• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relationships between the activities and Ce3+concentrations of CeO2(111)for CO oxidation:A first-principle investigation

    2021-07-01 05:29:36JiyuanLiuXueqingGong
    Chinese Chemical Letters 2021年3期

    Jiyuan Liu,Xueqing Gong*

    Key Laboratory for Advanced Materials,Centre for Computational Chemistry and Research Institute of Industrial Catalysis,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China

    ABSTRACT CO oxidation at ceria surfaces has been studied for decades,and many efforts have been devoted to understanding the effect of surface reduction on the catalytic activity.In this work,we theoretically studied the CO oxidation on the clean and reduced CeO2(111)surfaces using different surface cells to determine the relationships between the reduction degrees and calculated reaction energetics.It is found that the calculated barrier for the direct reaction between CO and surface lattice O drastically decreases with the increase of surface reduction degree.From electronic analysis,we found that the surface reduction can lead to the occurrence of localized electrons at the surface Ce,which affects the charge distribution at surface O.As the result,the surface O becomes more negatively charged and therefore more active in reacting with CO.This work then suggests that the localized 4f electron reservoir of Ce can act as the“pseudo-anion”at reduced CeO2 surfaces to activate surface lattice O for catalytic oxidative reactions.

    Keywords:CO oxidation CeO2(111)Mars-van krevelen mechanism DFT+U Surface reduction

    Metal oxides are important functional materials and they are widely used in various applications such as catalysis,batteries,optical devices etc.,mainly due to their relatively low costs,good stabilities,high activities and favorable redox properties[1].As one of the most common rare earth metal oxides,cerium dioxide(CeO2)can work as the key component of the catalyst in vehicle emission control,water-gas shift reactions,solid oxide fuel cells and steam reforming[2].Because of its unique electronic structure,as well as the existence of various types of defects,CeO2is also often taken as a model material for experimental and theoretical studies in surface chemistry and heterogeneous catalysis[3].

    CO oxidation is an important process in the control of vehicle emission and many other catalytic reactions.In particular,CeO2based catalysts have been found to be very active in promoting CO oxidation,which is also a classical process to illustrate the activity and theo xygen storage capacity(OSC)performance of such catalysts.The highly active surface lattice oxygen(Os)species at CeO2is determined to play a crucial role in this process,as it generally obeys the Mars-van Krevelen(MvK)[4]mechanism[5,6].The whole catalytic cycle follows the following processes:

    where*stands for a surface oxygen vacancy.Beyond that,the surface lattice oxygen was also found to be able to participate in CO oxidation on the supported metal clusters by directly interacting with adsorbed CO at the metal/CeO2interface or spilling over to the metal clusters[7].Therefore,such high activity also leads to the facile removal of Osand formation of reduced CeO2with Ce3+.During the past few decades,many studies have revealed the relationship between the CO oxidation activity and the concentration of Ce3+and illustrated that the CeO2catalyst with a higher Ce3+concentration usually exhibits a better CO oxidation performance[8].Some work has concluded this for the high oxygen migration rate provided by oxygen vacancies.However,the detailed connection between the catalytic activity for CO oxidation and the reduction degree of the catalyst is still not clear.Moreover,recent studies suggested that the surface hydroxyls formed by dissociated water at the oxygen vacancy can enhance the activity of CO oxidation,which may also contribute to the high activity of reduced CeO2catalysts[9].In fact,besides the findings of the improvement of catalytic activity by surface hydroxyls[10],it is also expected that surface oxygen vacancies can be readily healed by oxygen molecules[11]and therefore they may not be the key species for the enhanced activities in reduced ceria.Accordingly,how the surface Ce3+itself can affect the catalytic activities of reduced CeO2toward CO oxidation is still worth studying.

    In this work, we conducted density functional theory calculations corrected by on-site Coulomb interaction (DFT+U)to theoretically investigate the effect of the concentrations of Ce3+[12], which were induced by surface hydroxyls (H at Os) on the catalytic activities toward CO oxidation at CeO2(111), the main facet exposed at CeO2nano-catalysts. In particular, we mainly focused on the process of direct reaction between CO and surface oxygens to reveal their reactivities at the stoichiometric and various reduced surfaces, though the interaction between adsorbed H or OH and CO on the CeO2surfaces may be also important [13]. All the calculation details can be found in the Supporting information.

    On the pristine CeO2(111) surface, CO can be exothermically adsorbed with the calculated adsorption energy of 0.33 eV(Fig.1).Then,the CO can react with the Osthrough the transition state(TS),in which the distance between C and Os(dC-Os) was calculated to decrease from 2.835 ? in the adsorption state to 1.665 ? (TS) and the ∠OCOswas determined to be 115.81°. The stretching vibration between C and Osin the transition state along this reaction pathway was determined with the imaginary frequency of 268.76 cm-1. The carbon atom in CO would bind with the Osafterwards to form an adsorbed bent CO2* intermediate species with the activation energy of 0.38 eV and the reaction energy of-0.31 eV. The bent CO2* is not stable and prefers to evolve to the straight one by releasing the energy as large as 1.07 eV.The straight CO2molecule can be easily released from the surface with the desorption energy of 0.46 eV only. These results are largely consistent with those reported in previous theoretical studies of CO oxidation at ceria surfaces [14].

    Fig.1. Calculated energy profile of CO oxidation on the pristine CeO2(111)surface.CO(g) and CO2(g) stand for the CO and CO2 in gas phase, respectively. CO(a) and CO2(a)refer to the adsorbed CO and CO2.CO2*denotes the bent CO2 intermediate.The ivory, red and grey spheres represent the Ce, O and C atoms, respectively.

    In general, corresponding to the different reaction steps discussed in the above, four important energetic components are involved in the whole CO oxidation process, namely the adsorption energy of CO (Eads), the activation energy (Ea), the reaction energy (Er) and the bending energy (Eb), as shown in Scheme S1 (Supporting information).

    Scheme 1. Sketch of the different surface cells and relative positions of the different surface species on the CeO2(111)surface.The black circles filled with green and red stand for the hydroxyl and the reactive Os, respectively.

    The reduced CeO2(111) surfaces with different concentrations of Ce3+were constructed by adjusting the coverages of surface hydroxyls (adsorbed hydrogens). A series of surface cells with different sizes involving one adsorbed H were applied as shown in Scheme 1 and Fig. S1 (Supporting information). Accordingly, the coverages (θ) of the adsorbed H are 1/16, 1/9, 1/7, 1/4, 1/3 and 1 monolayer(ML)(with respect to the number of Os)depending on the sizes of surface cells. The calculated H adsorption energies on the CeO2(111) surface under the above different coverages are listed in Table 1.One can see that under low coverages(θ ≤1/3 ML),the average H adsorption energy is 1.46 eV,while under the highest coverage of 1 ML, the calculated adsorption energy is lower by~0.1 eV. According to the spin charge difference analysis, the whole injected electron from the adsorbed H is localized at the nearest Ce beside the hydroxyl, which suggests that the varying coverages of adsorbed H can indeed modify the concentrations of Ce3+on the surface. The occupation of the Ce 4f orbital was also confirmed by the calculated density of states (DOS) (Fig. S2 in Supporting information).It should be noticed that the adsorbed H is introduced to adjust the concentration of Ce3+, which will not directly participate in CO oxidation reaction.

    Table 1 Calculated adsorption energies of hydrogen(Eads(H),with respect to 1/2 H2)on the CeO2(111) surfaces with different surface cells, calculated corresponding average negative charges of Os ((Os) and the band gap (Egap).

    Table 1 Calculated adsorption energies of hydrogen(Eads(H),with respect to 1/2 H2)on the CeO2(111) surfaces with different surface cells, calculated corresponding average negative charges of Os ((Os) and the band gap (Egap).

    θ (ML)Eads(H) (eV)Δq(Os) (e-)Egap (eV)1 1.35N / A2.822 1/31.481.2462.277 1/41.401.2412.219 1/71.481.2222.131 1/91.461.2112.069 1/161.481.2062.029

    Then, at the surfaces with the hydroxyls under the coverages from 1/16 ML to 1/3 ML,we calculated the reaction between one CO and the neighboring Osof the hydroxyl(Scheme 1),and the various energetic components involved in the whole process of the reaction are plotted in Fig. 2 and listed in Table S1 (all corresponding structures and the detailed results of the transition states can be found in Figs. S3-S7 and Table S2 in Supporting information). One can see that the Eadsdecreases with the increasing Ce3+concentration. The adsorption energy of CO is 0.35 eV at θ=1/16 ML, which is slightly higher than that on the pristine surface,while it becomes 0.29 eV when the θ increases to 1/3 ML. The calculated Bader charges of adsorbed CO (ΔqIS(CO))showed that the CO molecule accepts more negative charges at the surface with the increasing reduction degree (Table S3 in Supporting information). In other words, higher concentrations of localized electrons (Ce3+) at CeO2(111) can make the adsorbed CO more negatively charged, though its adsorption strength becomes slightly worse.

    Interestingly,both Eaand Erof CO oxidation apparently decrease with the coverages of surface hydroxyl (Fig. 2). In particular, the calculated Eadrops from 0.43 eV at θ=1/16 ML to 0.31 eV at θ=1/3 ML,and the change of the calculated Eralso indicates that more heat can be released through combination of CO and Oson thesurface with higher reduction degree.At the same time,in consistence with what was reported in our previous study[6],the Bader charge analysis showed that(ΔqIMS(CO2)in Table S3)the CO2*intermediate formed directly after the combination of CO and Osis actually a negatively charged CO2-species.In this process,the electron-rich Osprefers to attack the partially positively charged C in the CO molecule,and the electron transferred from surface to the CO molecule can be also found from the Bader charge analysis(ΔqTS(CO)–ΔqIS(CO))in Table S3).Then,one may expect that the localized electrons at Ce3+on the reduced surface slab can effectively increase the amount of negative charge of the surface Ce layer,which will then affect the charge distribution within the Ce-Osbonds and push the charges toward Osto increase their(Os).Accordingly,one can indeed see from Table 1 that more negatively charged Oscan occur at the surface with a higher concentration of surface hydroxyl,which will surely make it more active to be involved in CO oxidation.The activation energy as a function of the(Os)was plotted in Fig.S8(Supporting information),and one can clearly see that there is a good linear relationship with the R2of 0.97.The corresponding calculated imaginary frequencies are shown in Table S4(Supporting information).

    Fig.2.Calculated energetic components(Eads,Ea,Er and Eb)within CO oxidation as a function of the hydroxyl coverages.The detailed results and structures can be found in Table S1 and Figs.S3-S7.

    The evolvement of the bent CO2-intermediate to a straight CO2molecule then occurs following the combination of CO and Os,giving rise to the final formation and desorption of the molecular CO2.In this process,the CO2-species leaves one electron to the surface,and it can be confirmed by the calculated charge difference between the FS and IMS(ΔqFS(CO2)–ΔqIMS(CO2))in Table S3.Accordingly,one may expect that on the reduced CeO2(111)surfaces,the released electron from the CO2-intermediate leads to the occurrence of one more Ce3+,and it is obvious that the energy cost by the occupation of the empty 4f orbitals of Ce4+by the released electron would affect the bending energy.According to our calculated results,the band gap increases with the increasing concentrations of Ce3+(Table 1),which indeed suggests that a larger energy is needed to accept the released electron from the CO2-intermediate for the surface with a higher coverage of hydroxyls.Therefore,the corresponding total released energy,Eb,becomes lower.Our previous study[6]suggested that the competitive pathway to form the surface carbonate species rather than the gas phase CO2may occur at CeO2due to the high stability of the carbonate,which means that the less Ebwould result in the favorable formation of carbonate species.Even though highly reduced ceria catalyst brings a high activity for the combination between CO and Os,the corresponding low selectivity to generate CO2caused by the Ebwould like to cause undesirable effects to the catalyst.

    To further verify the effect of surface reduction degree on the catalytic activity,CO oxidationwas also calculated on the CeO2(111)-(3×3)surface involving two adsorbed hydrogens(Fig.S9 in Supportinginformation),andtheresults andstructures are reported in Fig.3,Fig.S10 and Table S1(Supporting information).Compared with the CeO2(111)-(3×3)surface involving only one adsorbed H(Fig.S11 in Supporting information),it is then more heavily reduced as two Ce3+now occur in each surface cell.As one can see,the calculated CO adsorption energy slightly reduces to 0.27 eV and the activation energy also reduces to 0.34 eV,which is 0.08 eV lower than that on the surface with one H(θ=1/9 ML).In addition,the corresponding reaction energy was found to be 0.09 eV lower and the calculated bending energy is 0.18 eV less than those on the surface with only one hydroxyl.These effects can be also related to the surface electronic structures.According to our calculations,the average negative charges of Oson the CeO2(111)-(3×3)surface with two H(θ=2/9 ML)is 1.230 e-.Interestingly,this value is located between those on the surface atθ=1/4 and 1/7 ML(Table 1)and the corresponding activation energy(0.34 eV)is also between those at these two surfaces(Table S1),in agreement with the relationship between the(Os)and the activation energy mentioned above.Therefore,one can indeed see that the surface reduction degree can tune the concentrations of localized electrons at the surface Ce,which in turn modify the charge distributions at the Osand affect their negative charges and activity toward reaction with CO.

    Fig.3.Calculated energy profiles of CO oxidation on the reduced CeO2 (111)-(3×3)surfaces with 1/9 and 2/9 ML of surface hydroxyl.

    Finally,it needs to be noted that CO oxidation on the pristine CeO2(111)surfaces with different surface cells was also calculated and the results are listed in Table S5.No obvious trend of the energy changes can be recognized,suggesting that the size of the surface cell,i.e.,CO coverage,itself may have neglectable effect on the calculated energetics.

    In summary,CO oxidations on the CeO2(111)surfaces with different reduction degrees implemented by forming surface hydroxyls were theoretically investigated by DFT+U calculations in this work.Energetic components involved in this process,including the adsorption,activation,reaction and bending energies,were determined on the various pristine and reduced surfaces,which largely exhibit linear relationships with the surface reduction degree.In particular,the calculated barrier for the direct reaction between CO and surface lattice O drastically decreases with the increase of surface reduction degree.From electronic analysis,we found that the surface reduction can lead to the occurrence of localized electrons at the surface Ce and affect the charge distribution at surface O.As the result,they become more negatively charged and therefore more active in reacting with CO.We can tentatively suggest that the localized 4f electron reservoir of Ce can act as the“pseudo-anion”at reduced CeO2surfaces to activate surface lattice O for catalytic oxidative reactions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for financial support from the National Key R&D Program of China(No.2018YFA0208602)and National Natural Science Foundation of China(No.21825301).The authors also thank the National Super Computing Center in Jinan for computing time.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.08.033.

    免费看av在线观看网站| 日韩,欧美,国产一区二区三区| 99精国产麻豆久久婷婷| 欧美成狂野欧美在线观看| 日韩av免费高清视频| 亚洲国产最新在线播放| 国产无遮挡羞羞视频在线观看| 精品一品国产午夜福利视频| 欧美日韩视频高清一区二区三区二| 女人爽到高潮嗷嗷叫在线视频| 纯流量卡能插随身wifi吗| 亚洲第一青青草原| 亚洲美女黄色视频免费看| 国产精品 欧美亚洲| netflix在线观看网站| 亚洲国产欧美日韩在线播放| 免费少妇av软件| 欧美日韩亚洲综合一区二区三区_| 99热国产这里只有精品6| 成人影院久久| 亚洲中文字幕日韩| 亚洲精品久久成人aⅴ小说| 国产亚洲精品久久久久5区| 日本vs欧美在线观看视频| 中文字幕av电影在线播放| 老汉色∧v一级毛片| a级片在线免费高清观看视频| av网站免费在线观看视频| 狂野欧美激情性xxxx| 亚洲国产最新在线播放| tube8黄色片| 久久女婷五月综合色啪小说| 桃花免费在线播放| 国产老妇伦熟女老妇高清| 少妇精品久久久久久久| 精品福利永久在线观看| 首页视频小说图片口味搜索 | 精品视频人人做人人爽| 高清黄色对白视频在线免费看| 最新在线观看一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 欧美亚洲 丝袜 人妻 在线| 久久久久精品国产欧美久久久 | 国产高清视频在线播放一区 | 国产熟女午夜一区二区三区| 亚洲中文日韩欧美视频| 涩涩av久久男人的天堂| 久久99一区二区三区| 各种免费的搞黄视频| 一级毛片我不卡| 午夜免费成人在线视频| 亚洲国产精品一区二区三区在线| av一本久久久久| 97精品久久久久久久久久精品| 久久精品aⅴ一区二区三区四区| 永久免费av网站大全| 观看av在线不卡| 精品国产一区二区久久| 免费观看a级毛片全部| 一区在线观看完整版| 午夜av观看不卡| 欧美亚洲 丝袜 人妻 在线| 99精品久久久久人妻精品| 一本—道久久a久久精品蜜桃钙片| 久久久精品94久久精品| 丁香六月欧美| 女性被躁到高潮视频| 亚洲国产欧美日韩在线播放| 免费少妇av软件| 人妻一区二区av| 免费观看人在逋| 国产精品偷伦视频观看了| 首页视频小说图片口味搜索 | 男人添女人高潮全过程视频| 国产欧美亚洲国产| 久久天躁狠狠躁夜夜2o2o | 另类亚洲欧美激情| 制服诱惑二区| 色播在线永久视频| 日本欧美视频一区| 亚洲人成电影观看| 一区二区三区四区激情视频| 91成人精品电影| 久久人妻福利社区极品人妻图片 | kizo精华| 女警被强在线播放| 欧美日韩国产mv在线观看视频| 涩涩av久久男人的天堂| 色精品久久人妻99蜜桃| 精品第一国产精品| 亚洲 国产 在线| 天天添夜夜摸| av网站在线播放免费| 丝袜脚勾引网站| 国产主播在线观看一区二区 | 精品高清国产在线一区| 久久久国产欧美日韩av| 国产一区二区激情短视频 | 9色porny在线观看| 日本五十路高清| 免费观看av网站的网址| 激情五月婷婷亚洲| 久久久精品区二区三区| 人体艺术视频欧美日本| 免费av中文字幕在线| 国产视频一区二区在线看| 免费在线观看完整版高清| 99精品久久久久人妻精品| 色播在线永久视频| 日韩欧美一区视频在线观看| 18在线观看网站| 亚洲精品久久午夜乱码| 丝袜喷水一区| 中国美女看黄片| 久久国产精品人妻蜜桃| 乱人伦中国视频| 欧美激情高清一区二区三区| 国产高清国产精品国产三级| 男人舔女人的私密视频| 纵有疾风起免费观看全集完整版| 黄色怎么调成土黄色| 18禁观看日本| 男女下面插进去视频免费观看| 久久久久精品国产欧美久久久 | 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| 久久av网站| 91国产中文字幕| 啦啦啦视频在线资源免费观看| 老司机影院成人| 日韩电影二区| 中文字幕人妻熟女乱码| 欧美日韩国产mv在线观看视频| 国产又爽黄色视频| 后天国语完整版免费观看| 国产免费视频播放在线视频| 美女午夜性视频免费| 亚洲av国产av综合av卡| 我的亚洲天堂| 国产一区有黄有色的免费视频| 日韩av在线免费看完整版不卡| 50天的宝宝边吃奶边哭怎么回事| 国产精品麻豆人妻色哟哟久久| 欧美精品人与动牲交sv欧美| 黄色毛片三级朝国网站| 久久国产精品男人的天堂亚洲| 电影成人av| 亚洲精品久久午夜乱码| 美女中出高潮动态图| 嫁个100分男人电影在线观看 | 丝袜美腿诱惑在线| 久久综合国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产色视频综合| 热re99久久国产66热| 日韩视频在线欧美| 操出白浆在线播放| 久久精品亚洲熟妇少妇任你| 18禁国产床啪视频网站| 亚洲免费av在线视频| 曰老女人黄片| 亚洲av美国av| 777米奇影视久久| 亚洲成人免费电影在线观看 | 下体分泌物呈黄色| 捣出白浆h1v1| 免费久久久久久久精品成人欧美视频| 亚洲国产欧美日韩在线播放| av网站免费在线观看视频| 人人妻人人添人人爽欧美一区卜| 欧美av亚洲av综合av国产av| 国产一区二区三区av在线| 亚洲国产欧美网| 日韩视频在线欧美| 亚洲av成人精品一二三区| 女性被躁到高潮视频| 另类亚洲欧美激情| 色精品久久人妻99蜜桃| av福利片在线| 一区福利在线观看| 久久99一区二区三区| 母亲3免费完整高清在线观看| 精品久久蜜臀av无| 亚洲av片天天在线观看| 男女午夜视频在线观看| 国产亚洲欧美在线一区二区| 成年人黄色毛片网站| 国产一区亚洲一区在线观看| 老司机亚洲免费影院| 欧美黑人精品巨大| 你懂的网址亚洲精品在线观看| 啦啦啦在线观看免费高清www| 美女国产高潮福利片在线看| 巨乳人妻的诱惑在线观看| 欧美xxⅹ黑人| 一本色道久久久久久精品综合| 不卡av一区二区三区| h视频一区二区三区| 亚洲一区二区三区欧美精品| 国产视频首页在线观看| 欧美日韩av久久| 另类亚洲欧美激情| 国产成人精品久久二区二区91| 啦啦啦在线观看免费高清www| av国产久精品久网站免费入址| 婷婷色av中文字幕| 亚洲成av片中文字幕在线观看| 女警被强在线播放| 校园人妻丝袜中文字幕| 999精品在线视频| 亚洲av日韩精品久久久久久密 | 亚洲欧洲日产国产| 精品少妇一区二区三区视频日本电影| 成年动漫av网址| 一级片免费观看大全| svipshipincom国产片| 亚洲专区国产一区二区| 18禁国产床啪视频网站| 亚洲美女黄色视频免费看| 丰满迷人的少妇在线观看| 亚洲欧美激情在线| 高清视频免费观看一区二区| 亚洲精品久久久久久婷婷小说| 91麻豆av在线| 日本欧美国产在线视频| 国产日韩欧美在线精品| 国产有黄有色有爽视频| 精品国产一区二区久久| 真人做人爱边吃奶动态| 天天躁夜夜躁狠狠躁躁| 女性生殖器流出的白浆| 亚洲国产av新网站| 国产免费视频播放在线视频| 亚洲 国产 在线| 久久国产精品大桥未久av| 亚洲伊人久久精品综合| 丁香六月欧美| 乱人伦中国视频| videosex国产| 性少妇av在线| 老司机亚洲免费影院| 午夜影院在线不卡| 国产精品久久久久久人妻精品电影 | 亚洲av综合色区一区| 考比视频在线观看| 男的添女的下面高潮视频| 成年女人毛片免费观看观看9 | 婷婷色综合www| 99久久人妻综合| 人人妻人人澡人人爽人人夜夜| 99精品久久久久人妻精品| 日日摸夜夜添夜夜爱| 老熟女久久久| 国产亚洲精品久久久久5区| 日本vs欧美在线观看视频| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 国产免费福利视频在线观看| 美女扒开内裤让男人捅视频| 久久国产精品影院| 久久青草综合色| 丰满饥渴人妻一区二区三| 久久鲁丝午夜福利片| 少妇的丰满在线观看| 三上悠亚av全集在线观看| 亚洲激情五月婷婷啪啪| 国产片特级美女逼逼视频| 五月开心婷婷网| 国产高清videossex| 91成人精品电影| 亚洲人成电影免费在线| 999精品在线视频| 一级,二级,三级黄色视频| 人妻人人澡人人爽人人| 波野结衣二区三区在线| 中文字幕av电影在线播放| 欧美老熟妇乱子伦牲交| 黑人猛操日本美女一级片| bbb黄色大片| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91| 99久久综合免费| 深夜精品福利| 黑人欧美特级aaaaaa片| 精品人妻在线不人妻| av片东京热男人的天堂| 亚洲精品一区蜜桃| 久久这里只有精品19| 婷婷成人精品国产| 中国美女看黄片| 国产精品熟女久久久久浪| 日韩熟女老妇一区二区性免费视频| 搡老乐熟女国产| 精品一区二区三卡| 成人三级做爰电影| 欧美在线黄色| 少妇的丰满在线观看| 亚洲av成人不卡在线观看播放网 | 50天的宝宝边吃奶边哭怎么回事| 另类亚洲欧美激情| 久久久精品94久久精品| 久久精品aⅴ一区二区三区四区| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| 视频区图区小说| 亚洲国产欧美日韩在线播放| 麻豆国产av国片精品| 亚洲欧美日韩另类电影网站| 一级片免费观看大全| 欧美国产精品va在线观看不卡| 欧美日本中文国产一区发布| 人人澡人人妻人| 十八禁高潮呻吟视频| 国产福利在线免费观看视频| 亚洲中文日韩欧美视频| kizo精华| 菩萨蛮人人尽说江南好唐韦庄| 免费看av在线观看网站| 国产一区二区三区av在线| 国产视频一区二区在线看| 久久久久久久久久久久大奶| 老司机亚洲免费影院| 久久女婷五月综合色啪小说| 好男人视频免费观看在线| 国产欧美亚洲国产| 高清不卡的av网站| 19禁男女啪啪无遮挡网站| 国产精品一区二区免费欧美 | a级毛片在线看网站| 亚洲精品日本国产第一区| 一级毛片黄色毛片免费观看视频| 一级毛片我不卡| 亚洲成色77777| 日日爽夜夜爽网站| 黄色一级大片看看| 国产成人免费无遮挡视频| 精品少妇黑人巨大在线播放| 亚洲av电影在线观看一区二区三区| 国产av一区二区精品久久| 中文精品一卡2卡3卡4更新| 亚洲伊人色综图| 亚洲av成人精品一二三区| 三上悠亚av全集在线观看| 如日韩欧美国产精品一区二区三区| 少妇 在线观看| 伊人亚洲综合成人网| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 我要看黄色一级片免费的| 90打野战视频偷拍视频| 王馨瑶露胸无遮挡在线观看| 99国产综合亚洲精品| 丝袜美足系列| 人体艺术视频欧美日本| 亚洲欧美清纯卡通| 免费女性裸体啪啪无遮挡网站| 亚洲av片天天在线观看| 人体艺术视频欧美日本| 不卡av一区二区三区| 成年美女黄网站色视频大全免费| 99九九在线精品视频| 成在线人永久免费视频| 美国免费a级毛片| 国产av精品麻豆| 亚洲av片天天在线观看| 国产高清不卡午夜福利| 亚洲自偷自拍图片 自拍| 中文字幕另类日韩欧美亚洲嫩草| www日本在线高清视频| 欧美xxⅹ黑人| 国产黄色视频一区二区在线观看| cao死你这个sao货| 一级a爱视频在线免费观看| av网站免费在线观看视频| 黄色视频在线播放观看不卡| 汤姆久久久久久久影院中文字幕| 亚洲精品在线美女| 亚洲熟女精品中文字幕| 亚洲 国产 在线| 黄色片一级片一级黄色片| 亚洲精品国产av蜜桃| 亚洲人成电影免费在线| 日本五十路高清| 性少妇av在线| 巨乳人妻的诱惑在线观看| av网站在线播放免费| 成年动漫av网址| svipshipincom国产片| 热99久久久久精品小说推荐| 黄色a级毛片大全视频| 捣出白浆h1v1| netflix在线观看网站| 精品久久久久久久毛片微露脸 | av国产久精品久网站免费入址| 亚洲视频免费观看视频| 99热网站在线观看| 下体分泌物呈黄色| www.av在线官网国产| 成人三级做爰电影| 亚洲精品国产av蜜桃| 欧美精品人与动牲交sv欧美| 亚洲精品av麻豆狂野| 国产亚洲av片在线观看秒播厂| 九草在线视频观看| 午夜久久久在线观看| 欧美日韩亚洲高清精品| 高清黄色对白视频在线免费看| 校园人妻丝袜中文字幕| 久久精品久久久久久久性| 午夜福利在线免费观看网站| av片东京热男人的天堂| 最近手机中文字幕大全| 人妻一区二区av| 日韩大片免费观看网站| 免费看av在线观看网站| 国产成人精品无人区| 热re99久久国产66热| 亚洲第一青青草原| 一级毛片 在线播放| 亚洲精品一卡2卡三卡4卡5卡 | 大陆偷拍与自拍| 欧美人与性动交α欧美软件| 天天躁夜夜躁狠狠久久av| 一级黄色大片毛片| 国产精品一国产av| 人人妻,人人澡人人爽秒播 | 97在线人人人人妻| 一级片'在线观看视频| 另类亚洲欧美激情| 日日夜夜操网爽| 夫妻性生交免费视频一级片| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 五月天丁香电影| 久久免费观看电影| 欧美日韩黄片免| bbb黄色大片| 久久久国产欧美日韩av| 日本猛色少妇xxxxx猛交久久| 亚洲精品一二三| 免费在线观看日本一区| 大陆偷拍与自拍| 在线 av 中文字幕| 久久精品亚洲av国产电影网| 成人国产一区最新在线观看 | 亚洲成人国产一区在线观看 | 免费女性裸体啪啪无遮挡网站| 欧美日韩av久久| 免费人妻精品一区二区三区视频| 好男人电影高清在线观看| 日韩大片免费观看网站| 少妇被粗大的猛进出69影院| 校园人妻丝袜中文字幕| 国产精品av久久久久免费| 不卡av一区二区三区| 中国美女看黄片| 飞空精品影院首页| 亚洲精品乱久久久久久| 国产不卡av网站在线观看| 亚洲精品久久午夜乱码| 国产熟女欧美一区二区| 亚洲精品第二区| 婷婷色综合大香蕉| 丁香六月天网| 亚洲欧美清纯卡通| 国产精品二区激情视频| 精品少妇内射三级| 高清黄色对白视频在线免费看| 精品少妇一区二区三区视频日本电影| 亚洲人成电影免费在线| 在线观看一区二区三区激情| 亚洲国产精品一区三区| 国产男女超爽视频在线观看| 午夜激情av网站| 国产精品一国产av| 国产亚洲av片在线观看秒播厂| 多毛熟女@视频| 亚洲,欧美,日韩| 国产免费一区二区三区四区乱码| 伊人亚洲综合成人网| 国产精品久久久久久精品古装| 日本wwww免费看| 日韩电影二区| 亚洲欧美日韩高清在线视频 | 国产欧美日韩精品亚洲av| 亚洲国产欧美网| 欧美精品一区二区大全| 国产无遮挡羞羞视频在线观看| 国产成人91sexporn| avwww免费| 日本av手机在线免费观看| 免费高清在线观看日韩| 亚洲欧美中文字幕日韩二区| 国产一区二区三区av在线| 亚洲国产精品国产精品| av一本久久久久| 性高湖久久久久久久久免费观看| 国产精品熟女久久久久浪| 天天躁夜夜躁狠狠久久av| 少妇粗大呻吟视频| 少妇的丰满在线观看| 久久亚洲国产成人精品v| 丝袜美足系列| 亚洲激情五月婷婷啪啪| 嫩草影视91久久| 国产激情久久老熟女| www.999成人在线观看| 亚洲国产最新在线播放| 婷婷色麻豆天堂久久| 三上悠亚av全集在线观看| 色综合欧美亚洲国产小说| 在线精品无人区一区二区三| 超碰成人久久| 国产精品成人在线| 无遮挡黄片免费观看| 久久影院123| 美女高潮到喷水免费观看| 91精品伊人久久大香线蕉| 国产精品久久久久久人妻精品电影 | 亚洲精品日韩在线中文字幕| 天天躁夜夜躁狠狠躁躁| 日韩av免费高清视频| 欧美人与善性xxx| 又黄又粗又硬又大视频| 久久精品亚洲av国产电影网| 午夜福利视频在线观看免费| 在线观看国产h片| 亚洲成色77777| 亚洲精品一卡2卡三卡4卡5卡 | 熟女少妇亚洲综合色aaa.| 国产精品二区激情视频| 我要看黄色一级片免费的| 国产色视频综合| 少妇精品久久久久久久| 青青草视频在线视频观看| 国产亚洲精品久久久久5区| 建设人人有责人人尽责人人享有的| 色婷婷av一区二区三区视频| 欧美激情 高清一区二区三区| 精品国产国语对白av| 麻豆av在线久日| av线在线观看网站| 多毛熟女@视频| 国产成人精品在线电影| 久久人人爽人人片av| 极品人妻少妇av视频| 亚洲精品一二三| 午夜福利影视在线免费观看| 91国产中文字幕| 国产在线观看jvid| 一级毛片女人18水好多 | 国产高清视频在线播放一区 | 国产黄色视频一区二区在线观看| 日本wwww免费看| 国产不卡av网站在线观看| 精品久久久精品久久久| 国产精品偷伦视频观看了| 欧美av亚洲av综合av国产av| 亚洲精品久久午夜乱码| 精品福利永久在线观看| 另类精品久久| 高清av免费在线| 视频区欧美日本亚洲| 亚洲欧美日韩另类电影网站| 久久久久久亚洲精品国产蜜桃av| av视频免费观看在线观看| 亚洲国产最新在线播放| 国产黄频视频在线观看| 天天影视国产精品| av国产精品久久久久影院| 男的添女的下面高潮视频| 午夜视频精品福利| 国产精品 欧美亚洲| 这个男人来自地球电影免费观看| 久久国产精品人妻蜜桃| 久久精品aⅴ一区二区三区四区| 久久久精品94久久精品| 亚洲av美国av| 亚洲精品av麻豆狂野| 国产精品av久久久久免费| 美女国产高潮福利片在线看| 日韩大码丰满熟妇| 国产高清视频在线播放一区 | 最新在线观看一区二区三区 | 最新的欧美精品一区二区| 欧美成人精品欧美一级黄| 国产精品秋霞免费鲁丝片| 亚洲精品一区蜜桃| 在线av久久热| 亚洲人成网站在线观看播放| 一级毛片女人18水好多 | 99久久99久久久精品蜜桃| 日本a在线网址| 日韩一区二区三区影片| 免费人妻精品一区二区三区视频| 久久久久国产精品人妻一区二区| 久久久久久亚洲精品国产蜜桃av| 国产在线视频一区二区| 一级a爱视频在线免费观看| 欧美黄色淫秽网站| 久久久久精品人妻al黑| 亚洲专区国产一区二区| 18禁裸乳无遮挡动漫免费视频| 啦啦啦 在线观看视频| 少妇 在线观看| 狂野欧美激情性xxxx| 大香蕉久久网| 亚洲三区欧美一区| av网站在线播放免费| 夫妻性生交免费视频一级片| 婷婷色av中文字幕| svipshipincom国产片| 中文字幕人妻丝袜制服| 国产欧美日韩一区二区三区在线| 精品一区在线观看国产|