精品人妻在线| 久热这里只有精品99| 美女福利国产在线 | 中文字幕精品免费在线观看视频 | 又爽又黄a免费视频| a级毛片免费高清观看在线播放| 国产白丝娇喘喷水9色精品| 熟女人妻精品中文字幕| 亚洲美女视频黄频| 国产又色又爽无遮挡免| 午夜老司机福利剧场| 欧美亚洲 丝袜 人妻 在线| 精品亚洲乱码少妇综合久久| 舔av片在线| 国产熟女欧美一区二区| 欧美3d第一页| 自拍欧美九色日韩亚洲蝌蚪91 | 又大又黄又爽视频免费| av视频免费观看在线观看| 亚洲婷婷狠狠爱综合网| 欧美亚洲 丝袜 人妻 在线| 国产大屁股一区二区在线视频| 偷拍熟女少妇极品色| 亚洲第一区二区三区不卡| 亚洲精品中文字幕在线视频 | 99九九线精品视频在线观看视频| 你懂的网址亚洲精品在线观看| 欧美3d第一页| 一级片'在线观看视频| 看免费成人av毛片| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 免费看av在线观看网站| 最黄视频免费看| 一级av片app| 精品人妻视频免费看| 久热久热在线精品观看| 99热国产这里只有精品6| 又黄又爽又刺激的免费视频.| 亚洲一级一片aⅴ在线观看| 老女人水多毛片| 中文精品一卡2卡3卡4更新| 在线观看免费视频网站a站| 国产视频首页在线观看| 尾随美女入室| 91久久精品国产一区二区成人| 一个人看的www免费观看视频| 中文字幕精品免费在线观看视频 | 少妇的逼好多水| 尾随美女入室| 美女福利国产在线 | 2018国产大陆天天弄谢| 91精品一卡2卡3卡4卡| 国产高清有码在线观看视频| 一个人看的www免费观看视频| 免费观看的影片在线观看| 纵有疾风起免费观看全集完整版| 99热全是精品| 26uuu在线亚洲综合色| 久久婷婷青草| 亚洲国产最新在线播放| 欧美日韩视频精品一区| 久久这里有精品视频免费| 最后的刺客免费高清国语| 久久国产乱子免费精品| 日韩欧美一区视频在线观看 | 精品人妻一区二区三区麻豆| 观看美女的网站| av在线蜜桃| 99久久人妻综合| 国产综合精华液| 国产爱豆传媒在线观看| 尤物成人国产欧美一区二区三区| 日韩成人av中文字幕在线观看| 精品人妻偷拍中文字幕| 国产 一区 欧美 日韩| 亚洲欧美日韩卡通动漫| 午夜福利在线在线| 欧美一级a爱片免费观看看| 天天躁日日操中文字幕| 91aial.com中文字幕在线观看| 精品视频人人做人人爽| 精品久久久久久久末码| 精品人妻视频免费看| 赤兔流量卡办理| 毛片女人毛片| 亚洲欧美成人综合另类久久久| 国产伦在线观看视频一区|